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Efficient Parallel Graph Algorithms for Coarse-Grained
Multicomputers and BSP1

F. Dehne,2 A. Ferreira,3 E. Cáceres,4 S. W. Song,5 and A. Roncato6

Abstract. In this paper we presentdeterministicparallel algorithms for thecoarse-grained multicomputer
(CGM) andbulk synchronous parallel(BSP) models for solving the following well-known graph problems:
(1) list ranking, (2) Euler tour construction in a tree, (3) computing the connected components and spanning
forest, (4) lowest common ancestor preprocessing, (5) tree contraction and expression tree evaluation, (6) com-
puting an ear decomposition or open ear decomposition, and (7) 2-edge connectivity and biconnectivity (testing
and component computation). The algorithms requireO(log p) communication rounds with linear sequential
work per round (p = no. processors,N = total input size). Each processor creates, during the entire algorithm,
messages of total sizeO(log(p)(N/p)).

The algorithms assume that the local memory per processor (i.e.,N/p) is larger thanpε , for some fixed
ε > 0. Our results imply BSP algorithms withO(log p) supersteps,O(g log(p)(N/p)) communication time,
andO(log(p)(N/p)) local computation time.

It is important to observe that the number of communication rounds/supersteps obtained in this paper is
independent of the problem size, and grows only logarithmically with respect top. With growing problem
size, only the sizes of the messages grow but the total number of messages remains unchanged. Due to the
considerable protocol overhead associated with each message transmission, this is an important property.
The result for Problem (1) is a considerable improvement over those previously reported. The algorithms for
Problems (2)–(7) are the first practically relevant parallel algorithms for these standard graph problems.
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1. Introduction. Speedup results for theoretical PRAM algorithms do not necessar-
ily match the speedups observed on real machines [1], [36]. Given sufficient slackness
in the number of processors, Valiant’sbulk synchronous parallel(BSP) approach [39]
simulates PRAM algorithms optimally on distributed memory parallel systems. Valiant
points out, however, that one may want to design algorithms that utilize local compu-
tations and minimize global operations [38], [39]. The BSP approach requires thatg
(= local computation speed÷ router bandwidth) is low, or fixed, even for increasing
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and the R´egion Rhône-Alpes (France). A preliminary version of this paper was published in the proceedings
of the 1997 International Colloquium on Automata, Languages and Programming [5].
2 School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6. frank@dehne.net,
www.dehne.net.
3 CNRS - I3S, INRIA, Sophia-Antipolis, France. ferreira@sophia.inria.fr.
4 Univ. Federal de Mato Grosso do Sul, Campo Grande, Brasil. edson@dct.ufms.br.
5 University of São Paulo, S˜ao Paulo, Brazil. song@ime.usp.br.
6 Facolta di Scienze Mat. Fis. e Nat., Mestre, Italia. roncato@dsi.unive.it.

Received July 5, 2000; revised April 16, 2001. Communicated by F. P. Preparata.
Online publication March 11, 2002.



184 F. Dehne, A. Ferreira, E. C´aceres, S. W. Song, and A. Roncato

number of processors. Gerbessiotis and Valiant [18] describe circumstances where
PRAM simulations cannot be performed efficiently, among others, if the factorg is
high. Unfortunately, this is true for most currently available multiprocessors. The paral-
lel algorithms presented in this paper consider this case for graph problems.

As pointed out in [39], the cost of a message also contains a constant overhead
costs. The value ofs can be fairly large and the total message overhead cost can have
a considerable impact on the speedup observed (see, e.g., [9]). In this paper we use
a more practical version of the BSP model, referred to as thecoarse-grained multi-
computer(CGM) model [8]–[11]. It is comprised of a set ofp processorsP1, . . . , Pp

with O(N/p) local memory per processor and an arbitrary communication network (or
shared memory). All algorithms consist of alternating local computation and global com-
munication rounds. Each communication round consists of routing a singleh-relation
with h = O(N/p), i.e., each processor sendsO(N/p) data and receivesO(N/p) data.
We require that all information sent from a given processor to another processor in one
communication round is packed into one long message, thereby minimizing the message
overhead. A CGM computation/communication round corresponds to a BSP superstep
with communication costg(N/p) (plus the above “packing requirement”).

Finding an optimal algorithm in the CGM model is equivalent to minimizing the
number of communication rounds as well as the total local computation time and total
message size. This considers all parameters discussed above that are affecting the final
observed speedup and it requires no assumption ong. Furthermore, it has been shown that
minimizing the number of supersteps also leads to improved portability across different
parallel architectures [38], [39], [14]. The above model has been used (explicitly or
implicitly) in parallel algorithm design for various problems [4], [8]–[11], [13], [15],
[25] and shown very good practical timing results.

In this paper we study deterministic parallel graph algorithms for the CGM and BSP
models. We consider the following well-known graph problems:

1. List ranking.
2. Euler tour construction.
3. Computing the connected components and spanning forest.
4. Lowest common ancestor preprocessing.
5. Tree contraction and expression tree evaluation.
6. Computing an ear decomposition or open ear decomposition.
7. 2-Edge connectivity and biconnectivity (testing and component computation).

These problems have been extensively studied for fine-grained parallel networks
and for the PRAM (see, e.g., [32]). However, for the practically much more relevant
CGM/BSP model there exist, to the best of our knowledge, only a few results on parallel
graph algorithms.

For the remainder, letn denote the number of vertices, letmbe the number of edges of
a given input graphG, and letN = n+m. Reid-Miller [31] presented an empirical study
of parallel list ranking for the Cray C-90. The paper followed essentially the CGM/BSP
model and claimed that this was the fastest list ranking implementation at that time. More
detailed empirical studies and tradeoffs with respects to the communication volume are
presented in [35]. The algorithm in [31] requiredO(logn) communication rounds. In
[12], an improved algorithm was presented which required, with high probability, only
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O(k log p) rounds, wherek ≤ log∗ n. In [14] the list ranking problem is considered as
well. HereO(log p) communication rounds are achieved by a randomized algorithm.
Bäumker and Dittrich presented in [3] a connected components algorithm for planar
graphs usingO(log p) communication rounds. They suggest an extension of this algo-
rithm for general graphs with the same number of communication rounds. Again, both
algorithms are randomized.

We improve these results by giving the firstdeterministicalgorithms for list ranking
and computing connected components inO(log p) rounds. Algorithms withO(1) com-
munication rounds have been presented for various Computational Geometry problems
[9]–[12], [17], but the graph problems studied in this paper have considerably less “inter-
nal structure” which could be exploited to obtain such solutions. It is not known whether
solutions withO(1) communication rounds exist for these graph problems. Note that,
in practice, the number of processors is usually fixed. In contrast to the previous deter-
ministic results, the improved number of communication rounds obtained in this paper,
O(log p), is independentof n. This is of considerable practical relevance. With growing
problem size, the number of messages remains unchanged. Only the sizes of these mes-
sages grow, linear with respect to the growth in problem size. Due to the considerable
protocol overhead associated with each message transmission, this is an important prop-
erty. In fact, our experience in implementing parallel algorithms on standard commercial
machines indicates that this property is, in most cases, a crucial ingredient for practically
relevant parallel algorithms.

As in [31] we, in general, assume thatN À p (coarse-grained), because this is usually
the case in practice. More precisely, we assume thatN/p ≥ pε for some fixedε > 0,
which is true for most commercially available multiprocessors.

In Section 3 of this paper we use a technique calleddeterministic list compression
to obtain a deterministic list ranking algorithm withO(log p) rounds. The connected
components algorithm is presented in Section 4.1. It uses a technique calledaccelerated
cascading. That is, it simulates an existing PRAM algorithm for the same problem
but stops the execution of this algorithm afterO(log p) rounds and then finishes the
computation with a different (new) CGM algorithm. In Sections 4.2–4.5 we present
deterministicparallel CGM/BSP algorithms withO(log p) communication rounds for
solving Problems 4–7, respectively. All algorithms require linear sequential work per
round and each processor creates, during the entire algorithm, messages of total size
O(log(p)(N/p)). To our knowledge, these are the only currently known CGM and BSP
algorithms for these problems.

Before we proceed with presenting the above-mentioned results we give, in Section 2,
an overview of the BSP and CGM models and their relationship to each other.

2. The BSP, CGM, and Related Parallel Computing Models. The BSP model was
introduced in [38], and the CGM model was presented in [9]–[11].

A BSP computer is a collection of processor/memory modules connected by a router
that can deliver messages in a point to point fashion between the processors. A BSP-style
computation is divided into a sequence of supersteps separated by barrier synchroniza-
tions. Incomputation superstepsthe processors perform computations on data that was
present locally at the beginning of the superstep. Incommunication superstepsdata is
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exchanged among the processors via the router. A BSP computer has the following pa-
rameters:N refers to the problem size,p is the number of processors,L is the minimum
time between synchronization steps (measured in basic computation units), andg is the
ratio of overall system computational capacity (number of computation operations) per
unit time divided by the overall system communication capacity (number of messages of
unit size that can be delivered by the router) per unit time. A BSP algorithm with a total of
λ supersteps has the following computation and communication costs: Thecomputation
cost Tcompof the algorithm isTcomp=

∑λ
i=1w

i
comp, where thei th computation superstep

is assigned costwi
comp = max{L , t1, ...,tp}. Here tj is the number of basic computa-

tion operations performed by processorj in the i th superstep. Thecommunication cost
Tcomm of the algorithm isTcomm =

∑λ
i=1 w

i
comm, where thei th communication super-

step is assigned costwi
comm = maxp

j=1 {wi
comm, j }. Herewi

comm, j is the communication
cost incurred by processorj in the i th superstep. Assuming that processorpj receives
messages of lengthsr1, . . . , r j ′ and sends messages of lengths{s1, . . . , sj ′′ } during the

i th superstep,wi
comm, j = max{L , g(∑ j ′

u=1 ri +
∑ j ′′

u=1 si )}.
A CGM(N, p) uses only two parameters,N and p, and assumes a collection ofp

processors withN/p local memory each connected by a router that can deliver messages
in a point to point fashion. A CGM algorithm consists of an alternating sequence of
computation roundsandcommunication roundsseparated by barrier synchronizations.
A computation round is equivalent to a computation superstep in the BSP model, and the
total computation costTcomp is defined analogously. A communication round consists
of a singleh-relation withh ≤ N/p. The costwi

comm of each communication round has
the same value, referred to asHN,p. Therefore, the total communication costTcomm of
a CGM algorithm withλ communication rounds is simplyTcomm= λHN,p. In a recent
overview of different BSP and related models, Goodrich [20] referred to the CGM as the
weak-CREW BSP. The main difference between the BSP and CGM models is that the
latter allows only one single type of communication operation, theh-relation, and simply
counts the number ofh-relations as its main measure of communication cost. Note that
every CGM algorithm is also a BSP algorithm but not vice versa. The CGM model aims
at designing simple and practical yet theoretically optimal or efficient parallel algorithms
for coarse-grainedparallel systems (N/pÀ 1). Algorithms do usually require a lower
bound onN/p, e.g.,N/p ≥ p or N/p ≥ pε. The CGM model targets in particular
the case where the overall computation speed is considerably larger than the overall
communication speed, which is usually the case. Since the message size is maximal, the
CGM model minimizes the message overhead associated with sending a single message
(regardless of its length), which is very important in practice.

In summary, the main advantage of the CGM model is that it allows us to model
the communication cost of a parallel algorithm by one single parameter, the number
of communication rounds,λ. Note that, whileλ is the main parameter determining
the performance of a CGM algorithm, we will also indicate other parameters like the
local computation and total communication when analyzing CGM algorithms (more
discussion below).

Previous definitions of the CGM model (e.g., [9]) distinguished between the costs
of an h-relation and the cost of sorting. However, due to the recent results in [20]
these are equivalent forN/p ≥ pε. Also, it is not necessary to distinguish between



Efficient Parallel Graph Algorithms for Coarse-Grained Multicomputers and BSP 187

balanced and unbalancedh-relations. In both cases each processor sends/receivesO(h)
data but in the balanced case the data exchanged between any two processors is always
O(h/p) whereas it may vary in the unbalanced case. It has been shown in [2] that an
unbalancedh-relation can be simulated byO(1) balancedh-relations. Another possible
case of imbalance occurs when some processors send/receive less thanO(h) data. This
problem has been studied in [22] (E-BSP model) but is not a topic of this paper. Another
related model is the QSM [19] where communication is performed via a shared memory
with emphasis on memory contention, i.e., simultaneous accesses to the same shared
memory cell. The main difference between QSM and CGM is that the latter allows the
use of only one single communication scheme, theh-relation, for resolving memory
contention. Consult [20] for an overview of the different BSP related models.

The CGM model has recently attracted considerable interest in the parallel algorithms
community. Several researchers have used it to design parallel algorithms for various
problem areas (see, e.g., [8] and various CGM articles in the recent ACM SPAA and
IPPS/SPDP proceedings). For most parallel processing implementations, the number of
h-relations required is the overriding factor determining the performance because the
protocol overhead associated with each message is usually substantial. In the extreme
case this may of course not be true. A few extremely large messages may require more
time than a larger number of very small messages. Therefore, it is also useful to study the
total message size per processor over all rounds, i.e., the sum of the sizes of all message
sent by a processor during the entire computation. For all algorithms presented in this
paper, the total message size per processor over all rounds isO(log(p)(N/p)).

In the remainder of this paper we design and analyze our parallel graph algorithms in
the CGM model. The relationship to the BSP model is given by the following:

OBSERVATION 1. A CGM algorithm withλ rounds and computation cost Tcomp corre-
sponds to a BSP algorithm withλ supersteps, communication cost O(gλ(N/p)), and
the same computation cost Tcomp.

3. List Ranking. Let L be a linked list of lengthn represented by a vectors[1 · · ·n].
For eachi ∈ {1 · · ·n}, s[i ] is a pointer to the list element followingi in the list L. We
refer toi ands[i ] ass-neighbors. The last elementλ of the listL is the one withs[λ] = λ.
The distance betweeni and j , dL(i, j ), is the number of nodes inL betweeni and j
plus one (i.e., the distance is zero if and only ifi = j , and it is one if and only if one
node follows the other). Thelist rankingproblem consists of computing for eachi ∈ L
the distance betweeni andλ, referred to asrankL(i ) = dL(i, λ).

On aCGM(n, p), each processor initially storesn/p list elements ofL with their
respective pointers. Figure 1 shows an example of a linked list withn = 24 elements
stored on aCGM with p = 4 processors,n/p = 6 elements per processor.

In the remainder of this section we present adeterministicCGM list ranking algorithm
which requiresO(log p) rounds.

We need the following definitions. Anr -ruling set L′ of L is defined as a subset
of selectedlist elements ofL that has the following properties: (1) No two neigh-
boring elements are selected. (2) The distance of any unselected element to the next
selected element is at mostr . For eachi ∈ L let sL ′ [i ] be the next selected element
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Fig. 1.A linked list L stored on aCGM(n, p).

j ∈ L ′ with respect to the order implied byL. We represent anr -ruling setL ′ again
as a linked list where each elementi ∈ L ′ is assigned a pointer tosL ′ [i ] and a value
w(i ) = dL(i, sL ′ [i ]) representing the distance betweeni andsL ′(i ). See Figure 2 for
an illustration. The weighted list ranking problem onL ′ with weightsw(·) refers to
computing for eachi ∈ L ′ the sum of the weightsw( j ) of all nodesj ∈ L ′ betweeni
andλ.

Algorithm 1 outlines the top-level of our CGM list ranking method. An illustrating
example is given in Figure 3.

Algorithm 1. CGM List Ranking

Input: A linked list L of lengthn stored on aCGM(n, p), n/p ≥ pε. Each
processor storesn/p list elementsi ∈ L and their respective pointerss[i ].
Output: For each list elementi its rankrankL(i ) in L.

1. The CGM computes anO(p2)-ruling set R of size |R| = O(n/p) as
described in Algorithm 2 below.

2. R is broadcast to all processors. This broadcast is implemented asO(log p)
communication rounds where the number of processors storingR is initially
one and then doubled in each communication round.

L

L'
2323 2

Fig. 2.A list L and a 3-ruling setL ′.
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Fig. 3. Illustration of Algorithm 1.

3. Each processor, sequentially, performs weighted list ranking onR with
weightsw(·), thereby computing for eachj ∈ R its rank rankL( j )
in L.

4. Each list elementi ∈ L − R has at most distanceO(p2), with respect
to L, to its next elementsR[i ] in R. Using O(log p) CGM sorting steps,
theCGM simulatesO(log p) pointer jumping steps of the standard PRAM
list ranking algorithm, thereby computing for eachi ∈ L − R its distance
dL(i, sR[i ]) to its next elementsR[i ] in R.

5. Each processor locally computes the ranks of its list elementsi ∈ L − R
as follows:rankL(i ) = dL(i, sR[i ])+ rankL(sR[i ]).

The hard part of the algorithm is the computation of aO(p2)-ruling setR of size
O(n/p) which we discuss in detail below. Given such aO(p2)-ruling set, the correct-
ness of Algorithm 1 is straightforward. We also observe that Steps 2–5 can be easily
implemented on aCGM in O(log p) communication rounds withO(n/p) local compu-
tation per round. Note that in Step 4 we are simulating PRAM pointer jumping steps on
the CGM. Each such step can be implemented inO(1) rounds by applying Goodrich’s
sorting algorithm [20] forn/p ≥ pε.

In the remainder of this section we introduce a new technique, calleddeterministic list
compression, which allows us to compute aO(p2)-ruling set inO(log p) communication
rounds.

The basic idea behinddeterministic list compressionis to have an alternating sequence
of compressand concatenatephases. In a compress phase weselecta subset of list
elements, and in aconcatenatephase we use pointer jumping to work our way towards
building a linked list of selected elements.
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We define ans-intervalof lengthk as a sequenceI = (i1, . . . , i k) of list elements
with s[i j ] = i j+1, 1 ≤ j ≤ k − 1. The twoneighborsof the s-interval I are the two
list elementsn1,n2 not in I such thats[n1] = i1 ands[i k] = n2. We refer to a maximal
s-interval I = (i1, . . . , i k) of list elements which are all stored at the same processor as
a local s-interval. A maximals-interval I = (i1, . . . , i k) of list elements where no two
subsequenti j , i j+1 are stored at the same processor is called anonlocal s-interval.

For the compress phase we apply thedeterministic coin tossingtechnique of [7] but
with a different set of labels. Instead of the memory address used in [7], we use the
number of the processor storing list elementi as its labell (i ). A list elements[i ] is
called alocal maximumif l (s−1[i ]) < l (i ) > l (s[i ]) wheres−1[i ] is the list elementj
such thats[ j ] = i . Deterministic coin tossing selects the local maxima with respect to
our new labell (i ). Note that there are at mostp different labels. Therefore, for every
nonlocals-interval, the distance between two selected elements isO(p). Deterministic
coin tossing will not select any element of a locals-interval. However, since all elements
of a locals-interval are stored at the same processor, we can process them sequentially.
Details will be discussed later.

An example is shown in Figure 4. The linked list is the same as in Figure 1. The
x-axis represents the ranks of the list elements and the y-axis represents the number of
the processor on which each element is stored. The solid circles are the local maxima,
i.e., those list elements selected by our modified deterministic coin tossing.

The above procedure selects, within each nonlocals-interval, list elements with a dis-
tance between 2 andO(p) between consecutive selected elements. If we would connect
the selected elements by direct links between them, and repeat the procedure on this
new linked list, and iterate thisO(log p) times, then we would obtain aO(p2)-ruling
set of sizeO(n/p). However, this would require more thanO(log p) communication
rounds. In order to apply deterministic coin tossing for a second, third, etc., time, the
previously selected elements need to be linked by pointers. Since two subsequent ele-
ments selected by deterministic coin tossing can have distanceO(p), this may require
O(log p) communication rounds each. Hence, this approach would require a total of
O(log2 p) communication rounds.

Notice, however, that if two selected elements are at distance2(p), then it is un-
necessary to apply further deterministic coin tossing in order to reduce the number of
selected elements. The basic approach of our algorithm is therefore to interleave pointer
jumping steps (concatenate) and deterministic coin tossing operations with respect to our
new labeling scheme (compress). More precisely, we will have only one pointer jump-
ing step between subsequent deterministic coin tossing steps, and such pointer jumping
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operations will not be applied to those list elements that are pointing to selected
elements.

This concludes the high level overview of ourdeterministic list compressiontech-
niques. The following describes the algorithm in detail.

Algorithm 2. CGM Algorithm for Computing aO(p2)-Ruling Set

Input: A linked list L of lengthn stored on aCGM(n, p), n/p ≥ pε. Each
processor storesn/p list elementsi ∈ L and their respective pointerss[i ].
Output: A set of selected nodes ofL representing aO(p2)-ruling set of size
O(n/p).

1. Each processor locally marks all its list elements asnot selected.
2. Using global sort [20], all processors determine for each list elementi its

two neighborss−1[i ] and s[i ]. Then each processor locally performs for
each local list elementi :

IF l (s−1[i ]) < l (i ) > l (s[i ]) THEN marki asselected.
3. Each processor locally determines its locals-intervals. Using global sort,

all processors determine the two neighbors of each locals-intervals. Each
processor examines locally all of its locals-intervals. For each locals-
interval of size larger than two, every second element is marked asse-
lected. If a local s-interval has size two and not both neighbors have a
smaller label, then both elements of the locals-interval are marked asnot
selected.

4. FORk = 1 · · · log p DO
4.1. Using global sort, all processors determine for each list elementi the

currents[i ] ands[s[i ]]. Then each processor locally performs for each
local list elementi :

IF s[i ] is not selected THEN sets[i ] := s[s[i ]].
4.2. Using global sort [20], all processors determine for each list elementi

its two current neighborss−1[i ] ands[i ]. Then each processor locally
performs for each local list elementi :

IF (s−1[i ], i ands[i ] are selected) AND NOT (l (s−1[i ]) < l (i ) >
l (s[i ])) AND (l (s−1[i ]) 6= l (i )) AND (l (i ) 6= l (s[i ])) THEN mark
i asnot selected.

4.3. Each processor locally determines its locals-intervals. Using global
sort, all processors determine the two neighbors of each locals-
interval. Each processor examines locally all of its locals-intervals.
For each locals-interval of size larger than two, every second el-
ement is marked asnot selected. If a local s-interval has size two
and not both neighbors have a smaller label, then both elements of
the locals-interval are marked asnot selected.

5. The processor storing the last elementλ of L marksλ as selected.

We first prove that the set of elements selected at the end of Algorithm 2 is of size at
mostO(n/p).
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LEMMA 1. After the kth iteration in Step4,there are no more than two selected elements
in any s-interval of length2k for the original list L.

PROOF. By induction onk. The lemma is trivial fork = 1. Let S be ans-interval
of length 2k for the original listL and letS1 andS2 be the first and second half ofS,
respectively. By assumption, after iterationk−1 in Step 4,S1 andS2 contain at most two
selected elements each. Denote the at most four selected elements, ordered with respect
to L, by e1, . . . ,e4. Note that the distance between these elements, with respect toL, is
at most 2k. Consider now iterationk in Step 4. After Step 4.1, any two selected elements
that have distance at most 2k and no selected element between them (with respect to
L) are directly connected by a link which is represented by the currents vector. Hence,
s[e1] = e2, s[e2] = e3, s[e3] = e4. Note that there are at most four (nonsymmetric)
possible cases for applying Steps 4.2 and 4.3 toe1, . . . ,e4. If e1, . . . ,e4 are pairwise
distinct, then only Step 4.2 applies. Ife1, . . . ,e4 are all equal, then Step 4.3 applies.
If e1, . . . ,e3 are pairwise distinct ande3 = e4, then Step 4.2 applies toe1, . . . ,e3 and
Step 4.3 toe3,e4. The other possible case is thate1 6= e2 = e3 6= e4. Then Step 4.2
applies toe1 ande4, and Step 4.3 applies toe2,e3. In any case, after Steps 4.2 and 4.3,
at most two elements amonge1, . . . ,e4 are still selected.

We now prove that consecutive elements selected at the end of Algorithm 2 have
distance at mostO(p2) in the original listL. We first need the following.

LEMMA 2. After every execution of Step4.3, the distance(with respect to the current
vector s) of two consecutive selected elements is at most O(p).

PROOF. Consider two consecutive selected elementse1 ande2. There are three possible
cases: (1)e1 ande2 and all elements between them, with respect tos, have the same
label. (2) Fore1 and e2 and all elements between them, with respect tos, any pair
of consecutive elements has different labels. (3) The mixed case where some pairs of
consecutive elements have the same label. Note that in the mixed case it is impossible for
three or more consecutive elements to have the same label, because one of them would
be a selected element (Step 4.3). In Case (1) the distance ofe1 ande2 is at most two
because of Step 4.3. In Case (2), due to our modified labeling scheme, there are at most
p different labels. Hence, by the standard argument fordeterministic coin tossing[7] the
distance is at mostO(p). Case (3) is equivalent to Case (2) except for a factor of two.

LEMMA 3. After the kth execution of Step4.3, two s-neighbors with respect to the
current vector s have distance O(2k) with respect to the original list L.

PROOF. Obvious consequence of the fact that onlyk pointer jumping operations were
so far executed in Step 4.1.

LEMMA 4. No two consecutive selected elements have a distance of more than O(p2)

with respect to the original list L.
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PROOF. Follows from Lemmas 2 and 3.

LEMMA 5. On a CGM with p processors and O(n/p) local memory per processor,
n/p ≥ pε (ε > 0), Algorithm 2 determines a O(p2)-ruling set of size O(n/p) in
O(log p) communication rounds with O(n/p) local computation per round.

PROOF. The correctness of Algorithm 2 follows from Lemmas 1–4. Forn/p ≥ pε,
the sorting algorithm in [20] requiresO(1) rounds withO(n/p) local computation per
round. The communication performed by Algorithm 2 consists of two global sorts for
Steps 2 and 3, and 3 logp global sorts for Step 4. All local computation in each round
can be performed in linear time. Thus, the claimed time complexity follows.

In summary, we obtain

THEOREM1. The list ranking problem for a linked list with n vertices can be solved on
a CGM with p processors and O(n/p) local memory per processor, n/p ≥ pε (ε > 0),
using O(log p) communication rounds and O(n/p) local computation per round.

Euler Tour in a Tree. We complete this section with an important application of our
list ranking algorithm. LetT = (V, E) be an undirected tree. We assume that the tree
T is represented by an adjacency list for each vertex. LetT∗ = (V, E∗) be a directed
graph withE∗ = {(v,w), (w, v)|{v,w} ∈ E}. T∗ is Eulerian becauseindegree(v) =
outdegree(v) for each vertexv. The Euler tour problem forT consists of (1) computing
a path that traverses each edge exactly once and returns to its starting point, and (2)
computing for each vertex its rank in this path.

THEOREM2. The Euler tour problem for a tree T with n vertices can be solved on a
CGM with p processors and O(n/p) local memory per processor, n/p ≥ pε (ε > 0),
in O(log p) communication rounds with O(n/p) local computation per round.

PROOF. We computeT∗ and its adjacency lists by doubling all edges ofT and applying
sorting [20]. Furthermore, we make the adjacency list for each vertex circular by applying
list ranking. For each edge(i, j ) in T∗ let next(i, j ) be the successor of its entry in the
respective adjacency list. We now apply the well known method by Tarjan and Vishkin
[37] to define an Euler tour ordering on the edges ofT∗ which assigns to each edge(i, j )
as successor the edgenext( j, i ). Computingnext( j, i ) for every edge(i, j ) reduces to
sorting. Finally, we apply our list ranking method described above to determine the rank
of each vertex in the Euler tour.

4. Porting PRAM Algorithms to the CGM /BSP. In this section we present CGM
graph algorithms for connected component labeling, lowest common ancestor computa-
tion, tree contraction, open ear decomposition, and biconnected component labeling. All
algorithms requireO(log p) rounds. They are obtained by porting the respective PRAM
algorithms to the CGM, using our CGM list ranking algorithm presented in Section 3.
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Our approach for connected component labeling is to simulate the respective PRAM
method using sorting [20], but only forO(log p) rounds, and then finish the computa-
tion with a newO(log p) rounds CGM algorithm based on binary merge. Our solutions
for the other problems reduce these tasks to a sequence of list ranking and connected
component computations.

4.1. Connected Components and Spanning Forest. Consider an undirected graphG =
(V, E) with n vertices andm edges. Each vertexv ∈ V has a unique label between 1
andn. Two verticesu andv are connected if there is an undirected path of edges from
u to v. A connected subset of vertices is a subset of vertices where each pair of vertices
is connected. Aconnected componentof G is defined as a maximal connected subset.

Algorithm 3 shown below computes the connected components ofG on a CGM with
p processors andO((n+m)/p) local memory per processor. Step 1 simulates the PRAM
algorithm by Shiloch and Vishkin [34] but with only logp iterations of the main loop
instead of theO(logn) iterations in Shiloch and Vishkin’s original algorithm. Step 2
converts all resulting trees into stars. It follows from [34] that the obtained graphG′ =
(V ′, E′)has at mostO(n/p) vertices. Hence,V ′ can be broadcast to all processors.E′ can
still be of sizeO(m) and is distributed over thep processors.Ei refers to the edges ofE′

stored at processori . We note that the spanning forest of(V ′, Ei ∪ Ej ) for two setsEi , Ej

is of sizeO(|V ′|) = O(n/p). Hence, each of the spanning forests computed in Step 3
can be stored in the local memory of a single processor. We merge pairs of spanning
forests until, after logp rounds, the spanning forest ofG′ is stored at processorP0. In
Step 4 all processors then update the partial connected component information obtained
in Step 1.

Algorithm 3. CGM Algorithm for Connected Component Computation

Input: An undirected graphG = (V, E) with n vertices andm edges stored
on a p processor CGM with totalO(n+m) memory,(n+m)/p ≥ pε.
Output: The connected components ofG represented by the valuesparent(v)
for all verticesv ∈ V .

1. Using sorting [20], simulate logp iterations of the main loop of the PRAM
algorithm by Shiloch and Vishkin [34].

2. Use the Euler tour algorithm in Section 3 to convert all resulting trees into
stars. For eachv ∈ V , setparent(v) to be the root of the star containing
v. Let G′ = (V ′, E′) be the graph consisting of the supervertices and live
edges obtained. DistributeG′ such that each processor stores the entire set
V ′ and a subset ofm/p edges ofE′. Let Ei be the edges stored at processor
i , 0≤ i ≤ p− 1.

3. Set all processors toactivemode.
FORk := 1 to logp DO

Partition the active processors into groups of size two.
FOR each groupPi , Pj of active processors,i < j , IN PARALLEL DO
• ProcessorPj sends its edge setEj to processorPi .
• ProcessorPj is set topassivemode.
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• ProcessorPi computes the spanning forest(V ′, Es) of the graph
SF= (V ′, Ei ∪ Ej ) and setsEi := Es.

Set all processors toactivemode and broadcastE0.
4. Each processorPi computes sequentially the connected components of

the graphG′′ = (V ′, E0). For each vertexv of V ′ let parent′(v) be the
smallest labelparent(w) of a vertexw ∈ V ′ which is in the same connected
component with respect toG′′ = (V ′, E0). For each vertexu ∈ V stored at
processorPi setparent(u) := parent′(parent(u)). (Note thatparent(u) ∈
V ′.)

We obtain

THEOREM3. Algorithm3 computes the connected components and spanning forest of
a graph G= (V, E) with n vertices and m edges on a CGM with p processors and
O((n+m)/p) local memory per processor, (n+m)/p ≥ pε (ε > 0), using O(log p)
communication rounds and O((n+m)/p) local computation per round.

4.2. Lowest Common Ancestor. The lowest common ancestor, LCA(u, v), of two
verticesu and v of a rooted treeT = (V, E) is the vertexw that is an ancestor
to both u and v, and is farthest from the root. We apply the approach in [21]
which uses Euler tour and range-minimum calculation. It consists of the following
operations:

1. compute an Euler tour forT ;
2. find the levels, inT , for all vertices of the Euler tour;
3. for each vertexv find l (v) andr (v) which denote the leftmost and rightmost appear-

ances, respectively, ofv in the Euler tour;
4. solve the range-minima problem defined as follows: given a list of numbers{b1,b2,

. . . ,bn} and an interval [i, j ], with 1 ≤ i ≤ j ≤ n, find the minimum of{bi , . . . ,bj }.
Operation 1 can be performed inO(log p) communication rounds as shown in

Section 3. The same holds for Operation 2 because it can also be reduced to Eu-
ler tour computation. We now consider Operation 3. Given an Euler tour of vertices
a1,a2, . . . ,an,a1. The elementai = v is the leftmost (rightmost) appearance ofv if
and only if level(ai−1) = level(v) - 1 (level(ai+1) = level(v) - 1, respectively) [21]. This
requires the use of indices of the vertices in the Euler tour. Our Euler tour is not given
as an array of vertices but rather by pointers to successor vertices in the tour. This is
easily solved by using as index the rank obtained by list ranking from Section 3. The
rank can be viewed as an index going backwards from the list. After list ranking (in
O(log p) communication rounds), Operation 3 can be completed inO(1) communica-
tion rounds. Operation 4 also uses indices. Likewise, instead of indices, we utilize the
ranks of the vertices of the Euler tour. Given two verticesu andv of T . In order to find
the minimum level over the interval [r (u), l (v)], let rank(r (u)) = i andrank(l (v) = j .
To find the required minimum, each of thep processors considers vertices in its local
memory with ranks betweenj and i and finds the minimum level (O(n/p time). The
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minimum of the resultingp numbers can be found inO(1) communication rounds. We
obtain

LEMMA 6. Consider a rooted tree T= (V, E)with n vertices.The LCA problem can be
solved on a CGM with p processors and O(n/p) local memory per processor, n/p ≥ pε

(ε > 0), using O(log p) communication rounds and O(n/p) local computation per
round.

4.3. Tree Contraction and Expression Tree Evaluation. We observe that the classical
tree contraction and expression tree evaluation algorithm of [27] can be easily imple-
mented on a CGM to run inO(log p) communication rounds. Recall that the tree con-
traction algorithm of [27] applies an alternating sequence of logn rakeandcompress
operations to contract a treeT into a single node. On a CGM, one can simply apply logp
rakeandcompressoperations, which requireO(log p) rounds, and compresses the tree
into a smaller treeT ′ of sizeO(n/p). The treeT ′ can then be processed sequentially at
a single processor. In order to perform expression tree evaluation such that not only the
value of the root but the value of every node is calculated, the PRAM method of [27] can
be employed for the CGM as well. LetT = T1, . . . , Tt = T ′ be the sequence of logp
trees created by the alternating sequence of logp rakeandcompressoperations. After
T ′ has been evaluated sequentially, logp expansion steps recreate the above sequence
of trees in reverse order. A nodev that is added in an expansion was deleted either by
a rake or a compress operation. In both cases its value can easily be computed inO(1)
rounds by a local neighborhood operation.

LEMMA 7. Tree contraction and expression tree evaluation on a tree T with n nodes
can be performed on a CGM with p processors and O(n/p) local memory per pro-
cessor, n/p ≥ pε (ε > 0), using O(log p) communication rounds and O(n/p) local
computation per round.

4.4. Open Ear Decomposition. We first recall the definition of anear decomposition
andopen ear decomposition(see, e.g., [30]). Consider an undirected graphG = (V, E)
with n vertices andm edges. For the remainder, we assume thatG is connected. Anear
decompositionof G is an ordered partition ofE into r simple pathsP1, . . . , Pr such that
P1 is a cycle, and, for each 2≤ i ≤ r , Pi is a simple path with endpoints belonging to
P1 ∪ · · · ∪ Pi−1 but with none of its internal vertices belonging toPj , j < i . The paths
Pi are calledears. If none of thePi , i > 1, is a cycle, then the decomposition is called
anopen ear decomposition. For an edgee in Pi , let i be theear numberof e.

An edgee∈ E is acut-edgeif edoes not lie on a cycle inG. A connected undirected
graphG is 2-edge connectedif it contains no cut-edge.G has an ear decomposition
if and only if G is 2-edge connected. Acut-vertexis a vertex whose removal leaves
G disconnected.G is biconnectedif it contains at least three vertices and has no cut-
vertex. It has been shown thatG has an open ear decomposition if and only if it is
biconnected [40].

Let T be a spanning tree ofG rooted at some noder . Consider the preorder numbering
of T with respect tor and letpreorder(v) be the preorder number of a nodev, 0 ≤
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preorder(v) ≤ n − 1. For an edgee let lca(e) denote the lowest common ancestor of
e= (u, v), as defined in Section 4.2.

An edge inG−T is anontree edgewith respect toT . Any nontree edgeeof G creates
a cycle inT ∪ {e}, called thefundamental cycleof ewith respect toT . For each vertexv
consider all fundamental cycles created by nontree edges incident to a descendant ofv

in T . Let low(v) be the minimum preorder number of a nodew which lies on any such
fundamental cycle. (If no suchw exists, then letlow(v) = n.)

The classicalO(logn) time PRAM algorithms for ear decomposition and open ear
decomposition [26], [28], [30] consist of a constant number of the following operations:

1. find a spanning treeT for G;
2. find the lowest common ancestorlca(e) of every nontree edgee= (u, v);
3. number the vertices ofT in preorder from 0 ton− 1;
4. computelow(v) for each vertexv of V ;
5. find the connected components of a graph with at mostn vertices andm edges;
6. sort at mostm numbers.

In the previous sections we have shown that Operations 1, 2, and 5 can be performed in
O(log p) communication rounds, and we can use [20] for Operation 6. We now discuss
Operations 3 and 4. Preorder numbering of a tree can be solved by applying the Euler
tour technique of Section 3. The preorder number of a vertex in a tree is one plus the
number of forward edges found in the Euler tour before encountering the vertex. The
computation oflow(v) for each vertexv of V can be reduced to tree contraction and
lowest common ancestor computation discussed in Sections 4.3 and 4.2, respectively.
For each nodew of T define aslabel(w) the minimum preorder label oflca(e) for all
nontree edges incident tow. For each vertexv of V , low(v) is the minimumlabel(w) of
all nodesw in the subtree ofT rooted atv. Hence, tree contraction onT using themin
operation computes alllow(v) values.

LEMMA 8. For a graph G= (V, E)with n vertices and m edges, the ear decomposition,
open ear decomposition, set of cut-edges, and set of cut-vertices, if they exist, can be
computed on a CGM with p processors and O((n+m)/p) local memory per processor,
(n + m)/p ≥ pε (ε > 0), using O(log p) communication rounds and O(n/p) local
computation per round.

4.5. Biconnected Components. Testing 2-edge connectivity and biconnectivity inO
(log p) rounds is a simple consequence of Lemma 8 and Theorem 3. The algorithms
shown in the previous section compute the ear decomposition or open ear decomposition
if G is 2-edge connected or biconnected, respectively. IfG is not 2-edge connected or
biconnected, then we obtain the cut-edges or cut-vertices, respectively, as follows. We
observe that cut-edges are tree edges(parent(v), v) with the property thatlow(v) >
preorder(v). If G is 2-edge connected, a cut-vertexv can be detected by examining the
ear numbers of all edges incident tov. The smallest of those ear numbers will occur
twice, while any other of those ear numbers occurs twice if and only ifv is a cut-vertex.
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LEMMA 9. The 2-edge connected and biconnected components of a connected un-
directed graph G with n vertices and m edges can be determined on a CGM with p
processors and O((n + m)/p) local memory per processor, (n + m)/p ≥ pε (ε >
0), using O(log p) communication rounds and O((n + m)/p) local computation per
round.

5. Conclusion. In this paper we presented deterministic parallel CGM and BSP al-
gorithms for the following well-known graph problems: (1) list ranking, (2) Euler tour
construction in a tree, (3) computing the connected components and spanning forest, (4)
lowest common ancestor preprocessing, (5) tree contraction and expression tree evalu-
ation, (6) computing an ear decomposition or open ear decomposition, and (7) 2-edge
connectivity and biconnectivity (testing and component computation). The CGM algo-
rithms requireO(log p) communication rounds and linear sequential work per round,
assuming local memory(n+m)/p ≥ pε (ε > 0) which is true for most commercially
available multiprocessors. Our results imply BSP algorithms withO(log p) supersteps,
O(g log(p)((n+m)/p)) communication time, andO(log(p)((n+m)/p)) local com-
putation time.

The number of communication rounds obtained is independent of the problem size
and grows only logarithmically with respect top. It is still an open question whether
better algorithms exist (even randomized). Our algorithm for Problem (1) improves
significantly on previous results, and our algorithms for Problems (2)–(7) are the first
practically relevant parallel algorithms for these standard graph problems.
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