
DOI: 10.1007/s00224-002-1066-2

Theory Comput. Systems 35, 567–597 (2002) Theory of
Computing

Systems
© 2002 Springer-Verlag

New York Inc.

Bulk Synchronous Parallel Algorithms for the External
Memory Model∗

Frank Dehne,1 Wolfgang Dittrich,2 David Hutchinson,1,3 and
Anil Maheshwari1

1School of Computer Science, Carleton University,
Ottawa, Canada K1S 5B6
{dehne,maheshwa}@scs.carleton.ca

2Bosch Telecom GmbH, UC-ON/ERS,
Gerberstraße 33, 71522 Backnang, Germany

3Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129, USA
hutchins@cs.duke.edu

Abstract. Blockwise access to data is a central theme in the design of efficient ex-
ternal memory (EM) algorithms. A second important issue, when more than one disk
is present, is fully parallel disk I/O. In this paper we present a simple, deterministic
simulation technique which transforms certain Bulk Synchronous Parallel (BSP)
algorithms into efficient parallel EM algorithms. It optimizes blockwise data access
and parallel disk I/O and, at the same time, utilizes multiple processors connected
via a communication network or shared memory. We obtain new improved paral-
lel EM algorithms for a large number of problems including sorting, permutation,
matrix transpose, several geometric and GIS problems including three-dimensional
convex hulls (two-dimensional Voronoi diagrams), and various graph problems. We
show that certain parallel algorithms known for the BSP model can be used to ob-
tain EM algorithms that meet well known I/O complexity lower bounds for various
problems, including sorting.

∗ A preliminary version appeared in IEEE IPPS 1999 and ACM–SIAM SODA 1999. The research of F.
Dehne and A. Maheshwari was partially supported by the Natural Sciences and Engineering Research Council
of Canada. A. Maheshwari was also partially supported by NCE GEOIDE.

568 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

1. Introduction

1.1. Motivation

Some of the key applications of parallel computing include astrophysical models, genetic
sequencing, geographic information systems, ecological models, weather prediction,
telecommunications applications, commercial digital video and audio, digital libraries,
government information systems, and biological models for medical applications. Re-
searchers in all of these applications currently face data sets of terabyte size, perhaps
increasing to petabytes in the foreseeable future. If parallel computing is to succeed in
these areas, it needs to solve the problem of how to obtain efficient parallel disk I/O.
Research in external memory (EM) algorithms has recently received considerable at-
tention. Primary references are the report of the ACM workshop on strategic directions
in computing research, edited by Gibson et al. [27] and Vitter’s survey [47]. The main
questions are how to optimize blockwise and simultaneous access to multiple disks, and
how to combine this with a parallel processing environment where multiple processors
(each with multiple disks) are connected via a communication network or shared mem-
ory. Closely related problems are how to include the effects of network caching and
multilevel memory hierarchies in general.

1.2. Review: Parallel Disk Model and Previous Results

We outline a few results on EM algorithms which relate directly to our work. A more
complete survey can be found in [47].

A well-studied model of computation for EM algorithms is the Parallel Disk Model
(PDM) introduced by Vitter and Shriver [49]. It is used to model the two-level memory
hierarchy consisting of parallel disks connected to one or more processors which com-
municate via a shared internal memory or a hypercube like network. The PDM uses the
following parameters: N = problem size, M = internal memory size, B = block transfer
size, D = number of disk drives, and p = number of processors, where M < N , and
1 ≤ DB ≤ M/2. All sizes are in units of application data items. The PDM cost mea-
sure is the number of I/O operations required by an algorithm, where DB items can be
transferred between the internal memory and the disk system in a single I/O operation.

Floyd [24] studied sorting (and matrix transpose) in a single-disk single-processor
model, where B = M/2 = �(N c), for some constant c > 0, and provided upper and
lower I/O bounds. Aggarwal and Vitter [2] generalized Floyd’s model and provided
matching upper and lower I/O bounds for several problems, and these bounds apply to
the PDM. In the worst case, the number of I/Os required for sorting is �((N/BD) logM/B

(N/B))1 [2], [47]. Several EM algorithms exist for sorting, including [1]–[3], [37], [38],
[49], [50], and [39]. Surprisingly, it turns out that performing a permutation requires
�(min{N/D, (N/BD) logM/B(N/B)}) I/Os [2], [47], although permutation can be
performed in linear time in the RAM model. Similarly, the worst-case number of I/Os
required to transpose an N = p×q matrix from row-major order to column-major order
is �((N/BD) logM/B min(M, p, q, N/B)) [2], [47]. Cormen et al. [17] have studied the

1 LogM/B(N/B) is defined to mean max{1, logM/B(N/B)}.

Bulk Synchronous Parallel Algorithms for the External Memory Model 569

optimal number of I/Os required to perform several special classes of permutations. This
includes permutations arising in matrix transpose, FFTs, hypercubes, matrix reblocking.
Arge et al. [6] show that any problem which requires �(N log N) comparisons in the
comparison model, requires �((N/B) logM/B(N/B)) I/Os in the PDM.

EM algorithms have been proposed for a number of problems arising in compu-
tational geometry [7], [5], [18], [30], geographical information systems [7], [46], and
graphs [4], [13], [31], [33], [44]. Over the last few years, comprehensive computing and
cost models, that incorporate multiple disks and multiple processors have been proposed
[15], [21], [23], [35].

The Parallel Random Access Memory (PRAM) model [25] has been used for many
years as a model of parallel computation and has supported the development of a rich
theory of parallel computation; see, for example, [32] and [34]. The PRAM assump-
tion of a large shared random access memory with uniform cost access to every cell by
each processor has the advantage of simplicity but has also prompted alternative pro-
posals intended to be more representative of practical machines. These include the Bulk
Synchronous Parallel (BSP) model of Valiant [45], the Coarse-Grained Multicomputer
(CGM) of Dehne et al. [22], the LogP model of Culler et al. [19], and the Extended BSP
(BSP*) model of Bäumker et al. [10].

Several suggestions have been made regarding the simulation of parallel algorithms
as EM algorithms. This includes the work of Atallah and Tsay [8], the results of Chiang
et al. [13] on simulating PRAM algorithms, and the results of Sibeyn and Kaufmann
[42], Dehne et al. [21], and Dittrich et al. [23] on simulating BSP, CGM, and BSP*
algorithms.

1.3. Review: Parallel Models of Computation and Related Work

The BSP model was proposed by Valiant [45] as a “bridging model for parallel com-
putation”; a standard model on which both hardware and software designs can agree.
The stated objective of the BSP model is to provide a model that is simultaneously
useful to hardware designers, algorithm designers, and programmers of parallel comput-
ers. The BSP model has parameters N , v, g, and L . It consists of v processor/memory
components, a router that delivers messages in a point to point fashion, and a facility to
synchronize all processors. Each processor has a unique label in the range 0, 1, . . . , v−1.
Computation proceeds in a succession of supersteps separated by synchronizations, usu-
ally divided into communication and computation supersteps, see Figure 1. In computa-
tion supersteps processors perform local computations on data that is available locally at
the beginning of the superstep and issue send operations. Between computation super-
steps, a communication superstep is performed, where each processor exchanges data
with its peers, via the router. An h-relation is a superstep where O(h) data are sent and
received by every processor. The parameter g is the time required to send a single word
of data between two processors, where time is measured in number of CPU operations,
and the parameter L is the minimum setup time or latency of a superstep, measured in
CPU operations.

The cost of a computation on the BSP model is represented by the sum of three
quantities, one for computation time, one for communication time, and one for the time
required by the processors to synchronize. Let A be a BSP algorithm, operating on

570 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

Superstep λ
Computation

Communication
Superstep

Communication
Superstep

1 2 3Superstep 1 v

v independent subproblems

Computation

Computation

Communication
Superstep

Superstep 2

Fig. 1. A BSP computation.

input data of size N items. Let β be its parallel computation time, let α be the number
of words of data sent between processors during the execution of A, and let λ be the
number of supersteps required by A to solve a problem of size N . Then the cost T (A)

of the computation is

T (A) = β + g · α + λ · L .

A CGM algorithm [22] is a particular kind of BSP algorithm where the commu-
nication part of each superstep consists of exactly one h-relation with h = �(N/v).
In contrast to [22], however, we use the cost model of BSP [45] for analyzing CGM
algorithms.

The BSP* model [10] is a special case of the BSP model where each message is
assessed a minimum cost equivalent to a message of size b items. The BSP* model
therefore gives incentives to send messages of at least b in size.

While the PDM captures computation and I/O costs, it is designed for a specific
type of communication network, where a communication operation is expected to take a
single unit of time, comparable with a single CPU instruction. BSP and similar parallel
models capture communication and computational costs for a more general class of
interconnection networks, but do not capture I/O costs. Cormen and Goodrich [15]
posed the challenge of combining BSP-like parallel algorithms with the requirements
for parallel disk I/O, and, specifically, the need for a combined model. Such combined
models, namely EM-BSP and its variants, were proposed in [21].

The EM-BSP model [21] is an extension of the BSP model to include secondary
local memories (see Figure 2). In addition to its local memory, each processor has an
EM in the form of a set of hard disks. This model has four additional parameters, namely

Bulk Synchronous Parallel Algorithms for the External Memory Model 571

P1

P2

Pp

.

.

.

.

.

.

ProcessorsProcessors

Router

Network

.

.

CPU

Memory

Disk 1

Processor

Comm-
unication

Internal Bus

Pi

Disk Di

Pi-1

Fig. 2. Illustration of an EM-CGM model.

the size of local memory of each processor M , the number of disks at each processor
D, the transfer block size B, and the ratio G of local computational capacity (number
of local computation operations) divided by local I/O capacity (number of blocks of
size B that can be transferred between the local disks and memory) per unit time. Like
a computation on the BSP model, a computation on the EM-BSP model proceeds in
a succession of supersteps. Communication and computation supersteps occur as in
the BSP model and multiple I/O operations are permitted during a single computation
superstep. For the EM-BSP model, the computation cost, tcomp, and communication cost,
tcomm, are the same as for the BSP model. For each local operation the RAM uniform cost
measure is used. For an h-relation, i.e., a routing request where each processor sends and
receives at most h messages of size b, g ·h+ L time units are charged per communication
superstep. The I/O cost (or I/O time) of a computation superstep is tI/O = maxv

j=1{w j
I/O}

where w
j
I/O is the I/O cost incurred by processor j . Each I/O operation costs G time

steps. For a computation superstep with at most tcomp local operations on each processor,
tcomp + tI/O + L time units are charged. The total cost of each superstep is therefore
tcomp + tcomm + tI/O + L .

An algorithm for a BSP/BSP*/CGM model with multiple disks attached to each
processor (see Figure 2) is referred to as an EM-BSP/EM-BSP*/EM-CGM algorithm.
Since the BSP, BSP*, and CGM models are very similar, algorithms which are efficient
on the BSP* and CGM models are also BSP algorithms. Because of this similarity, we
refer to BSP* and CGM algorithms as BSP algorithms, and to EM-BSP* and EM-CGM
algorithms as EM-BSP algorithms.

Let A∗ be the best sequential algorithm on the RAM for a problem P of size N
items, and let T (A∗) be its worst case runtime. Let c ≥ 1 be a constant. A c-optimal EM-
BSP algorithm A for v processors is c-optimal in communication and I/O if it meets the
following criteria (all asymptotic bounds are with respect to the problem size N → ∞):

• The ratio ϕ between the computation times of A and T (A∗)/v is in c + o(1).
• The ratio ξ between the communication time of A and the computation time

T (A∗)/v is in o(1).
• The ratio η between the I/O time of A and the computation time T (A∗)/v is in

o(1).

572 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

Note that the constraint on η differentiates this definition from the corresponding
one for non-external memory parallel algorithms proposed in [26]. The simultaneous
satisfaction of the constraints ϕ ∈ c + o(1), ξ ∈ o(1), and η ∈ o(1) is a stringent
requirement to place on an EM-BSP algorithm. It is not always possible to show that
the running time of an algorithm is dominated by its computation time, for instance.
Various relaxations of the requirements on ϕ, ξ , and η are possible. One such relaxation
comes from the notion of balancing the costs of computation, communication, and
I/O, so that none of them dominates the running time, and the work done in each is
asymptotically the same as the work of an optimal sequential algorithm. We use the
terms work-optimal, communication-efficient, and I/O-efficient to describe an algorithm
for which ϕ ∈ O(1), ξ ∈ O(1), and η ∈ O(1), respectively. An algorithm which
is work-optimal, communication-efficient, and I/O-efficient, therefore, is one whose
running time complexity is no worse than the complexity T (A∗)/v. Constant factors are
ignored.

1.4. New Results

In this paper we show that any v processor BSP algorithm A′ which communicates
via h-relations of size h = O(N/v) with λ supersteps/rounds, local memory size µ,
computation time β+λL , and communication time gα+λL can be simulated, determin-
istically, as a p-processor EM-BSP algorithm A with (v/p)λ rounds, computation time
(v/p)(β + O(λµ))+(v/p)λL , communication time (v/p)gα+(v/p)λL , and I/O time
(v/p)G · O(λ(µ/DB)) + (v/p)λL for M = �(µ), N = �(vDB), and B = O(N/v2).

Let g(N), L(N), and v(N) be increasing functions of N . If A′ is c-optimal on
the BSP model for g ≤ g(N), L ≤ L(N), and v ≤ v(N), then A is c-optimal for
β = ω(λµ), g ≤ g(N), G = BD · o(β/µλ), and L ≤ L(N) · p/v. A is work-optimal,
communication-efficient, and I/O-efficient if A′ is work-optimal and communication-
efficient, β = �(λµ), g ≤ g(N), G = BD · O(β/µλ), and L ≤ L(N) · p/v.

The simulation technique described in this paper obtains tight upper and lower
bounds on the message size, and this attribute consequently makes the technique very
simple compared with the randomized simulation technique described in [21]. The anal-
ysis of the I/O complexity of our algorithms is done as in the PDM. In addition, however,
we analyze the communication and computational complexities and hence the overall
asymptotic running time.

In Section 3 we present new EM algorithms for a large number of problems by
applying our simulation technique to parallel algorithms for these problems. Tables 1
and 2 summarize the performance of a selection of new EM-BSP algorithms obtained
via the simulation techniques presented in this paper. In contrast to some previous work,
these results are scalable with respect to the number of processors. The new results
improve on the previous upper bounds on I/O complexity for many problems, and also
meet I/O complexity lower bounds for certain problems. In some cases, our results may
at first appear to improve on known lower bounds. We explain the latter in Section 3.2
by pointing out that the I/O complexity lower bounds were proven for arbitrary ranges
over the various parameters involved and take a simplified form if one restricts them to
our particular range of parameter values. This answers questions of Cormen [14] and
Vitter [48] on the apparent contradictions between the results of [21] and previously

Bulk Synchronous Parallel Algorithms for the External Memory Model 573

Ta
bl

e
1.

Su
m

m
ar

y
of

ne
w

E
M

al
go

ri
th

m
s

in
co

m
pa

ri
so

n
w

ith
pr

ev
io

us
re

su
lts

.

Pr
ob

le
m

de
sc

ri
pt

io
n

PD
M

I/
O

co
m

pl
ex

ity
a,

b
B

SP
co

m
pl

ex
ity

c
E

M
-B

SP
co

m
pl

ex
ity

d

G
ro

up
A

:F
un

da
m

en
ta

la
lg

or
ith

m
se

1.
So

rt
in

g
�

(N B
D

lo
g M

/
B

N B

) [2
],

[4
7]

τ
=

O
(N

lo
g

N

v

) [2
9]

α
=

O
(N p

) ,
β

=
O

(N p
lo

g
N
)

λ
=

O
(1

),
M

=
O

(N v

)
κ

=
O

(N

pD
B

) ,
λ

=
O

(v pk

)

2.
Pe

rm
ut

at
io

n
�

(m
in

(N D
,

N D
B

lo
g M

/
B

N B

) [2
],

[4
7]

τ
=

O
(N

lo
g

N

v

)
α

=
O

(N p

) ,
β

=
O

(N p

)

λ
=

O
(1

),
M

=
O

(N v

)
κ

=
O

(N

pD
B

) ,
λ

=
O

(v pk

)

3.
M

at
ri

x
tr

an
sp

os
e

f
�

(N B
D

lo
g

m
in

(M
,
r,

c,
N

/
B

)

lo
g(

M
/

B
)

) [2
],

[4
7]

τ
=

O
(N

lo
g

N

v

)
α

=
O

(N p

) ,
β

=
O

(N p

)

λ
=

O
(1

),
M

=
O

(N v

)
κ

=
O

(N

pD
B

) ,
λ

=
O

(v pk

)
a
PD

M
I/

O
co

m
pl

ex
iti

es
as

lis
te

d
ap

pl
y

to
ge

ne
ra

lv
al

ue
s

fo
r

N
,

M
,

D
,a

nd
B

.I
f

th
e

co
ns

tr
ai

nt
s

re
qu

ir
ed

by
ou

r
te

ch
ni

qu
es

ar
e

ap
pl

ie
d

to
th

es
e

re
su

lts
,t

he
te

rm
lo

g M
/

B
(N

/
B

)
be

co
m

es
a

co
ns

ta
nt

.
b
W

he
n

th
e

pa
ra

m
et

er
D

is
qu

ot
ed

in
th

e
PD

M
I/

O
co

m
pl

ex
ity

co
lu

m
n,

th
is

pa
ra

m
et

er
re

fe
rs

to
th

e
nu

m
be

r
of

di
sk

s
ov

er
al

l,
w

he
re

as
th

e
pa

ra
m

et
er

D
us

ed
in

th
e

E
M

-B
SP

I/
O

co
m

pl
ex

ity
co

lu
m

n
re

fe
rs

to
th

e
nu

m
be

r
of

di
sk

s
on

ea
ch

of
th

e
p

pr
oc

es
so

rs
.

c T
he

B
SP

ru
nn

in
g

tim
e

is
τ

+
gλ

M
+

λ
L

,w
he

re
τ

is
th

e
pa

ra
lle

lc
om

pu
ta

tio
n

tim
e,

λ
is

th
e

nu
m

be
ro

fB
SP

ro
un

ds
,a

nd
M

is
th

e
pe

ak
lo

ca
l

m
em

or
y

us
ed

by
a

pr
oc

es
so

r
of

th
e

B
SP

m
ac

hi
ne

.
d
T

he
E

M
-B

SP
ru

nn
in

g
tim

e
is

β
+

gα
+

G
κ

+
λ

L
,w

he
re

λ
is

th
e

nu
m

be
r

of
E

M
-B

SP
ro

un
ds

,α
is

th
e

am
ou

nt
of

da
ta

co
m

m
un

ic
at

ed
,β

is
th

e
pa

ra
lle

l
co

m
pu

ta
tio

n
tim

e,
an

d
κ

is
th

e
nu

m
be

r
of

pa
ra

lle
l

I/
O

op
er

at
io

ns
.W

e
re

st
ri

ct
ea

ch
re

al
pr

oc
es

so
r

to
O

(k
N

/
v
)

m
em

or
y,

fo
r

in
te

ge
r

1
≤

k
≤

v
/

p,
an

d
as

su
m

e
th

at
N

≥
v

2
B

,
B

≥
v
/
2,

an
d

v
≥

D
.

e T
he

PD
M

I/
O

co
m

pl
ex

iti
es

lis
te

d
fo

r
G

ro
up

A
ap

pl
y

al
so

to
m

ul
tip

le
pr

oc
es

so
rs

w
he

n
th

e
in

te
rc

on
ne

ct
io

n
m

et
ho

d
is

a
sh

ar
ed

R
A

M
,

hy
pe

rc
ub

ic
ne

tw
or

k,
or

cu
be

-c
on

ne
ct

ed
cy

cl
es

.
f r,

c
ar

e
th

e
nu

m
be

r
of

co
lu

m
ns

an
d

ro
w

s,
re

sp
ec

tiv
el

y,
w

he
re

N
=

r
·c

.

574 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

Ta
bl

e
2.

Su
m

m
ar

y
of

ne
w

E
M

al
go

ri
th

m
s

in
co

m
pa

ri
so

n
w

ith
pr

ev
io

us
re

su
lts

.

Pr
ob

le
m

de
sc

ri
pt

io
n

PD
M

I/
O

co
m

pl
ex

ity
a,

b
B

SP
co

m
pl

ex
ity

c
E

M
-B

SP
co

m
pl

ex
ity

d

G
ro

up
B

:G
IS

an
d

co
m

pu
ta

tio
na

lg
eo

m
et

ry
al

go
ri

th
m

se

4.
Po

ly
go

n
tr

ia
ng

ul
at

io
n,

T
ra

pe
zo

id
al

de
co

m
po

si
tio

n,
Se

gm
en

tt
re

e
co

ns
tr

uc
tio

n,
N

ex
te

le
m

en
ts

ea
rc

h
on

lin
e

se
gm

en
ts

O
(N B

lo
g M

/
B

N B

) [7
]

τ
=

O
(N

lo
g

N

v

) [1
2]

λ
=

O
(1

),
M

=
O

(N
lo

g
N

v

)
α

=
O

(N
lo

g
N

p

) ,
β

=
O

(N
lo

g
N

p

)

κ
=

O
(N

lo
g

N

pD
B

) ,
λ

=
O

(v pk

)

5.
B

at
ch

ed
pl

an
ar

po
in

t
lo

ca
tio

n
O

((
N B

+
k) lo

g M
/

B
N B

) [7
]

τ
=

O
(N

lo
g

N

v

) [1
2]

λ
=

O
(1

),
M

=
O

(N
lo

g
N

v

)
α

=
O

(N
lo

g
N

p

) ,
β

=
O

(N
lo

g
N

p

)

κ
=

O
(N

lo
g

N

pD
B

) ,
λ

=
O

(v pk

)

6.
3D

co
nv

ex
hu

ll,
2D

V
or

on
oi

di
ag

ra
m

,D
el

au
na

y
tr

ia
ng

ul
at

io
n

f

O
(N B

lo
g M

/
B

N B

) [3
0]

τ
=

Õ
(N

lo
g

N

v

) [2
0]

λ
=

Õ
(1

)
M

=
O

(N v

)
α

=
O

(N
lo

g
N

p

) ,
β

=
O

(N
lo

g
N

p

)

κ
=

Õ
(N

pD
B

) ,
λ

=
O

(v pk

)

7.
L

ow
er

en
ve

lo
pe

of
no

n-
in

te
rs

ec
tin

g
lin

e
se

gm
en

ts

τ
=

O
(N

lo
g

N

v

) [2
2]

λ
=

O
(1

),
M

=
O

(N v

)
α

=
O

(N
lo

g
N

p

) ,
β

=
O

(N
/

p)

κ
=

O
(N

pD
B

) ,
λ

=
O

(v pk

)

8.
G

en
er

al
iz

ed
lo

w
er

en
ve

lo
pe

of
lin

e
se

gm
en

ts
τ

=
O

(N
lo

g
N

v

) [2
2]

λ
=

O
(1

),
M

=
O

(N
α
(N

)

v

)
α

=
O

(N
lo

g
N

p

) ,
β

=
O

(N
/

p)

κ
=

O
(N

α
(N

)

pD
B

) ,
λ

=
O

(v pk

)

9.
A

re
a

of
un

io
n

of
re

ct
an

gl
es

,
3D

-m
ax

im
a,

2D
ne

ar
es

t
ne

ig
hb

or
s

O
(N B

lo
g M

/
B

N B

) [3
0]

τ
=

O
(N

lo
g

N

v

) [2
2]

λ
=

O
(1

),
M

=
O

(N v

)
α

=
O

(N
lo

g
N

p

) ,
β

=
O

(N
/

p)

κ
=

O
(N

pD
B

) ,
λ

=
O

(v pk

)

Bulk Synchronous Parallel Algorithms for the External Memory Model 575

 10
.

2D
-w

ei
gh

te
d

do
m

in
an

ce
co

un
tin

g,
U

ni
-

an
d

m
ul

tid
ir

ec
tio

na
l

se
pa

ra
bi

lit
y

τ
=

O
(N

lo
g

N

v

) [2
2]

λ
=

O
(1

),
M

=
O

(N v

)
α

=
O

(N
lo

g
N

p

) ,
β

=
O

(N
/

p)

κ
=

O
(N

pD
B

) ,
λ

=
O

(v pk

)

G
ro

up
C

:G
ra

ph
al

go
ri

th
m

s

11
.

L
is

tr
an

ki
ng

,E
ul

er
to

ur
of

tr
ee

,L
ow

es
tc

om
m

on
an

ce
st

or
,T

re
e

co
nt

ra
ct

io
n,

E
xp

re
ss

io
n

tr
ee

ev
al

ua
tio

n

O
(N B

lo
g M

/
B

N B

) [1
3]

τ
=

O
(N v

lo
g

v

) [1
1]

λ
=

O
(l

og
v
),

M
=

O
(N v

)
α

=
O

(N
lo

g
v

p

) ,
β

=
O

(N
lo

g
v

p

)

κ
=

O
(N

lo
g

v

pD
B

) ,
λ

=
O

(v pk
lo

g
v

)

12
.

C
on

ne
ct

ed
co

m
po

ne
nt

s,
Sp

an
ni

ng
fo

re
st

,E
ar

an
d

op
en

ea
r

de
co

m
po

si
tio

n,
B

ic
on

ne
ct

ed
co

m
po

ne
nt

sg

O
(E D

B
lo

g M
/

B
V B

·m
ax

{ 1,
lo

g
lo

g
V

B
D

E

})
[3

6]
τ

=
O

(V
+

E

v
lo

g
v

) [1
1]

λ
=

O
(l

og
v
),

M
=

O
(V

+
E

v

)
α

=
O

(N
lo

g
v

p

) ,
β

=
O

(N
lo

g
v

p

)

κ
=

O
((V

+
E

)
lo

g
v

pD
B

) ,λ
=

O
(v pk

lo
g

v

)

a
PD

M
I/

O
co

m
pl

ex
iti

es
as

lis
te

d
ap

pl
y

to
ge

ne
ra

lv
al

ue
s

fo
r

N
,M

,D
,a

nd
B

.I
f

th
e

co
ns

tr
ai

nt
s

re
qu

ir
ed

by
ou

r
te

ch
ni

qu
es

ar
e

ap
pl

ie
d

to
th

es
e

re
su

lts
,t

he
te

rm
lo

g M
/

B
(N

/
B

)

be
co

m
es

a
co

ns
ta

nt
.

b
W

he
n

th
e

pa
ra

m
et

er
D

is
qu

ot
ed

in
th

e
PD

M
I/

O
co

m
pl

ex
ity

co
lu

m
n,

th
is

pa
ra

m
et

er
re

fe
rs

to
th

e
nu

m
be

r
of

di
sk

s
ov

er
al

l,
w

he
re

as
th

e
pa

ra
m

et
er

D
us

ed
in

th
e

E
M

-B
SP

I/
O

co
m

pl
ex

ity
co

lu
m

n
re

fe
rs

to
th

e
nu

m
be

r
of

di
sk

s
on

ea
ch

of
th

e
p

pr
oc

es
so

rs
.

c T
he

B
SP

ru
nn

in
g

tim
e

is
τ

+
gλ

M
+

λ
L

,w
he

re
τ

is
th

e
pa

ra
lle

lc
om

pu
ta

tio
n

tim
e,

λ
is

th
e

nu
m

be
r

of
B

SP
ro

un
ds

,a
nd

M
is

th
e

pe
ak

lo
ca

lm
em

or
y

us
ed

by
a

pr
oc

es
so

r
of

th
e

B
SP

m
ac

hi
ne

.
d
T

he
E

M
-B

SP
ru

nn
in

g
tim

e
is

β
+

gα
+

G
κ

+
λ

L
,w

he
re

λ
is

th
e

nu
m

be
r

of
E

M
-B

SP
ro

un
ds

,α
is

th
e

am
ou

nt
of

da
ta

co
m

m
un

ic
at

ed
,β

is
th

e
pa

ra
lle

lc
om

pu
ta

tio
n

tim
e,

an
d

κ
is

th
e

nu
m

be
r

of
pa

ra
lle

lI
/O

op
er

at
io

ns
.W

e
re

st
ri

ct
ea

ch
re

al
pr

oc
es

so
r

to
O

(k
N

/
v
)

m
em

or
y,

fo
r

in
te

ge
r

1
≤

k
≤

v
/

p,
an

d
as

su
m

e
th

at
N

≥
v

2
B

,
B

≥
v
/
2,

an
d

v
≥

D
.

e T
he

PD
M

I/
O

co
m

pl
ex

iti
es

fo
r

pr
ob

le
m

s
4,

5,
6,

9,
an

d
11

ar
e

do
cu

m
en

te
d

fo
r

th
e

si
ng

le
pr

oc
es

so
r,

si
ng

le
di

sk
ca

se
.

W
e

ar
e

no
t

aw
ar

e
of

m
ul

tid
is

k
or

m
ul

tip
ro

ce
ss

or
ex

te
ns

io
ns

.S
im

ila
rl

y,
w

e
ar

e
no

ta
w

ar
e

of
an

y
pr

ev
io

us
m

ul
tip

ro
ce

ss
or

al
go

ri
th

m
on

th
e

PD
M

fo
r

pr
ob

le
m

12
.

f
T

he
PD

M
I/

O
co

m
pl

ex
iti

es
re

po
rt

ed
fo

r
th

re
e-

di
m

en
si

on
al

co
nv

ex
hu

ll,
et

c.
,a

pp
ly

to
PR

A
M

-l
ik

e
pa

ra
lle

lm
ac

hi
ne

s.
g
Fo

r
a

gr
ap

h
of

V
ve

rt
ic

es
an

d
E

ed
ge

s.

576 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

known lower bounds for sorting, permutation, and matrix transpose in EM. We argue in
Section 3.1 that our restricted parameter range is both interesting and useful in the EM
domain.

The remainder of this paper is organized as follows. Section 2 describes our de-
terministic simulation technique for single and multiple processor machines. Section 3
describes a large number of new EM algorithms obtained by simulating existing parallel
BSP algorithms for these problems. Additional summary information is included at the
beginning of these sections.

2. Deterministic Simulation of BSP Algorithms as EM-BSP Algorithms

In this section we describe a deterministic simulation for BSP-like algorithms whose
communication can be characterized by h-relations.

Each communication superstep of the underlying BSP algorithm is divided into a
sending superstep and a receiving superstep. During a sending superstep, messages are
generated, and during a receiving superstep they are received. A compound superstep is
composed of a receiving, a computation, and a sending superstep. The execution of a BSP
algorithm proceeds as a series of compound supersteps, and can therefore be simulated
by repeated application of the simulation steps for a single compound superstep.

The processors of the BSP machine are called virtual processors, and v denotes
their number. The context of a virtual processor is the local memory it uses, and the
context size of a virtual processor is the maximum size of its context used during the
computation. The maximum context size of all virtual processors is µ = �(N/v). We
denote the maximum size of the data sent or received by any virtual processor over all
supersteps by γ = �(N/v).

Suppose we have a problem P with N problem items, for which a BSP algorithm
A′ is known on a machine C ′ with v processors. We describe a simulation of A′ on a
real machine C with p processors, each having D local disks. The simulation models
message transmissions of A′ on C ′ by disk I/O on C. The resulting algorithm A for P
on C can be characterized by the parameters (N , p, M , D, B, G, λ, g, L), where p ≤ v

is the number of real processors, M = �(N/v) is the size of the local memory on each
of the real processors, D is the number of disk drives on each real processor, B is the
transfer block size to the disks, g is the time required for a communication operation on
the real machine, G is the time for a parallel I/O operation of DB items of P to the D
disks of a local processor, L is the time required for the real processors to synchronize,
and λ is the number of supersteps performed by A on P and C.

In Section 2.2 we describe a deterministic simulation technique that permits a BSP
algorithm with fixed-size messages to be simulated as an EM algorithm on a single
processor target machine. Section 2.3 deals with the multiple processor case. Our sim-
ulation techniques replace communication between processors by disk I/O, and so an
important issue is how to organize the generated messages on the D disks so that they
can be accessed using blocked and fully parallel I/O operations. Both Sections 2.2 and
2.3 assume that the BSP algorithm in question communicates using fixed-size messages.
This leads to a simple simulation approach. A common issue in both cases is how to
handle irregular h-relations. A method for handling this issue is the topic of Section 2.1.

Bulk Synchronous Parallel Algorithms for the External Memory Model 577

Section 2.4 presents our generalized simulation result, incorporating the simulation ideas
of Section 2.3 and the balancing of message sizes from Section 2.1.

2.1. Balancing Communication

Consider a single compound superstep of the original parallel algorithm. The commu-
nication in such a superstep may be highly irregular, meaning that a given processor
may send messages of widely differing sizes to the other processors. In simulating the
message traffic we intend to reserve space for each message on disk and replace mes-
sage sending/receiving by disk writes/reads. We cannot, however, simply use the upper
bound on message length as an estimate of the message length, as the maximum length
may be O(N/v). If we reserve O(N/v) space on disk for each message, we will need
O(vN) space in total, which would be prohibitive.

We therefore borrow a parallel algorithm due to Bader et al. [9] which balances the
message sizes at the cost of two rounds of communication, and gives us a much more
usable upper bound on the message size. We will show that it also gives us a useful lower
bound on message size that permits blocked disk I/O in the EM domain.

Algorithm: BalancedRouting (from [9])
Input: Each of the v processors has n̄/v elements, which are divided into v messages,

each of arbitrary length ≤ n̄/v. Let msgij denote the message to be sent from processor
i to processor j , and let |msgij| be the length of such a message.

Output: The v messages in each processor are delivered to their final destinations in two
balanced rounds of communication, and each processor then contains at most h̄ data.

A. For i = 0 to (v − 1) in parallel
1. Processor i allocates v local bins, one for each processor
2. For j = 0 to (v − 1)

3. For � = 0 to |msgij|
Processor i allocates the �th word of msgij to local bin (i + j + �) mod v

4. Processor i sends bin j to processor j

Superstep Boundary

B. For j = 0 to (v − 1) in parallel
1. Processor j reorganizes the messages it received in Step 2 (of Superstep A)

into bins according to each element’s final destination
2. Processor j routes the contents of bin k to processor k, for 0 ≤ k ≤ v − 1

Algorithm BalancedRouting gives us a technique for acquiring messages of near-
ly uniform size. We will show upper and lower bounds on the message size, which
allow us to save and retrieve messages on the disks in an efficient and convenient
manner.

A total of n̄ data is divided evenly among v processors. Each item is labeled with
the identifier of a destination processor in such a way that no more than h̄ items have
the same destination, where h̄ ≥ n̄/v. Algorithm BalancedRouting delivers these items
to their destination in two rounds of communication, where no message differs in size
from any other by more than v − 1 items.

578 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

Number of
Extra Items

0 1 3 4

1

2

3

Bin Numbers

Evenly-Placed
Items

v-3 v-2 v-1

v-3

v-2

v-1

Fig. 3. Illustration of maximum imbalance in the bin sizes of a processor during Superstep A. The light circles
represent evenly placed elements and the dark circles are unevenly placed, or “extra,” ones. The maximum bin
size (bin v − 1 in the diagram) is at most (v − 1)/2 more than the average, and the minimum bin size (bin 0
in the diagram) is at most (v − 1)/2 less than the average.

Theorem 1. We are given v processors and n̄ data items. Each processor has exactly
n̄/v data to be redistributed among the processors, and no processor is to be the recipient
of more than h̄ data. The redistribution can be accomplished in two communication
rounds of balanced communication: (A) messages in the first round are at least n̄/v2 −
(v − 1)/2, and at most n̄/v2 + (v − 1)/2 in size, and (B) messages in the second round
are at least h̄/v − (v − 1)/2, and at most h̄/v + (v − 1)/2 in size.

Proof. The proof of the maximum message sizes is given by Bader et al. [9]. The proof
of the minimum message sizes relies on the following observation (see Figure 3): if
binmin is the smallest bin created at a processor in Step 1 of Superstep A, then the other
(v − 1) bins can contain at most 1 + 2 + · · · + (v − 1) = v(v − 1)/2 more elements
than does binmin (see Figure 3).

In round A each processor initially has n̄/v data. At the end of Superstep B, each
processor will have at most h̄ data.

First, we consider the minimum message size in Superstep A. Due to the round robin
allocation mechanism, a given bin after Step 1 will contain at most one more element
of a message to processor j than does any other bin. We fix any processor i . Consider
the bin sizes after all of the messages have been distributed among the bins by processor
i (see Figure 3). Clearly, all of the bins will contain at least as many elements as the
smallest bin, binmin. Let ej be the number of extra elements (more than this minimum)
in bin j at Step 2. The crucial observation is that if binmin is the smallest bin, then

Bulk Synchronous Parallel Algorithms for the External Memory Model 579

the other (v − 1) bins can hold at most 1 + 2 + · · · + (v − 1) = v(v − 1)/2 extra
elements.

Thus,

n̄

v
= v| bin

min
| +

∑
j

ej .

Since v(v − 1)/2 ≥ ∑
j ej , we have

n̄

v
≤ v| bin

min
| + v(v − 1)

2
,

| bin
min

| ≥ n̄

v2
− v − 1

2
.

We now turn to the message sizes in Superstep B. The elements which arrive at processor
j as a result of Step 2 are the contents of the j th local bins formed in Step 1 at each of the
processors 0 through v − 1. We can think of the j th local bin of each of the v processors
as a component of a single, global superbin, which is the union of the j th local bins of
all v processors. Consider only the messages destined for a fixed processor k which are
held by each processor i , 0 ≤ i ≤ v − 1, prior to Step 1. These are allocated among the
superbins, starting with superbin (i + k) mod v by Step 1. Superbin j now contains the
message which is to be sent from processor j to processor k in Step 4.

In a similar manner to the analysis of Superstep A, let Ej be the number of extra
elements in superbin j after Step 1. Let sbinmin be the superbin which contains the
minimum number of elements after Step 1, and hence |sbinmin| represents the minimum
message size in Step 4. When processor k is one of the processors which receives the
maximum h data elements, we have h̄ = v|sbinmin| + ∑

j Ej , and since v(v − 1)/2 ≥∑
j Ej , we have |sbinmin| ≥ h̄/v − (v − 1)/2.

The notion of an h-relation is often used in the analysis of parallel algorithms based
on BSP-like models (e.g. BSP, BSP*, CGM). An h-relation is a communication superstep
in which each of the v processors sends and receives at most h data items. It is typically
used in bounding the communication complexity in an asymptotic analysis. Based on
this usage of an h-relation, we have:

Corollary 1. An arbitrary h-relation can be replaced by two balanced h-relations
whose message size is bounded by h/v − (v − 1)/2 and h/v + (v − 1)/2.

Proof. In Theorem 1, clearly h̄ ≥ n̄/v. For h = h̄ ≥ n̄/v we have a message size of at
most h/v + (v − 1)/2 for each of the two rounds of communication. We can reproduce
the precise conditions of Theorem 1 by adding dummy items if necessary in Superstep A
to ensure that n̄/v = h.

We can assume a minimum message size of h/v − (v − 1)/2 in the second round
because the cost of communication is bounded by the assumption of an h-relation. When
every processor is the destination of h data, it does not affect the worst case complexity of
the superstep. We can therefore assume that every processor receives h data (by adding

580 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

dummy items for the sake of the argument). Hence the minimum message size for any
processor in Superstep B becomes h/v − (v − 1)/2 without affecting the asymptotic
communication cost of the superstep.

Lemma 1. An arbitrary minimum message size bmin can be assured provided that

N ≥ v2bmin + v2(v − 1)

2
, (1)

where N is the total number of problem items (summed over the v processors).

Proof. From Corollary 1, we can achieve a minimum message size bmin provided that
bmin ≤ N/v2 − (v − 1)/2.

Assurances regarding the minimum message size are particularly relevant to the
BSP* model. In Section 2.5 we discuss the use of algorithm BalancedRouting and
Theorem 1 for creating BSP* algorithms from BSP algorithms.

In Sections 2.2 and 2.3 we describe the simulation of BSP algorithms with the
additional properties that algorithm BalancedRouting provides. Not every BSP algorithm
will require balancing, but Lemma 2 ensures that we can obtain balanced message sizes
when necessary by increasing the number of supersteps by a factor of 2.

Lemma 2. LetA′ be a BSP algorithm with N data, v processors, and λ communication
steps, where h = N/v in every step. The λ communication steps of A′ can be replaced
by 2λ steps of balanced communication in which the minimum message size is �(B)

and the maximum message size is 2 · (N/v2) provided that N ≥ v2 B + v2(v − 1)/2.

Proof. The minimum and maximum message sizes follow from Corollary 1, with
h = N/v, and the constraint that N/v2 + (v − 1)/2 ≤ 2 · (N/v2). This is true if
N ≥ v2(v − 1)/2, which is absorbed by (1) from Lemma 1.

In many practical EM situations 2(N/v2) will be a significant overestimate of the
maximum message size, as often v � N/v2.

2.2. Single Processor Target Machine

We now turn to the actual simulation results, which rely on a message size of c · B,
for a known constant c ≥ 1. For irregular h-relations, this requirement can be met by
applying algorithm BalancedRouting (see Lemma 2), for B = N/v̄2 and c = 2. (Note
that not every algorithm will require balancing; see AlgorithmTranspose in Section 3.6
for an example of a BSP algorithm whose messages are already balanced.)

For the case of a single EM processor, we simulate a compound superstep of a
BSP algorithm A, using the algorithm SeqCompoundSuperstep, shown below. No real
communication is required. Lemma 3 gives the resulting complexities for a single com-
pound superstep, and Theorem 2 summarizes the overall simulation result for a single
real processor. For ease of exposition, we assume that k divides v.

Bulk Synchronous Parallel Algorithms for the External Memory Model 581

Lemma 3. A compound superstep of a v-processor BSP algorithmA′ with computation
time τ +L , communication time g ·O(N/v)+L , message size c · B, for a known constant
c ≥ 1, and local memory sizeµ can be simulated as a single processor EM-BSP algorithm
A in computation time vτ + O(vµ) and I/O time O(G(N/BD + vµ/BD)) provided
that M ≥ kµ + BD, and N = �(v̄BD) for an arbitrary integer k ≤ v, and v̄ = v/k.

Proof. Since messages are at most c · B in size we can allocate fixed-sized slots for
them on the disks while preserving an O(vµ) disk space requirement. The assurance of
minimum message size �(B) further implies that I/O operations will be blocked.

We simulate a compound superstep of BSP algorithm A′ using algorithm SeqCom-
poundSuperstep, shown below. The algorithm expects the input messages to the virtual
processors in the current superstep to be organized (by destination) in a parallel format
on the disks, and it also writes the messages generated in the current superstep to the
disks in a parallel format. We use the phrase “a parallel format” to mean an arrangement
of the data that permits fully parallel access to the disks, both for writing the messages,
and for reading them back in a different order in the next superstep. The consecutive and
staggered formats, defined below, are parallel formats.

Consecutive format. We say that a disk read/write operation on D blocks is consecutive
when the qth block, 0 ≤ q ≤ D, is read/written from/to disk (d + q) mod D on track
T0+�(d+q)/D�, where T0 is the track used for the first of the D blocks to be read/written,
and d is the disk offset (from disk 0) for the first of the D blocks to be read/written.

Staggered format. We say that a disk read/write operation on D blocks involving n
messages, each of size at most b′ blocks, is staggered when the qth block, 0 ≤ q ≤
(b′ − 1), of the j th message, 0 ≤ j ≤ (n − 1), is read/written from/to disk (d + S + q)

mod D on track T0 + �(d + S + q)/D�, where T0 is the track used for the blocks of
the 0th message, d is the disk offset (from disk 0) for the first of the D blocks to be
read/written, and �S/D� is the number of tracks by which consecutive messages are to
be staggered (separated).

Algorithm SeqCompoundSuperstep simulates a compound superstep of a v-proces-
sor BSP on a single processor EM-BSP with D disks. It simulates k processors at a time,
where 1 ≤ k ≤ v, provided that the simulating processor has M = �(kµ) memory.

Algorithm: SeqCompoundSuperstep
Input: For each j ∈ {0, . . . , v − 1} the blocks of the context are stored on the disks in

consecutive format, and the arriving messages of virtual processor j are spread over
the D disks consecutive format.

Output: (i) The (changed) contexts of the v simulated processors are spread across the
disks in consecutive format. (ii) The generated messages for each processor in the
next superstep are stored in consecutive format on the disks.

1. For j = 0 to v/k − 1
(a) Read the context of virtual processors jk to (j + 1)k − 1 from the disks into

memory.
(b) Read the packets received by virtual processors jk to (j + 1)k − 1 from the

disks.

582 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

To Proc. j+1

To Proc. j

To Proc. j+2

From i

From i

From i

Disk 0 Disk 1 Disk 4Disk 3Disk 2

Fig. 4. llustration of the layout of message blocks on the D disks. In the example we have D = 5 and
message size b′ = 2 blocks. Messages from processor i to processors j , j + 1, and j + 2 are shown as shaded
rectangles. Messages to consecutively numbered processors are staggered on the disks to permit D blocks to
be written in parallel.

(c) Simulate the local computation of virtual processors jk to (j + 1)k − 1.
(d) Write the packets which were sent by virtual processors jk to (j + 1)k − 1

to the D disks in the staggered format illustrated in Figure 4. See below for
details.

(e) Write the changed context of virtual processors jk to (j + 1)k − 1 back to
the D disks (in consecutive format).

Details of Steps (a) and (e): We reserve an area of total size vµ on the disks, vµ/BD
blocks on each disk, where we store the contexts. We split the context Vj of virtual pro-
cessor j into blocks of size B and store the i th block of Vj on disk (i + j (µ/B)) mod D
using track �(i + j (µ/B))/D�. Since the context of each processor is now in striped for-
mat on the disks, we can read and write the contexts of k consecutive virtual processors
using D disks in parallel for every I/O operation.

Details of Step (b): The previous compound superstep guaranteed that the blocks
which contain the messages destined for the current processor are stored in consecutive
format on the disks. Therefore, we can use a similar technique to fetch the messages as
we used to fetch the contexts.

Details of Step (d): After the Computation Phase, all messages sent by the current
k virtual processors have been generated and stored in internal memory. The coarse-
grained nature of the underlying BSP algorithm results in large messages (see Lemma 2)
which are as long or longer than the block size B. We cut the messages into blocks of
size B. Each block inherits the destination address from its original message. In kγ /BD
rounds, we write the blocks out to the disks, as described in detail below. Recall that
γ is the maximum size of the data sent or received by any virtual processor over all
supersteps.

Let b represent the maximum message size, and let b′ represent the maximum number
of disk blocks per message. Hence, b′ = �b/B�. Let msgij represent the message sent

Bulk Synchronous Parallel Algorithms for the External Memory Model 583

from processor vi to processor vj in one communication superstep. We store the messages
destined for a fixed processor j in consecutive format, beginning with msg0 j and ending
with msgv−1, j . We ensure that the first block of msgi, j+1 is assigned to disk (b0 + b′)
mod D, for 0 ≤ j ≤ v − 2, where b0 is the disk number of the first block for msgij.
In other words, the starting block positions for messages to consecutive processors are
appropriately staggered on the disks to ensure that we can write blocks of messages
to consecutively numbered processors in a single parallel I/O when b′ mod D �= 0.
Let Tj = j · �vb′/D� be the track offset for msg0 j (the first such message destined for
processor vj). Let dj = jb′ mod D be the disk offset (from disk 0) for the first block
of msg0 j . The qth block of msgij is assigned to disk (dj + ib′ + q) mod D on track
Tj + �(dj + ib′ + q)/D�. This storage scheme maintains what we call the messaging
matrix across the parallel disks. The messages destined to a particular virtual processor
are stored in a band, or stripe, of consecutive parallel tracks.

Outgoing message blocks are placed in a FIFO queue for servicing by procedure
DiskWrite. DiskWrite removes at most D blocks from the queue in each write cycle and
writes them to the disks in a single write operation. Blocks are serviced strictly in FIFO
order. Blocks will be added to the current write cycle and removed from the queue until
a block is encountered whose disk number conflicts with that of an earlier block in the
current write cycle.

Since the messages destined for any given processor are stored in consecutive format
on the disks, we can read the messages received by a virtual processor using D disks in
parallel for every I/O operation. Except possibly for the last, each parallel read performed
by the simulation of processor vj will obtain D message blocks. By staggering the first
message blocks for consecutive virtual processors across the disks, we can achieve fully
parallel writes to the disks.

The scheme just described requires two copies of the messaging matrix because the
messages generated by virtual processor i in compound superstep � must be stored on
disk before virtual processor i +1 can process the messages generated for it in compound
superstep � − 1.

We can avoid this extra space requirement, however, by alternating between {consec-
utive reads, staggered writes} and {staggered reads, consecutive writes} in successive
compound supersteps. This allows the simulation to achieve fully parallel I/O on all
message blocks with a single copy of the messaging matrix.

Algorithm SeqCompoundSuperstep loads k virtual processors into the real memory
at once, requiring that M ≥ kµ. Since the messages sent or received in a superstep by
a virtual processor are h = O(N/v) in total size, we require that kN/vB = �(D) to
ensure that our I/O scheme for messages is efficient. This means that N = �(v̄BD),
where v̄ = v/k.

Computation time. Steps (a) and (e) of algorithm SeqCompoundSuperstep take O(vµ)

computation time overall. In Steps (b) and (d), O(N/v) message data is routed for each
virtual processor. Over all v processors, this adds O(N) computation time overall, which
can be ignored. Step (c) consumes vτ computation time.

I/O Time. Steps (a) and (e) consume O(G(vµ/BD)) time, and Steps (b) and (d) con-
sume O(G(N/BD)) time overall. Since O(N/p) message data is sent in each superstep,
and N/p ≤ µ we have time O(G(vµ/BD)) due to I/O, overall.

584 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

Thus, overall, the computation time is vτ + O(vµ) and the I/O time is O(G
(vµ/BD)).

Theorem 2. A v processor BSP algorithm A′ with λ supersteps, local memory size µ,
running time β + g · O(N/v) + λL , and message size c · B for some known constant
c ≥ 1, can be simulated as a single processor EM-BSP algorithm A with time vβ +
O(λvµ) + G · O(λ(vµ/BD)) for M ≥ kµ + BD, N = �(v̄2 B), and v = �(D), for an
arbitrary integer 1 ≤ k ≤ v, and v̄ = v/k.

In particular, algorithm A is c-optimal if A′ is c-optimal, β = ω(λµ), and G =
o(βBD/λµ). Furthermore, algorithm A is work-optimal and I/O-efficient if A′ is work-
optimal and communication-efficient, β = �(λµ), and G = O(βBD/λµ).

Proof. We use the results of Lemma 3. The computation time required to simulate the
computation steps ofA′ is vβ. The computational overhead associated with the I/O steps
(Steps (a), (b), (d), (e)) is O(λvµ) + O(λN). Since vµ > N the total computation time
is bounded by vβ + O(λvµ). When c-optimality is required, we therefore need λvµ =
o(vβ), or β = ω(λµ). Note that when µ = �(N/v), we can substitute β = ω(λN/v)

for β = ω(λµ). For work-optimality, we require that λvµ = O(vβ), or β = �(λµ).
The number of I/O operations (Steps (a), (b), (d), (e)) is O(λ(vµ/BD)) + O(λ

(N/D)), which is bounded by O(λ(vµ/BD)). For c-optimality, we require the I/O time
to be in o(vβ), which means that G = o(βBD/λµ). For I/O-efficiency, we require the
I/O time to be in O(vβ), which means that G = O(βBD/λµ).

The messages sent by a group of k virtual processors to any other group must be
large enough in total that they fill a disk block, so N = �(v̄2 B). Also, the messages
sent or received by a group in a single superstep must fill a track of the D parallel disks,
meaning that N = �(v̄BD), where v̄ = v/k. These constraints can be combined into
N = �(v̄2 B), for v = �(D).

2.3. Multiple Processor Target Machine

For the case of p ≥ 1 processors on the EM-BSP machine we simulate a compound
superstep of a BSP algorithm A′ using the algorithm ParCompoundSuperstep, shown
below. Unlike in the case of a single real processor, we are now forced to perform real
communication between the processors of the target machine. Fortunately, provided that
the v virtual processors are evenly divided among the p real processors, and we use
the technique of Lemma 2, such communication is balanced. The simulation need not
introduce a randomizing round of communication for this purpose as is done in [21].

Each real processor i , 0 ≤ i ≤ p − 1, executes algorithm ParCompoundSuperstep
in parallel. For ease of exposition, we assume that pk divides v.

Algorithm: ParCompoundSuperstep
Objective: Simulation of a compound superstep of a v-processor BSP on a p-processor

EM-BSP.
Input: The message and context blocks of the virtual processors are divided among

the real processors and their local disks. Each real processor i , 0 ≤ i ≤ (p − 1),

Bulk Synchronous Parallel Algorithms for the External Memory Model 585

holds O(N/pB) blocks of messages and vµ/pB blocks of context, and each local
disk contains O(N/pBD) blocks of messages and O(vµ/pBD) blocks of context.

Output: The changed contexts and generated messages distributed as required for the
next compound superstep.

1. For j = 0 to v/pk − 1 do
(a) Read the contexts of virtual processors ijk to i(j + 1)k − 1 from the local

disks.
(b) Read any message blocks addressed to virtual processors ijk to i(j +1)k −1

from the local disks.
(c) Simulate the computation supersteps of virtual processors ijk to i(j +1)k−1,

collecting all generated messages in the local internal memory.
(d) Send all generated messages to the required (real) destination processors.

Upon arrival, the messages are arranged within the internal memory of the real
destination processor and then written to its disks as in the single processor
simulation; see algorithm SeqCompoundSuperstep.

(e) Write the contexts for virtual processors ijk to i(j +1)k −1 back to the local
disks; see algorithm SeqCompoundSuperstep.

Lemma 4. A compound superstep of a v-processor BSP algorithmA′ with computation
time τ + L , communication time O(g(N/v)) + L , message size c · B for some known
constant c ≥ 1, and local memory sizeµ can be simulated as v̄/p compound supersteps of
a p-processor EM-BSP algorithmA in parallel computation time (v/p)τ+O((v/p)µ)+
(v̄/p)L , communication time g · O(N/p)+(v̄/p)L , and I/O time G(v/p) · O(µ/BD)+
(v̄/p)L), for pk ≤ v, arbitrary integer 1 ≤ k ≤ v/p, N = �(v̄2 B), v = �(D), and
v̄ = v/k provided M ≥ kµ + BD memory is available on each real processor.

Proof. There are v/p virtual processors resident on each real processor. Each real
processor simulates v/p virtual processors of a round of A′ in a total of v/pk = v̄/p
supersteps, as k virtual processors are simulated on each real processor in each round
of A.

Communication time. In Step (d), in each round of A, each real processor receives

• p real messages, one from each real processor,
• pk · (v/p) virtual messages, one from each of pk virtual processors simulated in

this round, to each of its own v/p resident virtual processors,
• pk · (v/p) · (N/v2) = kN/v data items, since each virtual message is N/v2 items

in size.

It also sends kN/v data in each round ofA. We have v/pk such rounds, so we have (v/pk)·
2k(N/v) = 2(N/p) data to communicate overall. Therefore, the overall communication
time of A is g · O(N/p) + (v/pk)L .

I/O time. The I/O time is determined by the cost of swapping contexts plus the cost
of simulating the original messaging via I/O. Each group of k processors has context
of size O(kµ), which requires O(kµ/BD) I/O operations to swap in or out of memory.
Over v/pk supersteps, the swapping of contexts therefore costs G(v/pk) · O(kµ/BD).

586 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

The I/O costs due to messaging between virtual processors are bounded by O(kN/vBD)

in each superstep, and so the total costs due to virtual messaging over v/pk supersteps is
G(v/pk) · O(kN/vBD). Since the context size µ = �(N/v), the total I/O cost overall
is dominated by G · (v/p)(µ/BD).

Computation time. We have p ≤ v real processors, so the time to simulate Step (c)
is (v/p)τ . Computational overhead is contributed by O((v/pk)(kµ + kN/v)), due to
swapping of contexts (Steps (a), (e)) and messaging I/O (Steps (b), (d)). As before, the
computational overhead is dominated by the cost of swapping contexts.

Lemma 5 (Lower Bound on Number of Rounds). The number of rounds of algorithm
ParCompoundSuperstep per round of the client algorithm is v/pk.

Proof. In order to pass the problem through internal memory even once, each processor
of the real machine “touches” �(N/p) data. This can be done in no fewer than (N/p)/M
rounds, where M is the internal memory size of a real processor. Since we have M =
kN/v, the number of rounds is �(v/pk).

Theorem 3. A v processor BSP algorithm A′ with λ supersteps, computation time
β + λL , communication time gλ(N/v) + λL , local memory size µ, and message size
b = c · B for some known constant c ≥ 1 can be simulated as a p-processor EM-BSP
algorithm A with computation time (v/p)β + (v/p)O(λµ)+ (v̄/p)λL , communication
time gλO(N/p) + (v̄/p)λL , and I/O time Gλ(v/p)O(µ/BD) + (v̄/p)λL for M ≥
kµ + BD, p ≤ v, N = �(v̄2 B), and v = �(D), for arbitrary integer 1 ≤ k ≤ v/p,
and v̄ = v/k.

Let g(N), L(N), and v(N) be increasing functions of N . IfA′ is c-optimal on the BSP
for g ≤ g(N), L ≤ L(N), and v ≤ v(N), then A is a c-optimal EM-BSP algorithm for
β = ω(λµ), g ≤ g(N), G = o(βBD/µλ), and L ≤ L(N) · (p/v̄). A′ is work-optimal,
communication-efficient, and I/O-efficient if A′ is work-optimal and communication-
efficient, β = �(λµ), g ≤ g(N), G = O(βBD/µλ), and L ≤ L(N) · (p/v̄).

Proof. We use the results of Lemma 4. The computation time required to simulate the
computation steps of A′ is (v/pk)kβ. The computational overhead associated with the
I/O and communication steps (Steps (a), (b), (d), (e)) is O((v/p)λµ + (v/pk)λ(N/v))

from Lemma 4. Since µ ≥ N/v, the total computation time is bounded by (v/p)β +
O((v/pk)λµ). When c-optimality is required, we need β = ω(λµ). Note that in many
cases N/v = �(µ). Also, when only work-optimality is required, β = �(λµ) suffices.

From Lemma 4, the communication time of the simulation per superstep of A′ is
O(g(N/p) + (v/pk)L), giving gλ(N/p) + (v/pk)λL time overall.

The I/O time (Steps (a), (b), (d), (e)) is Gλ(v/p) · O(µ/BD) + N/vBD)), which
is bounded by Gλ(v/p)O(µ/BD). For c-optimality, we require the I/O time to be in
o((v/p)β), which means that G = o(βBD/λµ). For I/O-efficiency we need only that
G = O(βBD/λµ). Since the number of supersteps increases by a factor of v/pk we
require that L ≤ L(N) · (pk/v).

Bulk Synchronous Parallel Algorithms for the External Memory Model 587

2.4. General Simulation Result

Theorem 4 states that Theorem 3 holds even if A′ has unknown message size, provided
that, in addition to the constraints of Theorem 3, B ≥ v/2, N ≥ v̄2 B, and v ≥ D.

Theorem 4. A v processor BSP algorithm A′ with λ supersteps, computation time
β +λL , communication time gλ(N/v)+λL , and local memory size µ can be simulated
as a p-processor EM-BSP algorithm A with computation time (v/p)β +(v/p)O(λµ)+
(v̄/p)λL , communication time gλO(N/p) + (v̄/p)λL , and I/O time Gλ(v/p)O(µ/

BD) + (v̄/p)λL for M ≥ kµ + BD, p ≤ v, N = �(v̄2 B), v = �(D), and B ≥ v/2,
for arbitrary integer 1 ≤ k ≤ v/p, and v̄ = v/k.

Let g(N), L(N), and v(N) be increasing functions of N . IfA′ is c-optimal on the BSP
for g ≤ g(N), L ≤ L(N), and v ≤ v(N), then A is a c-optimal EM-BSP algorithm for
β = ω(λµ), g ≤ g(N), G = o(βBD/µλ), and L ≤ L(N) · (p/v̄). A′ is work-optimal,
communication-efficient, and I/O-efficient if A′ is work-optimal and communication-
efficient, β = �(λµ), g ≤ g(N), G = O(βBD/µλ), and L ≤ L(N) · (p/v̄).

Proof. We use algorithm BalancedRouting, which ensures message size b ≤ N/v2,
provided that N ≥ v2b + v(v − 1)/2 (Lemma 2). If b = B, and B ≥ v/2, this condition
is preserved by N ≥ v2 B and v ≥ D which also satisfy Theorem 3.

2.5. Summary

The result of Corollary 1 can be applied to any algorithm which communicates exclu-
sively via h-relations. The concept of an h-relation is relevant primarily with respect
to whether it is an assumption in the analysis of the algorithm in question. Typically, a
good algorithm has been shown to be asymptotically optimal when the communication
volume to and from each processor is bounded by h in each superstep. Using Lemma 1
we can additionally ensure any desired minimum communication block size of b at the
cost of at most doubling the number of communication rounds for problems with suffi-
cient slackness. Here we use the term communication to mean either I/O or conventional
message passing.

The main results of our simulation technique are as follows:

1. Using Theorem 3, BSP algorithms which have both BSP* and CGM properties
can be converted to EM-BSP*/EM-CGM algorithms, provided that b, B are in
�(N/v2), v = �(D).

2. Using Theorem 4, BSP algorithms which have CGM properties can be converted
to EM-BSP*/EM-CGM algorithms, provided that b, B are in �(N/v2), v =
�(D), and B ≥ v/2.

3. Using Corollary 1, CGM algorithms can be converted to BSP* algorithms with
b = O(N/v2).

4. Using Corollary 1, conforming BSP algorithms can be converted to BSP* algo-
rithms with b ≤ hmin/v − (v − 1)/2, where hmin is the minimum value of h used
in any communication superstep.

The term “conforming” in item 4 above refers to the need for the bounding concept
of an h-relation to be a universal assumption in the analysis of the original BSP algorithm

588 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

for each of its communication rounds. It is convenient, but not necessary, that the same
value of h be used in every round.

3. New EM Algorithms

A number of basic algorithms with applications in data structuring, computational ge-
ometry, and graph theory have been developed for BSP models by various authors. In
this section we present adaptations of a selection of these algorithms for the EM-BSP
models.

In many cases the I/O complexities of these EM-BSP algorithms appear at first
glance to contradict known lower bounds for their problems. In Section 3.2, we explain
this contradiction by discussing the effect of our constraints on the lower bounds.

In Section 3.3 we present simple BSP algorithms for the fundamental problems of
sorting, permutation, and matrix transpose, and describe their adaptations to our EM-
BSP models. In Tables 1 and 2 we summarize the performance of these and a number of
other new EM-BSP algorithms which we obtained from known BSP algorithms using
the simulation techniques of this paper.

3.1. Practicality of Our Parameter Bounds

The parameter space for EM problems which we propose in this paper is both practical
and interesting. The logarithmic term in the I/O complexity of sorting is bounded by
a constant c if (M/B)c ≥ N/B, where M = N/v. Since this constraint involves the
parameters v, B, N , and c, we have a four-dimensional constraint space. For practical
purposes, the parameter B can be fixed at about 103 for disk I/O (see Figure 5) [43]. This
reduces the parameter space to three dimensions. We plot the surface N c−1 = vc Bc−1 in
Figure 6. Any point on or above the surface represents a valid set of parameters for the
elimination of the logarithmic factor. It can be seen from Figure 6 that the logarithmic

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
(s

ec
.)

Block Size (bytes)

Stevens’ Data

Fig. 5. Stevens’ measurements on the effects of varying the block-size.

Bulk Synchronous Parallel Algorithms for the External Memory Model 589

1.2
1.4

1.6
1.8

2
2.2

2.4
2.6

2.8
3

c

0

2000

4000

6000

8000

10000

Processors v

10

20

30

40

log N

Constraint Surface for fixed B=1024

Fig. 6. The surface N c−1 = vc Bc−1.

factor can be replaced by a constant c = 2 for as many as v = 10,000 processors,
provided that the problem size is approximately 100 giga-items or more. For a larger
constant, say c = 3, the problem size need only be 1 giga-item for v = 10,000. It can also
be seen from Figure 6 that for a smaller numbers of processors the necessary problem
size for c = 2 is much smaller. This can be seen more clearly in Figure 7 which represents
the same data as Figure 6, but for fixed c = 2. For 100 processors or less, for instance, we
see from Figure 7 that any problem size greater than about 10 mega-items is sufficient.

3

4

5

6

7

0 20 40 60 80 100
v

Constraint Curve for B=1024, c=2

Fig. 7. Two-dimensional projection of Figure 6 for fixed c = 2, clipped to v ≤ 100. The vertical axis is
log10 N .

590 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

3.2. Apparent Reductions in I/O Complexity

Several known lower bounds on I/O complexity contain a multiplicative factor of
logM/B(N/B). We obtain a number of results where this factor does not appear. This
can be explained by the fact that the term logM/B(N/B) is a constant when N ≥ v1+εb,
for 0 < ε ≤ 1, as shown by Lemma 6.

For instance, Lemma 6, together with Aggarwal and Vitter’s lower bound of �((N/

BD) logM/B(N/B)) I/Os for sorting [2], [47], implies lower bounds of �(N/pBD)

I/O operations for a number of problems such as sorting, general permutation, matrix
transpose, computing FFTs, etc., when the slackness constraint N ≥ v1+εb is satisfied.

Lemma 6. For N ≥v1+εb, where ε is a constant, 0<ε≤1, the value of logM/B(N/B)

is a constant whose value depends on ε, but not on N .

Proof. For constant 0 < ε ≤ 1,

N ≥ v1+εb (2)

�⇒ N (ε+1)/ε−1 ≥ v(ε+1)/εb(ε+1)/ε−1. (3)

Now, choosing c = (ε + 1)/ε ≥ 2, (3) becomes

N c−1 ≥ vcbc−1. (4)

Substituting v = N/M and b = B into (4) gives

(
M

B

)c

≥ N

B

�⇒ logM/B
N

B
≤ c.

We can conclude that logM/B(N/B) is a constant whose value depends on ε, but not
on N when N ≥ v1+εb.

So for constant ε, where 0 < ε ≤ 1, the logarithmic term is a constant of size at
most (ε + 1)/ε when N ≥ v1+εb.

3.3. Basic Applications

We first present new EM-BSP algorithms, obtained from BSP algorithms via Lemma 2
and Theorem 3, for the fundamental problems of sorting, permutation, and matrix trans-
pose. In each case the BSP algorithm uses λ = O(1) communication rounds, and
O(N/v) internal memory per processor. Since our simulation techniques require that
N ≥ v1+εb, the I/O complexities of the resulting parallel, EM algorithms do not exhibit
the logarithmic factor known to be present in the general case for these problems. Ta-
ble 1 summarizes the performance of our EM sorting, permutation, and matrix transpose
algorithms.

Bulk Synchronous Parallel Algorithms for the External Memory Model 591

3.4. Sorting

The time complexity of sorting N items is �(N lg N) for a comparison-based model of
computation. On the PDM, sorting has been shown to have I/O complexity O((N/BD)

logM/B(N/B)) for general values of N , M , D, and B [2], [47].
Goodrich [29] has described a deterministic v processor BSP algorithm for sorting

which has a constant number of supersteps for N ≥ v1+ε, ε > 0 a fixed constant. We
can achieve I/O complexity κ = O(N/pBD) by simulating this algorithm using the
techniques of this paper for p ≤ v, N ≥ v2 B, and v = �(D).

Alternatively, we can simulate the BSP algorithm SampleSort, due to Shi and
Schaeffer [41]. This algorithm has the following features [41]:

1. It is asymptotically optimal in computation time for N ≥ v3.
2. The load balancing between processors is nearly perfect in practice, and within

a factor of two in theory.
3. It causes little memory and network contention.

We use it as a basis for a parallel, EM sort.

Algorithm: SampleSort
Input: The N items to be sorted are distributed evenly among the internal memories of

the v processors of a BSP machine. Each processor has a unique label between 0 and
v − 1.

1. The v processors each sort the N/v items in their local internal memories.
2. Each processor chooses v equally spaced samples from the items in its possession.
3. The processors each send the v samples to processor 0.
4. Processor 0 sorts the v2 samples and chooses from them v equally spaced splitter

elements.
5. Processor 0 sends the v splitters to each of the other processors.
6. Each processor divides its local elements into v buckets determined by the splitter

elements.
7. Each processor sends the contents of bucket i to processor i for all 0 ≤ i < v.
8. Each processor merges the v sets of items now in its possession to produce the

final sorted order.

Lemmas 7 and 8 give the performance of algorithm SampleSort and its external
memory version algorithm EM-SampleSort, respectively, analyzed under the EM-BSP
model.

Lemma 7. BSP algorithm SampleSort uses O((N/v) log(N/v)+L) computation time,
O(g · (N/v)+ L) communication time, O(N/v) local memory per processor, and O(1)

communication supersteps, provided that N/v ≥ v2.

Lemma 8. Let k = O(N/p). BSP algorithm SampleSort on v processors can be simu-
lated on a p processor EM-BSP machine in O((N log(N/v))/p+(v̄/p)L) computation
time, O(g · (N/p)+ (v̄/p)L) communication time, and O(G · (N/pBD)+ (v̄/p)L) I/O
time, for v̄ = v/k, provided that p ≤ v, N ≥ v2 B, D ≤ B, and B ≥ v/2.

592 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

Since algorithm Samplesort requires N/v ≥ v2, we obtain I/O complexity of κ =
O(N/pBD) for algorithm EM-SampleSort for N ≥ v2 B, v ≥ D, and B ≥ v.

3.5. Permutation

Permutation of N items on a RAM has time complexity �(N). On the PDM, this
problem has I/O complexity �(min(N/D, (N/BD) logM/B (N/B)) (see [2] and [47]).
However, we can achieve I/O complexity κ = O(N/pBD) by simulating algorithm
AlgorithmPermute, for p ≤ v, N ≥ v2 B, and D ≤ B. For ease of exposition, we
assume that v divides N .

Algorithm: AlgorithmPermute
V is an N element vector containing items to be permuted. P is a corresponding N
element vector containing new indices for each element of V .

Input: Each processor i , 0 ≤ i ≤ (v − 1), holds an N/v element vector Vi , containing
elements i ·(N/v) to (i +1)·(N/v)−1 ofV , and an N/v element vectorPi , containing

elements i · (N/v) to (i + 1) · (N/v) − 1 of P .
Output: Each processor i contains items i · (N/v) to (i + 1) · (N/v)− 1 of the permuted
vector V ′.

1. Each processor i , 0 ≤ i ≤ (v−1), sends the items ofVi to the processors holding
the items indicated by Pi .

2. Each processor performs the necessary rearrangements in its local memory to
complete the calculation of P .

Algorithm AlgorithmPermute performs the indicated permutation in a single communi-
cation round consisting of an (N/v)-relation. The internal computation time is O(N/v),
and the memory used is O(N/v) per processor.

3.6. Matrix Transpose

Transposing an n × m matrix, where N = n × m, takes �(N) time on a RAM. On the
PDM, this problem has I/O complexity �((N/BD)(log min(M, n, m, N/B)/ log(M/

B))) [2], [47]. However, we can achieve I/O complexity κ = O(N/pBD) by simulating
algorithm AlgorithmTranspose, below, for p ≤ v, N ≥ v2 B, and D ≤ B. For ease of
exposition, we assume that v divides N .

Algorithm: AlgorithmTranspose
Let M be an n × m matrix, and let aij be the element of M in row i and column j .
Let M0 be a one-dimensional array containing the elements of M row by row, i.e.,
a11, a12, . . . , a1m, a21, a22, . . . , anm. Let M′ be the transpose of M, and let a′

j i be the
element of M′ in row j and column i . Let M′

0 be a one-dimensional array containing
the elements of M′ row by row, i.e., a′

11, a′
12, . . . , a′

1m, a′
21, a′

22, . . . , a′
nm.

Input: Processor i , 0 ≤ i ≤ (v −1), holds items i(N/v) to (i +1)(N/v)−1 of M0.
Output: Processor i holds items i(N/v) to (i + 1)(N/v) − 1 of M′

0.

Bulk Synchronous Parallel Algorithms for the External Memory Model 593

1. Each processor determines the destination processor for each of its items and
sends them in a single superstep to their destination.

2. Each processor inserts the received items into the appropriate positions in its
memory.

Algorithm AlgorithmTranspose transposes the matrixM in a single communication
round consisting of an (N/v)-relation. The internal computation time is O(N/v), and
the memory used is O(N/v) per processor.

3.7. Summary

Table 2 lists a number of other important problems arising in computational geometry,
GIS, and graph algorithms, for which we report EM-BSP algorithms created by our
technique, together with their I/O complexity and that of the previously best known
algorithm for the problem. In Group B we report the same I/O complexities as pre-
viously known, after accounting for our parameter restrictions. The I/O complexities
we report in Group C are not as competitive with previous results. In each case, how-
ever, our algorithm is scalable not only in terms of the number of disks per processor
but also in terms of the number of processors used. Previous algorithms were often
not efficient in a multiprocessor environment (particularly in a distributed memory en-
vironment), and in many cases it is not clear how they could be adapted to parallel
disks.

The problems listed in Table 2 are stated briefly below. Please consult [16] and
[28] for applications and more complete definitions of these problems and for related
previous results on RAM and PRAM computation models.

1. Given a simple polygon S, the triangulation problem is to partition the interior
of S into a set of triangles by joining vertices of S with non-overlapping straight line
segments.

2. Let S be a set of line segments in the plane. The trapezoidation problem is to
decompose the plane into a set of trapezoids, based on the arrangement of the line
segments.

3. A segment tree is a data structure used to organize a set of line segments and
support various kinds of queries against the set.

4. Let S be a set of n non-intersecting line segments in the plane, and let Q be a set of
m query points. The next element search problem is to find, for each query point qi ∈ Q,
the line segment directly above qi . The endpoint dominance problem is a special case of
the next element search problem, where the query set is composed of the endpoints of
the line segments themselves.

5. Let G be an embedding of a graph in the plane. The batched planar point location
problem is to find, for each of a set of N query points qi , 1 ≤ i ≤ N , the face of G which
contains qi .

6. Given a set S of points in two-dimensional (three-dimensional) space, the 2D
(3D) convex hull problem is to find the convex polygon (polytope) which contains all
points in S and whose vertices are points in S.

7. Given a set S = {s1, . . . , sN } of N points in two-dimensional space, the 2D
Voronoi diagram problem is to find a partition of the plane into N regions R1, . . . , RN ,

594 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

such that for each i , 1 ≤ i ≤ N , region Ri contains a single point si of S, and all the
other points in Ri are closer to si than to any other point of S.

8. Given a set S of N points in two-dimensional space, the Delaunay triangulation
problem is to find a triangulation of the points in S such that for each such triangle, the
circle incribed through its vertices does not contain any other point of S.

9. Given a set S of n non-intersecting line segments in the plane, the lower enve-
lope problem consists of computing the set of segment portions visible from the point
(0, −∞).

10. The generalized lower envelope problem is similar to 9 above, except that seg-
ments in S may intersect.

11. Given a set R of isothetic rectangles, the measure problem is to compute the
area covered by the union of R.

12. Consider a set S of n points in 3-space. For a pointv let x(v), y(v), and z(v)denote
the x-coordinate, y-coordinate, and z-coordinate, respectively, of v. Point v dominates a
point w iff x(v) > x(w), y(v) > y(w), and z(v) > z(w). A point is maximal in S if it is
not dominated by any other point of S. The 3D-maxima problem consists of determining
the set of all maximal points in S.

13. Given a set S of n points in the Euclidean plane, the all nearest neighbors
problem is to determine for each point v ∈ S its nearest neighbor NNS(v) in S, where
NNS(v) is a point w ∈ S\{v} such that dist(v, w) ≤ dist(v, u), ∀u ∈ S\{v}.

14. Let S be a set of n points in the plane with some weight w(v) assigned to each
v ∈ S. The 2D-weighted dominance counting problem consists of determining for each
v ∈ S, the total weight of all points which are dominated by v.

15. Let S be a set of r pairwise disjoint m-vertex polygons. The unidirectional sep-
arability problem consists of determining all directions d such that S is separable by a
sequence of r translations in direction d, one for each polygon. The multidirectional sep-
arability problem consists of determining if S is separable by a sequence of r translations
in different directions.

16. Given a linked list � of N objects, the list ranking problem is to compute, for
each object in �, its distance from the beginning of the list.

17. Given a connected graph G = (V, E), the Euler tour problem is to find a cycle
that traverses each edge of G exactly once.

18. Given a rooted tree G = (V, E), and a pair of vertices (u, v) of G, the lowest
common ancestor problem is to find the vertex w of G that is an ancestor to both u and
v and is farthest from the root.

19. The tree contraction technique is a method for constructing parallel algorithms
on trees, working from the bottom up [40].

20. The expression tree evaluation problem is to evaluate the result of an arithmetic
expression represented as an expression tree.

21. Given an undirected graph G = (V, E), a connected subset of vertices is a subset
of vertices in which there is a path in G between each pair of vertices. The connected
components problem is to find the maximal connected subsets of vertices in G.

22. Given a planar graph G = (V, E), the spanning forest problem is to form a
spanning tree for each connected component of G.

23. Given a connected undirected graph G = (V, E), the ear decomposition problem
[12] is to find an ordered partition of E into r simple paths P1, . . . , Pr such that P1 is

Bulk Synchronous Parallel Algorithms for the External Memory Model 595

a cycle, and for each i , 2 ≤ i ≤ r , Pi is a simple path whose endpoints belong to
P1 ∪ · · · ∪ Pi−1, but with none of its internal vertices belonging to Pj , for j < i . The
open ear decomposition problem is similar, but none of the Pi , for i > 1, is a cycle.

24. Given a connected undirected graph G = (V, E), the bi-connected components
problem is to find the maximal connected subsets of vertices of G which remain connected
when any single edge is deleted.

References

[1] A. Aggarwal and G. Plaxton. Optimal parallel sorting in multi-level storage. In Proc. ACM–SIAM Symp.
on Discrete Algorithms, pages 659–668, 1994.

[2] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Communi-
cations of the ACM, 31(9):1116–1127, 1988.

[3] L. Arge. The buffer tree: a new technique for optimal I/O-algorithms. In Proc. Workshop on Algorithms
and Data Structures, pages 334–345. LNCS 955. Springer-Verlag, Berlin, 1995. A complete version
appears as BRICS Technical Report RS-96-28, University of Aarhus.

[4] L. Arge. The I/O-complexity of ordered binary-decision diagram manipulation. In Proc. Internat. Symp.
on Algorithms and Computation, pages 82–91. LNCS 1004. Springer-Verlag, Berlin, 1995. A complete
version appears as BRICS Technical Report RS-96-29, University of Aarhus.

[5] L. Arge. Efficient External-Memory Data Structures and Applications. Ph.D. thesis, University of
Aarhus, February/August 1996.

[6] L. Arge, M. Knudsen, and K. Larsen. A general lower bound on the I/O-complexity of comparison-
based algorithms. In Proc. Workshop on Algorithms and Data Structures, pages 83–94. LNCS 709.
Springer-Verlag, Berlin, 1993.

[7] L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory algorithms for processing line segments
in geographic information systems. In Proc. Annual European Symposium on Algorithms, pages 295–
310. LNCS 979. Springer-Verlag, Berlin, 1995. A complete version (to appear in special issue of
Algorithmica) appears as BRICS Technical Report RS-96-12, University of Aarhus.

[8] M. Atallah and J.-J. Tsay. On the parallel decomposability of geometric problems. Algorithmica, 8:209–
231, 1992.

[9] D. Bader, D. Helman, and J. Jájá. Practical parallel algorithms for personalized communication
and integer sorting. Journal of Experimental Algorithmics, 1, 1996. http://www.jea.acm.org/1996/
BaderPersonalized/.

[10] A. Bäumker, W. Dittrich, and F. Meyer auf der Heide. Truly efficient parallel algorithms: c-optimal
multisearch for an extension of the BSP model. In Proc. Annual European Symposium on Algorithms,
pages 17–30, 1995.

[11] E. Cáceres, F. Dehne, A. Ferreira, P. Flocchini, I. Reiping, N. Santoro, and S. W. Song. Efficient
parallel graph algorithms for coarse grained multicomputers and BSP. In Proc. Internat. Colloquium on
Algorithms, Languages and Programming, pages 390–400. LNCS 1256. Springer-Verlag, Berlin, 1997.

[12] A. Chan, F. Dehne, and A. Rau-Chaplin. Coarse grained parallel next element search. In Proc. Internat.
Parallel Processing Symp., pages 320–325, 1997.

[13] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter. External-memory
graph algorithms. In Proc. ACM–SIAM Symp. on Discrete Algorithms, pages 139–149, 1995.

[14] T. H. Cormen. Personal communication, 1997.
[15] T. H. Cormen and M. T. Goodrich. Position statement, ACM Workshop on Strategic Directions in Com-

puting Research: working group on storage I/O for large-scale computing. ACM Computing Surveys,
28A(4), December 1996.

[16] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge,
MA, 1990.

[17] T. H. Cormen, T. Sundquist, and L. F. Wisniewski. Asymptotically tight bounds for performing BMMC
permutations on parallel disk systems. Technical Report PCS-TR94-223, Dept. of Computer Science,
Dartmouth College, July 1994. SIAM Journal on Computing, 28(1):105–136, 1998.

596 F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari

[18] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized external memory al-
gorithms for geometric problems. In Proc. ACM Annual Conf. on Computational Geometry, pages
259–268, 1998.

[19] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. Erik Schauser, R. Subramonian,
and T. von Eicken. Logp: a practical model of parallel computation. Communications of the ACM,
39(11):260–270, November 1996.

[20] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar. A randomized parallel 3d convex hull algo-
rithm for coarse grained multicomputers. In Proc. ACM Symp. on Parallel Algorithms and Architectures,
pages 27–33, 1995.

[21] F. Dehne, W. Dittrich, and D. Hutchinson. Efficient external memory algorithms by simulating coarse-
grained parallel algorithms. In Proc. ACM Symp. on Parallel Algorithms and Architectures, pages
106–115, 1997.

[22] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational geometry for coarse grained
multicomputers. International Journal on Computational Geometry, 6:379–400, 1996.

[23] W. Dittrich, D. Hutchinson, and A. Maheshwari. Blocking in parallel multisearch problems. Theory of
Computing Systems, 34:145–189, 2001.

[24] R. W. Floyd. Permuting information in idealized two-level storage. In Complexity of Computer Calcu-
lations, pages 105–109 (R. Miller and J. Thatcher, Eds.). Plenum, New York, 1972.

[25] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. ACM Symp. on Theory of
Computation, pages 114–118, 1978.

[26] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algorithms. Journal of Parallel
and Distributed Computing, 22:251–267, 1994.

[27] G. A. Gibson, J. S. Vitter, and J. Wilkes. Strategic directions in storage I/O issues in large-scale
computing. ACM Computing Surveys, 28(4):779–793, December 1996.

[28] J. E. Goodman and J. O’Rurke (editors). Handbook of Discrete and Computational Geometry. CRC
Press, Boca Raton, FL, 1997.

[29] M. T. Goodrich. Communication efficient parallel sorting. In Proc. ACM Symp. on Theory of Compu-
tation, pages 247–256, 1996.

[30] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational geometry.
In Proc. IEEE Symp. on Foundations of Computer Science, pages 714–723, 1993.

[31] D. A. Hutchinson, A. Maheshwari, and N. Zeh. An external memory data structure for shortest path
queries. In Proc. 5th Annual Combinatorics and Computing Conf. (COCOON ’99), pages 51–60. LNCS
1627. Springer-Verlag, Berlin, 1999.

[32] J. Jájá. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.
[33] V. Kumar and E. Schwabe. Improved algorithms and data structures for solving graph problems in

external memory. In Proc. IEEE Symp. on Parallel and Distributed Processing, 1996.
[34] F. T. Leighton. An Introduction to Parallel Algorithms and Architectures. Morgan Kaufman, San Mateo,

CA, 1992.
[35] Z. Li, P. H. Mills, and J. H. Reif. Models and resource metrics for parallel and distributed computation.

Parallel Algorithms and Applications, 8:35–59, 1996.
[36] K. Munagala and A. Ranade. I/O complexity of graph algorithms. Proc. ACM–SIAM Symp. on Discrete

Algorithms, pages 687–694, 1999.
[37] M. H. Nodine and J. S. Vitter. Deterministic distribution sort in shared and distributed memory

multiprocessors. In Proc. ACM Symp. on Parallel Algorithms and Architectures, pages 120–129,
1993.

[38] M. H. Nodine and J. S. Vitter. Paradigms for optimal sorting with multiple disks. In Proc. 26th Hawaii
Internat. Conf. on Systems Sciences, 1993.

[39] M. H. Nodine and J. S. Vitter. Greed sort: optimal deterministic sorting on parallel disks. Journal of the
ACM, 42(4):919–933, 1995.

[40] J. H. Reif (editor). Synthesis of Parallel Algorithms. Morgan Kaufman, San Mateo, CA, 1993.
[41] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of Parallel and Distributed

Computing, 14:361–372, 1992.
[42] J. F. Sibeyn and M. Kaufmann. BSP-like external-memory computation. In Proc. 3rd Italian Conf. on

Algorithms and Complexity, pages 229–240. LNCS 1203. Springer-Verlag, Berlin, 1997.

Bulk Synchronous Parallel Algorithms for the External Memory Model 597

[43] R. W. Stevens. Advanced Programming in the Unix Environment. Addison-Wesley, Don Mills, Ont.,
1995.

[44] J. D. Ullman and M. Yannakakis. The input/output complexity of transitive closure. Annals of Mathe-
matics and Artificial Intellegence, 3:331–360, 1991.

[45] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–111,
August 1990.

[46] M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer (editors). Algorithmic Foundations of Geo-
graphic Information Systems. LNCS 1340. Springer-Verlag, Berlin, 1997.

[47] J. S. Vitter. External memory algorithms. Proc. ACM Symp. Principles of Database Systems, pages
119–128, 1998.

[48] J. S. Vitter. Personal communication, 1998.
[49] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I: Two-level memories. Algorithmica,

12(2–3):110–147, 1994.
[50] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, II: Hierarchical multilevel memories.

Algorithmica, 12(2–3):148–169, 1994.

Received October 17, 2000. Online publication September 9, 2002.

