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Efficient Parallel Graph Algorithms for Coarse-Grained
Multicomputers and BSP*

F. Dehné A. Ferreira® E. Caceres, S. W. Song, and A. Roncatb

Abstract.  In this paper we presedeterministicparallel algorithms for theoarse-grained multicomputer
(CGM) andbulk synchronous parall§BSP) models for solving the following well-known graph problems:
(2) list ranking, (2) Euler tour construction in a tree, (3) computing the connected components and spanning
forest, (4) lowest common ancestor preprocessing, (5) tree contraction and expression tree evaluation, (6) com-
puting an ear decomposition or open ear decomposition, and (7) 2-edge connectivity and biconnectivity (testing
and component computation). The algorithms reqQ@iteog p) communication rounds with linear sequential
work per round p = no. processord\l = total input size). Each processor creates, during the entire algorithm,
messages of total siZeé(log(p)(N/p)).

The algorithms assume that the local memory per processorNi/@) is larger thanp®, for some fixed
& > 0. Our results imply BSP algorithms with(log p) superstepsD(glog(p)(N/p)) communication time,
andO(log(p)(N/p)) local computation time.

It is important to observe that the number of communication rofswsersteps obtained in this paper is
independent of the problem size, and grows only logarithmically with respeget With growing problem
size, only the sizes of the messages grow but the total number of messages remains unchanged. Due to the
considerable protocol overhead associated with each message transmission, this is an important property.
The result for Problem (1) is a considerable improvement over those previously reported. The algorithms for
Problems (2)—(7) are the first practically relevant parallel algorithms for these standard graph problems.

Key Words. Coarse grained parallel computing, Graph algorithms.

1. Introduction. Speedup results for theoretical PRAM algorithms do not necessar-
ily match the speedups observed on real machines [1], [36]. Given sufficient slackness
in the number of processors, Valianbslk synchronous paralldBSP) approach [39]
simulates PRAM algorithms optimally on distributed memory parallel systems. Valiant
points out, however, that one may want to design algorithms that utilize local compu-
tations and minimize global operations [38], [39]. The BSP approach requireg that

(= local computation speed router bandwidth) is low, or fixed, even for increasing
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number of processors. Gerbessiotis and Valiant [18] describe circumstances where
PRAM simulations cannot be performed efficiently, among others, if the farier

high. Unfortunately, this is true for most currently available multiprocessors. The paral-
lel algorithms presented in this paper consider this case for graph problems.

As pointed out in [39], the cost of a message also contains a constant overhead
costs. The value ofs can be fairly large and the total message overhead cost can have
a considerable impact on the speedup observed (see, e.g., [9]). In this paper we use
a more practical version of the BSP model, referred to ascctase-grained multi-
computer(CGM) model [8]-[11]. It is comprised of a set @f processors, ..., Py
with O(N/ p) local memory per processor and an arbitrary communication network (or
shared memory). All algorithms consist of alternating local computation and global com-
munication rounds. Each communication round consists of routing a dirgiation
with h = O(N/p), i.e., each processor sen@$N /p) data and receive® (N/p) data.

We require that all information sent from a given processor to another processor in one
communication round is packed into one long message, thereby minimizing the message
overhead. A CGM computatignommunication round corresponds to a BSP superstep
with communication cosj(N/ p) (plus the above “packing requirement”).

Finding an optimal algorithm in the CGM model is equivalent to minimizing the
number of communication rounds as well as the total local computation time and total
message size. This considers all parameters discussed above that are affecting the final
observed speedup and it requires no assumptignearthermore, it has been shown that
minimizing the number of supersteps also leads to improved portability across different
parallel architectures [38], [39], [14]. The above model has been used (explicitly or
implicitly) in parallel algorithm design for various problems [4], [8]-[11], [13], [15],

[25] and shown very good practical timing results.

In this paper we study deterministic parallel graph algorithms for the CGM and BSP

models. We consider the following well-known graph problems:

. List ranking.

. Euler tour construction.

. Computing the connected components and spanning forest.

Lowest common ancestor preprocessing.

. Tree contraction and expression tree evaluation.

. Computing an ear decomposition or open ear decomposition.

. 2-Edge connectivity and biconnectivity (testing and component computation).

NoOoUhwWNR

These problems have been extensively studied for fine-grained parallel networks
and for the PRAM (see, e.g., [32]). However, for the practically much more relevant
CGM/BSP model there exist, to the best of our knowledge, only a few results on parallel
graph algorithms.

For the remainder, letdenote the number of vertices, lebe the number of edges of
agiven input grapl®s, and letN = n+m. Reid-Miller [31] presented an empirical study
of parallel list ranking for the Cray C-90. The paper followed essentially the (&P
model and claimed that this was the fastest list ranking implementation at that time. More
detailed empirical studies and tradeoffs with respects to the communication volume are
presented in [35]. The algorithm in [31] requir€(logn) communication rounds. In
[12], an improved algorithm was presented which required, with high probability, only
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O(klog p) rounds, wherd < log* n. In [14] the list ranking problem is considered as
well. Here O(log p) communication rounds are achieved by a randomized algorithm.
Baumker and Dittrich presented in [3] a connected components algorithm for planar
graphs usingd(log p) communication rounds. They suggest an extension of this algo-
rithm for general graphs with the same number of communication rounds. Again, both
algorithms are randomized.

We improve these results by giving the fidgtterministicalgorithms for list ranking
and computing connected component©ifiog p) rounds. Algorithms witHD (1) com-
munication rounds have been presented for various Computational Geometry problems
[91-[12], [17], but the graph problems studied in this paper have considerably less “inter-
nal structure” which could be exploited to obtain such solutions. It is not known whether
solutions withO(1) communication rounds exist for these graph problems. Note that,
in practice, the number of processors is usually fixed. In contrast to the previous deter-
ministic results, the improved number of communication rounds obtained in this paper,
O(log p), isindependensdf n. This is of considerable practical relevance. With growing
problem size, the number of messages remains unchanged. Only the sizes of these mes-
sages grow, linear with respect to the growth in problem size. Due to the considerable
protocol overhead associated with each message transmission, this is an important prop-
erty. In fact, our experience in implementing parallel algorithms on standard commercial
machines indicates that this property is, in most cases, a crucial ingredient for practically
relevant parallel algorithms.

Asin[31] we, in general, assume tidt>> p (coarse-grained), because this is usually
the case in practice. More precisely, we assume Nygt > p° for some fixede > 0,
which is true for most commercially available multiprocessors.

In Section 3 of this paper we use a technique catleterministic list compression
to obtain a deterministic list ranking algorithm with(log p) rounds. The connected
components algorithm is presented in Section 4.1. It uses a techniquearaitddrated
cascading That is, it simulates an existing PRAM algorithm for the same problem
but stops the execution of this algorithm afteflog p) rounds and then finishes the
computation with a different (new) CGM algorithm. In Sections 4.2-4.5 we present
deterministicparallel CGM/BSP algorithms witld (log p) communication rounds for
solving Problems 4—7, respectively. All algorithms require linear sequential work per
round and each processor creates, during the entire algorithm, messages of total size
O(log(p)(N/p)). To our knowledge, these are the only currently known CGM and BSP
algorithms for these problems.

Before we proceed with presenting the above-mentioned results we give, in Section 2,
an overview of the BSP and CGM models and their relationship to each other.

2. The BSP, CGM, and Related Parallel Computing Models. The BSP model was
introduced in [38], and the CGM model was presented in [9]-[11].

A BSP computer is a collection of procesgmemory modules connected by a router
that can deliver messages in a point to point fashion between the processors. A BSP-style
computation is divided into a sequence of supersteps separated by barrier synchroniza-
tions. Incomputation supersteple processors perform computations on data that was
present locally at the beginning of the superstepcdmmunication superstepsta is
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exchanged among the processors via the router. A BSP computer has the following pa-
rametersN refers to the problem sizg,is the number of processolls,js the minimum

time between synchronization steps (measured in basic computation unitg)isaihe

ratio of overall system computational capacity (number of computation operations) per
unit time divided by the overall system communication capacity (number of messages of
unit size that can be delivered by the router) per unittime. A BSP algorithm with a total of
A supersteps has the following computation and communication costsohtgutation

cost TompOf the algorithm isTcomp = Zi’\zl wgomp, where theth computation superstep

is assigned cosb‘comp = maxL,ty,....,tp}. Heret; is the number of basic computa-
tion operations performed by procesgan theith superstep. Theommunication cost
Teomm Of the algorithm iSTeomm = Zi’\zl wi where thdth communication super-

comm?
step is assigned cost,,,, = m::vs-”:1 {Weomm }- Herewicommj is the communication
cost incurred by processgrin theith superstep. Assuming that procesgpreceives
messages of lengthg, ..., rj; and sends messages of lengtss . . ., 5;-} during the
ith superstepwlonm; = max(L, g( ;1 + Yl_is)).

A CGM(N, p) uses only two parameterll and p, and assumes a collection pf
processors withN / p local memory each connected by a router that can deliver messages
in a point to point fashion. A CGM algorithm consists of an alternating sequence of
computation roundandcommunication roundseparated by barrier synchronizations.

A computation round is equivalent to a computation superstep in the BSP model, and the
total computation costcomp is defined analogously. A communication round consists

of a singleh-relation withh < N/p. The costw’,.,of each communication round has

the same value, referred to B ,. Therefore, the total communication cdgbmm of

a CGM algorithm withA communication rounds is simpliomm = AHn, p. In a recent
overview of different BSP and related models, Goodrich [20] referred to the CGM as the
weak-CREW BSPThe main difference between the BSP and CGM models is that the
latter allows only one single type of communication operationhthelation, and simply

counts the number df-relations as its main measure of communication cost. Note that
every CGM algorithm is also a BSP algorithm but not vice versa. The CGM model aims
at designing simple and practical yet theoretically optimal or efficient parallel algorithms
for coarse-grainegarallel systemsN/p > 1). Algorithms do usually require a lower
bound onN/p, e.g.,N/p > por N/p > p*. The CGM model targets in particular

the case where the overall computation speed is considerably larger than the overall
communication speed, which is usually the case. Since the message size is maximal, the
CGM model minimizes the message overhead associated with sending a single message
(regardless of its length), which is very important in practice.

In summary, the main advantage of the CGM model is that it allows us to model
the communication cost of a parallel algorithm by one single parameter, the number
of communication rounds). Note that, whilex is the main parameter determining
the performance of a CGM algorithm, we will also indicate other parameters like the
local computation and total communication when analyzing CGM algorithms (more
discussion below).

Previous definitions of the CGM model (e.g., [9]) distinguished between the costs
of an h-relation and the cost of sorting. However, due to the recent results in [20]
these are equivalent fdd/p > p°. Also, it is not necessary to distinguish between
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balanced and unbalancketelations. In both cases each processor sa&rdsivesO (h)

data but in the balanced case the data exchanged between any two processors is always
O(h/p) whereas it may vary in the unbalanced case. It has been shown in [2] that an
unbalancedh-relation can be simulated 9 (1) balanced-relations. Another possible

case of imbalance occurs when some processorg saraive less tha® (h) data. This
problem has been studied in [22] (E-BSP model) but is not a topic of this paper. Another
related model is the QSM [19] where communication is performed via a shared memory
with emphasis on memory contention, i.e., simultaneous accesses to the same shared
memory cell. The main difference between QSM and CGM is that the latter allows the
use of only one single communication scheme, likrelation, for resolving memory
contention. Consult [20] for an overview of the different BSP related models.

The CGM model has recently attracted considerable interest in the parallel algorithms
community. Several researchers have used it to design parallel algorithms for various
problem areas (see, e.g., [8] and various CGM articles in the recent ACM SPAA and
IPPSSPDP proceedings). For most parallel processing implementations, the number of
h-relations required is the overriding factor determining the performance because the
protocol overhead associated with each message is usually substantial. In the extreme
case this may of course not be true. A few extremely large messages may require more
time than a larger number of very small messages. Therefore, it is also useful to study the
total message size per processor over all rounds, i.e., the sum of the sizes of all message
sent by a processor during the entire computation. For all algorithms presented in this
paper, the total message size per processor over all rousag(p)(N/p)).

In the remainder of this paper we design and analyze our parallel graph algorithms in
the CGM model. The relationship to the BSP model is given by the following:

OBSERVATION 1. A CGM algorithm withi rounds and computation cosgef, corre-
sponds to a BSP algorithm with superstepscommunication cost @A(N/p)), and
the same computation cosiohp

3. List Ranking. LetL be a linked list of lengtim represented by a vectefl - - - n].
For each € {1---n}, g[i] is a pointer to the list element followinigin the listL. We
refer toi ands[i] ass-neighborsThe last elemerit of the listL is the one witts[A] = A.
The distance betwednand j, d, (i, j), is the number of nodes ibh between and |
plus one (i.e., the distance is zero if and only & |, and it is one if and only if one
node follows the other). Thiést rankingproblem consists of computing for eack L
the distance betwedranda, referred to asank, (i) = d, (i, A).

On aCGM(n, p), each processor initially stored p list elements ofL with their
respective pointers. Figure 1 shows an example of a linked listwith 24 elements
stored on &&GM with p = 4 processors)/p = 6 elements per processor.

In the remainder of this section we presedeterministicCGM list ranking algorithm
which requiresO(log p) rounds.

We need the following definitions. An-ruling set L of L is defined as a subset
of selectedlist elements ofL that has the following properties: (1) No two neigh-
boring elements are selected. (2) The distance of any unselected element to the next
selected element is at mastFor eachi € L let s./[i] be the next selected element
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Fig. 1. A linked list L stored on &GM(n, p).

j € L’ with respect to the order implied Hy. We represent an-ruling setL’ again
as a linked list where each elemént L’ is assigned a pointer tg[i] and a value
w(i) = d_(, s/[i]) representing the distance betwdeands, (i). See Figure 2 for
an illustration. The weighted list ranking problem &h with weightsw(-) refers to
computing for each € L’ the sum of the weights (j) of all nodesj € L’ between
anda.

Algorithm 1 outlines the top-level of our CGM list ranking method. An illustrating
example is given in Figure 3.

Algorithm 1. CGM List Ranking

Input A linked list L of lengthn stored on &CGM(n, p), n/p > p°. Each
processor storas/ p list elements € L and their respective pointes§i].
Output For each list elementits rankrank_ (i) in L.

1. The CGM computes arO(p?)-ruling setR of size |R] = O(n/p) as
described in Algorithm 2 below.

2. Risbroadcastto all processors. This broadcast is implementedag p)
communication rounds where the number of processors stRisupitially
one and then doubled in each communication round.

. @—~0—0—0—-0—-8—-0—0—-0—0—0—-0—0

L @ @ L o; o e

Fig. 2. Alist L and a 3-ruling set’.
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Input:

0—0—0—0—0—~0—0—0—0—0—0—0—0

After Steps 1&2:

3 2 3 2 2
®—0—~0—0—0—~8—0—0—0—0—0—0—0
After Step 3:

12 9 7 4 2

e—-0—-0—-0—-0-0—-0—0-0—-0-0—0—0

After Step 4:
12 9 7 4 2

® 2 1 1 2 1 1 1

After Step 5:
12

9 7 4 2
®—0—-0O—-0—-0—-0—~0—0—0—0—0—0—@
12 1" 10 9 8 7 6 5 4 3 2 1

Fig. 3. lllustration of Algorithm 1.

3. Each processor, sequentially, performs weighted list ranking avith
weights w(-), thereby computing for eaclh € R its rank rank_(j)
inL.

4. Each list element € L — R has at most distanc®(p?), with respect
to L, to its next elemensgg[i] in R. Using O(log p) CGM sorting steps,
the CGM simulatesO(log p) pointer jumping steps of the standard PRAM
list ranking algorithm, thereby computing for eack L — R its distance
d. (i, sg[i]) to its next elemensg[i] in R.

5. Each processor locally computes the ranks of its list elemeats — R
as follows:rank (i) = di (i, sg[i]) + rank_ (sg[i]).

The hard part of the algorithm is the computation oDap?)-ruling setR of size
O(n/p) which we discuss in detail below. Given sucl®&p?)-ruling set, the correct-
ness of Algorithm 1 is straightforward. We also observe that Steps 2-5 can be easily
implemented on £GMin O(log p) communication rounds wit®(n/ p) local compu-
tation per round. Note that in Step 4 we are simulating PRAM pointer jumping steps on
the CGM. Each such step can be implemente®(d) rounds by applying Goodrich’s
sorting algorithm [20] fom/p > p°.

In the remainder of this section we introduce a new technique, addtesiministic list
compressioywhich allows us to compute@( p?)-ruling setinO(log p) communication
rounds.

The basic idea behintkterministic list compressiaato have an alternating sequence
of compressand concatenategphases. In a compress phase setecta subset of list
elements, and in eoncatenatghase we use pointer jumping to work our way towards
building a linked list of selected elements.
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We define ars-intervalof lengthk as a sequenck = (i, ..., ix) of list elements
with s[ij] = ij11, 1 < j < k — 1. The twoneighborsof the s-interval | are the two
list elementsy, ny notin | such thas[n;] = i; ands[ix] = n,. We refer to a maximal
s-intervall = (iy, ..., ix) of list elements which are all stored at the same processor as
alocal s-interval A maximals-intervall = (i4, ..., ix) of list elements where no two
subsequernt, ij,1 are stored at the same processor is calladrdocal s-interval

For the compress phase we apply tieterministic coin tossintechnique of [7] but
with a different set of labels. Instead of the memory address used in [7], we use the
number of the processor storing list elemeras its labell (i). A list elements[i] is
called alocal maximumif | (s7[i]) < I(i) > I(s[i]) wheres™Y[i] is the list element]
such thass[j] = i. Deterministic coin tossing selects the local maxima with respect to
our new label (i). Note that there are at moptdifferent labels. Therefore, for every
nonlocals-interval, the distance between two selected elemer@X 5. Deterministic
coin tossing will not select any element of a losahterval. However, since all elements
of a locals-interval are stored at the same processor, we can process them sequentially.
Details will be discussed later.

An example is shown in Figure 4. The linked list is the same as in Figure 1. The
x-axis represents the ranks of the list elements and the y-axis represents the number of
the processor on which each element is stored. The solid circles are the local maxima,
i.e., those list elements selected by our modified deterministic coin tossing.

The above procedure selects, within each nonlsdalderval, list elements with a dis-
tance between 2 and(p) between consecutive selected elements. If we would connect
the selected elements by direct links between them, and repeat the procedure on this
new linked list, and iterate thi®(log p) times, then we would obtain @(p?)-ruling
set of sizeO(n/p). However, this would require more tha(log p) communication
rounds. In order to apply deterministic coin tossing for a second, third, etc., time, the
previously selected elements need to be linked by pointers. Since two subsequent ele-
ments selected by deterministic coin tossing can have dist@dpg this may require
O(log p) communication rounds each. Hence, this approach would require a total of
O(log? p) communication rounds.

Notice, however, that if two selected elements are at disténg®, then it is un-
necessary to apply further deterministic coin tossing in order to reduce the number of
selected elements. The basic approach of our algorithm is therefore to interleave pointer
jumping stepsg¢oncatenateand deterministic coin tossing operations with respect to our
new labeling schemes¢mpresk More precisely, we will have only one pointer jump-
ing step between subsequent deterministic coin tossing steps, and such pointer jumping

label=Proc. #

AN a T
3

first last

Fig. 4. The linked list elements from Figure 1 labeled by their processor numbers.
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operations will not be applied to those list elements that are pointing to selected
elements.

This concludes the high level overview of odeterministic list compressiotech-
nigues. The following describes the algorithm in detail.

Algorithm 2. CGM Algorithm for Computing a0 ( p?)-Ruling Set

Input A linked list L of lengthn stored on &CGM(n, p), n/p > p°. Each
processor storas/ p list elements € L and their respective pointes§i].
Output A set of selected nodes &f representing @ (p?)-ruling set of size

O(n/p).

1. Each processor locally marks all its list elementaatsselected

2. Using global sort [20], all processors determine for each list elemient
two neighborss—1[i] and s[i]. Then each processor locally performs for
each local list elemerit

IFI(s~Yi]) < () > I(s[i]) THEN marki asselected

3. Each processor locally determines its log@htervals. Using global sort,
all processors determine the two neighbors of each Baatervals. Each
processor examines locally all of its locsintervals. For each local-
interval of size larger than two, every second element is markeskas

lected If a local s-interval has size two and not both neighbors have a

smaller label, then both elements of the log@hterval are marked asot

selected
4. FORk=1---logp DO

4.1. Using global sort, all processors determine for each list eleinbat
currents[i] ands[s[i]]. Then each processor locally performs for each
local list element:

IF g[i]is not selected THEN sefi] := s[s][i]].

4.2. Using global sort [20], all processors determine for each list element
its two current neighbors1[i] ands[i]. Then each processor locally
performs for each local list elemeint

IF (s7Y[i], i andg[i] are selected) AND NOTI(s71[i]) < I(i) >
I(s[i])) AND (I(s~[i]) # 1(i)) AND (I(i) # 1(s[i])) THEN mark
i asnot selected

4.3. Each processor locally determines its I@emtervals. Using global
sort, all processors determine the two neighbors of each fcal
interval. Each processor examines locally all of its le=adtervals.
For each locak-interval of size larger than two, every second el-
ement is marked asot selectedIf a local s-interval has size two
and not both neighbors have a smaller label, then both elements of
the locals-interval are marked asot selected

5. The processor storing the last elemeiof L marksa as selected.

We first prove that the set of elements selected at the end of Algorithm 2 is of size at
mostO(n/p).
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LEMMA 1. Afterthe khiteration in Stept, there are no more than two selected elements
in any s-interval of lengtt2* for the original list L.

PrOOF By induction onk. The lemma is trivial fok = 1. Let S be ans-interval

of length & for the original listL and letS;, and S, be the first and second half &
respectively. By assumption, after iteration 1 in Step 45, andS; contain at most two
selected elements each. Denote the at most four selected elements, ordered with respect
toL, bye,..., e Note that the distance between these elements, with respeciso

at most 3. Consider now iteratiok in Step 4. After Step 4.1, any two selected elements
that have distance at most and no selected element between them (with respect to
L) are directly connected by a link which is represented by the cusresttor. Hence,
s[el] = &, s[ex] = e3, 5[es] = e4. Note that there are at most four (nonsymmetric)
possible cases for applying Steps 4.2 and 4.8,10..,e4. If €, ..., & are pairwise
distinct, then only Step 4.2 applies. df, ..., e; are all equal, then Step 4.3 applies.
If e, ..., e;are pairwise distinct ane; = e4, then Step 4.2 applies &, ..., e; and
Step 4.3 toes, &4. The other possible case is ttat+# e, = e3 # €. Then Step 4.2
applies toe; andey, and Step 4.3 applies ®, es. In any case, after Steps 4.2 and 4.3,
at most two elements amomy, . . ., e, are still selected. O

We now prove that consecutive elements selected at the end of Algorithm 2 have
distance at mogD(p?) in the original listL. We first need the following.

LEMMA 2. After every execution of Stép3, the distancegwith respect to the current
vector 9 of two consecutive selected elements is at magt) O

ProOF Consider two consecutive selected elemenende,. There are three possible
cases: (1p; ande, and all elements between them, with respecs,thave the same

label. (2) Fore; ande, and all elements between them, with respecs,tany pair

of consecutive elements has different labels. (3) The mixed case where some pairs of
consecutive elements have the same label. Note that in the mixed case it is impossible for
three or more consecutive elements to have the same label, because one of them would
be a selected element (Step 4.3). In Case (1) the distangearide, is at most two
because of Step 4.3. In Case (2), due to our modified labeling scheme, there are at most
p different labels. Hence, by the standard argumendé&erministic coin tossingy] the
distance is at mosD(p). Case (3) is equivalent to Case (2) except for a factor of fivo.

LEMMA 3. After the Kh execution of Ste@.3, two s-neighbors with respect to the
current vector s have distance(2¥) with respect to the original list L

PrOOF Obvious consequence of the fact that oklgointer jumping operations were
so far executed in Step 4.1. O

LEMMA 4. No two consecutive selected elements have a distance of more tfpgh O
with respect to the original list L
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ProoFr Follows from Lemmas 2 and 3. O

LEMMA 5. On a CGM with p processors and @/ p) local memory per processor
n/p > p° (¢ > 0), Algorithm 2 determines a Qp?)-ruling set of size @/p) in
O(log p) communication rounds with @/ p) local computation per round

PROOF The correctness of Algorithm 2 follows from Lemmas 1-4. Rop > p°,

the sorting algorithm in [20] require®(1) rounds withO(n/ p) local computation per
round. The communication performed by Algorithm 2 consists of two global sorts for
Steps 2 and 3, and 3 Iggglobal sorts for Step 4. All local computation in each round
can be performed in linear time. Thus, the claimed time complexity follows. O

In summary, we obtain

THEOREM1. The list ranking problem for a linked list with n vertices can be solved on
a CGM with p processors and @/ p) local memory per processar/p > p® (¢ > 0),
using Q(log p) communication rounds and @/ p) local computation per round

Euler Tour in a Tree We complete this section with an important application of our

list ranking algorithm. LefT = (V, E) be an undirected tree. We assume that the tree

T is represented by an adjacency list for each vertexTl*et= (V, E*) be a directed

graph withE* = {(v, w), (w, v)|{v, w} € E}. T* is Eulerian becaus@degre€v) =
outdegreév) for each vertex. The Euler tour problem foF consists of (1) computing

a path that traverses each edge exactly once and returns to its starting point, and (2)
computing for each vertex its rank in this path.

THEOREM2. The Euler tour problem for a tree T with n vertices can be solved on a
CGM with p processors and @/ p) local memory per processar/p > p° (¢ > 0),
in O(log p) communication rounds with @/ p) local computation per round

PrROOF  We computd * and its adjacency lists by doubling all edge§ adnd applying
sorting [20]. Furthermore, we make the adjacency list for each vertex circular by applying
list ranking. For each edgg, j) in T* let nex{i, j) be the successor of its entry in the
respective adjacency list. We now apply the well known method by Tarjan and Vishkin
[37] to define an Euler tour ordering on the edges divhich assigns to each edge )

as successor the edgextj, i). Computingnexij, i) for every edg«i, j) reduces to
sorting. Finally, we apply our list ranking method described above to determine the rank
of each vertex in the Euler tour. O

4. Porting PRAM Algorithms to the CGM /BSP. In this section we present CGM
graph algorithms for connected component labeling, lowest common ancestor computa-
tion, tree contraction, open ear decomposition, and biconnected component labeling. All
algorithms requiré(log p) rounds. They are obtained by porting the respective PRAM
algorithms to the CGM, using our CGM list ranking algorithm presented in Section 3.
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Our approach for connected component labeling is to simulate the respective PRAM
method using sorting [20], but only f@d(log p) rounds, and then finish the computa-

tion with a newO (log p) rounds CGM algorithm based on binary merge. Our solutions

for the other problems reduce these tasks to a sequence of list ranking and connected
component computations.

4.1. Connected Components and Spanning Fore§tonsider an undirected gragh=

(V, E) with n vertices andn edges. Each vertex € V has a unique label between 1

andn. Two verticesu andv are connected if there is an undirected path of edges from

u to v. A connected subset of vertices is a subset of vertices where each pair of vertices

is connected. Aonnected componeaf G is defined as a maximal connected subset.
Algorithm 3 shown below computes the connected componer@saf a CGM with

p processors an®((n+m)/ p) local memory per processor. Step 1 simulates the PRAM

algorithm by Shiloch and Vishkin [34] but with only Iqgiterations of the main loop

instead of theO(logn) iterations in Shiloch and Vishkin’s original algorithm. Step 2

converts all resulting trees into stars. It follows from [34] that the obtained g&ph

(V’, E’) hasatmosD(n/ p) vertices. Hence/’ can be broadcastto all process@scan

still be of sizeO(m) and is distributed over the processorst; refers to the edges &'

stored at processorWe note that the spanning forestdf, E; U E;) for two setsE;, E;

is of sizeO(|V']) = O(n/p). Hence, each of the spanning forests computed in Step 3

can be stored in the local memory of a single processor. We merge pairs of spanning

forests until, after log rounds, the spanning forest &f is stored at processdt. In

Step 4 all processors then update the partial connected component information obtained

in Step 1.

Algorithm 3. CGM Algorithm for Connected Component Computation

Input An undirected grapl = (V, E) with n vertices andn edges stored
on ap processor CGM with totaD(n + m) memory,(n + m)/p > p°.
Output The connected components®@frepresented by the valupareniv)
for all verticesv € V.

1. Using sorting [20], simulate log iterations of the main loop of the PRAM
algorithm by Shiloch and Vishkin [34].
2. Use the Euler tour algorithm in Section 3 to convert all resulting trees into
stars. For each € V, setpareniv) to be the root of the star containing
v. Let G’ = (V’/, E') be the graph consisting of the supervertices and live
edges obtained. Distribut&’ such that each processor stores the entire set
V" and a subset ah/p edges oE’. Let E; be the edges stored at processor
i,0<i=<p-1.
3. Set all processors tictivemode.
FORKk :=1tologp DO
Partition the active processors into groups of size two.
FOR each grou®, P; of active processors,< j, IN PARALLEL DO
e ProcessoP; sends its edge s&; to processor,.
e ProcessoP; is set topassivemode.
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e ProcessorP, computes the spanning foregtf’, Es) of the graph
SF= (V', Ei UE;) and setsE; := E..
Set all processors tactivemode and broadca.

4. Each processoP, computes sequentially the connected components of
the graphG” = (V’, Ep). For each vertex of V'’ let parent(v) be the
smallest labgbareniw) of a vertexw € V' which is in the same connected
component with respect 8” = (V’, Ep). For each vertexn € V stored at
processofP; setpareniu) := parent(pareniu)). (Note thatpareniu) €
V')

We obtain

THEOREM3. Algorithm3 computes the connected components and spanning forest of
a graph G = (V, E) with n vertices and m edges on a CGM with p processors and
O((n + m)/p) local memory per processdn + m)/p > p° (¢ > 0), using log p)
communication rounds and @ + m)/ p) local computation per round

4.2. Lowest Common AncestorThe lowest common ancestot CA(u, v), of two
verticesu and v of a rooted treeT = (V, E) is the vertexw that is an ancestor

to both u and v, and is farthest from the root. We apply the approach in [21]
which uses Euler tour and range-minimum calculation. It consists of the following
operations:

1. compute an Euler tour far;

2. find the levels, ifT, for all vertices of the Euler tour;

3. for each vertex find I (v) andr (v) which denote the leftmost and rightmost appear-
ances, respectively, ofin the Euler tour;

4. solve the range-minima problem defined as follows: given a list of nuntbers,,
..., bn}and anintervalif j], with1 <i < j <n, find the minimum ofl;, ..., b;}.

Operation 1 can be performed @(log p) communication rounds as shown in
Section 3. The same holds for Operation 2 because it can also be reduced to Eu-
ler tour computation. We now consider Operation 3. Given an Euler tour of vertices
a,a,...,a), &. The element; = v is the leftmost (rightmost) appearancewif
and only iflevela _;) = leve(v) - 1 (levela . 1) = levelv) - 1, respectively) [21]. This
requires the use of indices of the vertices in the Euler tour. Our Euler tour is not given
as an array of vertices but rather by pointers to successor vertices in the tour. This is
easily solved by using as index the rank obtained by list ranking from Section 3. The
rank can be viewed as an index going backwards from the list. After list ranking (in
O(log p) communication rounds), Operation 3 can be completed{t) communica-
tion rounds. Operation 4 also uses indices. Likewise, instead of indices, we utilize the
ranks of the vertices of the Euler tour. Given two vertiogendv of T. In order to find
the minimum level over the intervat (u), | (v)], let rank(r (u)) =i andrank(l (v) = j.

To find the required minimum, each of theeprocessors considers vertices in its local
memory with ranks betweepandi and finds the minimum leveld(n/p time). The
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minimum of the resultingp numbers can be found i@ (1) communication rounds. We
obtain

LEMMA 6. Considerarootedtree E (V, E) with n verticesThe LCA problem can be
solved on a CGM with p processors andr}) p) local memory per processar/p > p*

(e > 0), using Olog p) communication rounds and @/ p) local computation per
round

4.3. Tree Contraction and Expression Tree Evaluatiofwe observe that the classical
tree contraction and expression tree evaluation algorithm of [27] can be easily imple-
mented on a CGM to run i@(log p) communication rounds. Recall that the tree con-
traction algorithm of [27] applies an alternating sequence ofhlogke andcompress
operations to contract a trdeinto a single node. On a CGM, one can simply applypog
rakeandcompres®perations, which requir®(log p) rounds, and compresses the tree
into a smaller tred’ of sizeO(n/p). The treeT’ can then be processed sequentially at

a single processor. In order to perform expression tree evaluation such that not only the
value of the root but the value of every node is calculated, the PRAM method of [27] can
be employed for the CGM as well. L&t = Ty, ..., T; = T’ be the sequence of Iqy

trees created by the alternating sequence oplogkeandcompresperations. After

T’ has been evaluated sequentially, ppgxpansion steps recreate the above sequence
of trees in reverse order. A nodethat is added in an expansion was deleted either by
a rake or a compress operation. In both cases its value can easily be compDigdl in
rounds by a local neighborhood operation.

LEMMA 7. Tree contraction and expression tree evaluation on a tree T with n nodes
can be performed on a CGM with p processors anth() local memory per pro-
cessorn/p > p° (¢ > 0), using Olog p) communication rounds and @/ p) local
computation per round

4.4, Open Ear Decomposition We first recall the definition of aear decomposition
andopen ear decompositiqsee, e.g., [30]). Consider an undirected gréps (V, E)
with n vertices andn edges. For the remainder, we assume @& connected. Arar
decompositiomf G is an ordered partition dt intor simple pathd, ..., P such that
P; is acycle, and, foreach2 i <r, B is a simple path with endpoints belonging to
P. U --- U B _1 but with none of its internal vertices belonging®p, j < i. The paths

P, are callecears If none of theR,,i > 1, is a cycle, then the decomposition is called
anopen ear decompositiofror an edgein P, leti be theear numbeiof e.

An edgee € E is acut-edgdf edoes not lie on a cycle iG. A connected undirected
graphG is 2-edge connected it contains no cut-edgeG has an ear decomposition
if and only if G is 2-edge connected. Aut-vertexis a vertex whose removal leaves
G disconnectedG is biconnectedf it contains at least three vertices and has no cut-
vertex. It has been shown th@& has an open ear decomposition if and only if it is
biconnected [40].

LetT be a spanning tree @& rooted at some node Consider the preorder numbering
of T with respect ta and letpreorderv) be the preorder number of a node0 <
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preorderv) < n — 1. For an edge let Ica(e) denote the lowest common ancestor of
e = (u, v), as defined in Section 4.2.

An edge inG —T is anontree edg®ith respect ta . Any nontree edge of G creates
acycle inT U {g}, called thfundamental cyclef e with respect taT . For each vertex
consider all fundamental cycles created by nontree edges incident to a descendant of
in T. Letlow(v) be the minimum preorder number of a nadevhich lies on any such
fundamental cycle. (If no such exists, then lelow(v) = n.)

The classicaD(logn) time PRAM algorithms for ear decomposition and open ear
decomposition [26], [28], [30] consist of a constant number of the following operations:

find a spanning tre€ for G;

find the lowest common ancestoa(e) of every nontree edge= (u, v);
number the vertices df in preorder from 0 ton — 1;

computdow(v) for each vertex of V;

find the connected components of a graph with at mestrtices andn edges;
sort at mosin numbers.

oukwnhE

Inthe previous sections we have shown that Operations 1, 2, and 5 can be performed in
O(log p) communication rounds, and we can use [20] for Operation 6. We now discuss
Operations 3 and 4. Preorder numbering of a tree can be solved by applying the Euler
tour technique of Section 3. The preorder number of a vertex in a tree is one plus the
number of forward edges found in the Euler tour before encountering the vertex. The
computation oflow(v) for each vertex of V can be reduced to tree contraction and
lowest common ancestor computation discussed in Sections 4.3 and 4.2, respectively.
For each nodev of T define adabel(w) the minimum preorder label d€a(e) for all
nontree edges incident to. For each vertex of V, low(v) is the minimumlabel(w) of
all nodesw in the subtree of rooted atv. Hence, tree contraction oh using themin
operation computes dbbw(v) values.

LEmMA 8. ForagraphG= (V, E)with n vertices and m edgdhke ear decomposition
open ear decompositioset of cut-edgesand set of cut-verticesf they exist can be
computed on a CGM with p processors and(®+ m)/ p) local memory per processor
(n+my/p > p° (¢ > 0), using Olog p) communication rounds and @/ p) local
computation per round

4.5. Biconnected ComponentsTesting 2-edge connectivity and biconnectivityGn

(log p) rounds is a simple consequence of Lemma 8 and Theorem 3. The algorithms
shown in the previous section compute the ear decomposition or open ear decomposition
if G is 2-edge connected or biconnected, respectivel@ i$ not 2-edge connected or
biconnected, then we obtain the cut-edges or cut-vertices, respectively, as follows. We
observe that cut-edges are tree ed@esentv), v) with the property thatow(v) >
preorder(v). If G is 2-edge connected, a cut-vertexan be detected by examining the

ear numbers of all edges incidentdo The smallest of those ear numbers will occur
twice, while any other of those ear numbers occurs twice if and onlysifa cut-vertex.
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LEMMA 9. The 2-edge connected and biconnected components of a connected un-
directed graph G with n vertices and m edges can be determined on a CGM with p
processors and @n + m)/p) local memory per processofm + m)/p > p° (¢ >

0), using Qlog p) communication rounds and @ + m)/p) local computation per
round

5. Conclusion. In this paper we presented deterministic parallel CGM and BSP al-
gorithms for the following well-known graph problems: (1) list ranking, (2) Euler tour
construction in a tree, (3) computing the connected components and spanning forest, (4)
lowest common ancestor preprocessing, (5) tree contraction and expression tree evalu-
ation, (6) computing an ear decomposition or open ear decomposition, and (7) 2-edge
connectivity and biconnectivity (testing and component computation). The CGM algo-
rithms requireO(log p) communication rounds and linear sequential work per round,
assuming local memorgn + m)/p > p°® (¢ > 0) which is true for most commercially
available multiprocessors. Our results imply BSP algorithms Witog p) supersteps,
O(glog(p)((n + m)/p)) communication time, an® (log(p)((n + m)/p)) local com-
putation time.

The number of communication rounds obtained is independent of the problem size
and grows only logarithmically with respect fo It is still an open question whether
better algorithms exist (even randomized). Our algorithm for Problem (1) improves
significantly on previous results, and our algorithms for Problems (2)—(7) are the first
practically relevant parallel algorithms for these standard graph problems.

Acknowledgments. The authors thank P. Flocchini, N. Santoro, and I. Rieping for
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