
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 67 (2003) 691–706

Solving large FPT problems on coarse-grained
parallel machines$

James Cheetham,a Frank Dehne,b,� Andrew Rau-Chaplin,c Ulrike Stege,d and
Peter J. Taillonb

a Institute of Biochemistry, Carleton University, Ottawa, Canada K1S 5B6
bSchool of Computer Science, Carleton University, Ottawa, Canada K1S 5B6
cFaculty of Computer Science, Dalhousie University, Halifax, Canada B3J 2X4

dDepartment of Computer Science, University of Victoria, Victoria, Canada V8W 3P6

Received 30 September 2001; revised 16 April 2002

Abstract

Fixed-parameter tractability (FPT) techniques have recently been successful in solving NP-complete
problem instances of practical importance which were too large to be solved with previous methods. In this
paper, we show how to enhance this approach through the addition of parallelism, thereby allowing even
larger problem instances to be solved in practice. More precisely, we demonstrate the potential of
parallelism when applied to the bounded-tree search phase of FPT algorithms. We apply our methodology
to the k-Vertex Cover problem which has important applications in, for example, the analysis of multiple
sequence alignments for computational biochemistry. We have implemented our parallel FPT method for
the k-Vertex Cover problem using C and the MPI communication library, and tested it on a 32-node
Beowulf cluster. This is the first experimental examination of parallel FPT techniques. As part of our
experiments, we solved larger instances of k-Vertex Cover than in any previously reported
implementations. For example, our code can solve problem instances with kX400 in less than 1:5 h:
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

NP-complete problems abound in many important application areas ranging from computa-
tional biology to network planning. For scientists and engineers with computational problems,
merely learning that their problems are NP-complete does not satisfy their need to solve these
problems for the ‘‘real world’’ problem instances at hand. Fixed-parameter tractability (FPT) is a
new technique for confronting the obstacle of NP-completeness [11–16]. FPT algorithms have
been successful in solving NP-complete problem instances of practical importance which were too
large to be solved with previous methods [11]. Most FPT algorithms consist of two phases:
kernelization where the problem is reduced to a much smaller instance and bounded-tree search
where the problem is solved on the smaller instance through the traversal of a search tree. The
Computational Biochemistry Research Group at the ETH Zuerich has successfully incorporated
the FPT approach for Vertex Cover problems arising in multiple sequence alignments for
computational biochemistry research [19,23,25]. In this paper, we further increase the size of
problems that can be solved via FPT methods by showing how the FPT approach can be
effectively parallelized. We have implemented a parallel FPT method for the k-Vertex Cover
problem using C and the MPI communication library, and tested it on a 32-node Beowulf cluster
[2]. This is the first experimental examination of parallel FPT techniques. When tested on
sequence data obtained from the National Center for Biotechnology Information (NCBI), our
parallel FPT method showed good relative speedup. To explore general graph classes and known
hard problem instances, we also tested our parallel FPT method on random graphs and grid
graphs, respectively, where we observed good relative speedup as well.
For scientists and engineers who have NP-complete problems to solve, the real test for any new

method is how large a ‘‘real world’’ problem it can solve. In [16], the authors consider the k-
Vertex Cover problem solvable for kp200: Our parallel code is able to solve much larger ‘‘real
world’’ instances of the k-Vertex Cover problem. For example, we extracted 730 sequences of
the src-homology domain 2 (SH2) from the NCBI database and computed the input graph for the
k-Vertex Cover problem using ClustalW [26], which has a minimum vertex cover of k ¼ 461:
Our parallel FPT method, executed on 27 processors of our Beowulf cluster, found this minimum
vertex cover in 72:45 min: Note that, the time of the sequential FPT algorithm for the k-Vertex
Cover problem grows exponentially in k: Therefore, the increase of the solvable problem size
from kp200 to kX400 is significant.
This paper presents a general methodology for parallelizing the bounded-tree search phase of

FPT algorithms. For ease of presentation, we introduce our tree search parallelization method by
describing immediately its application to the k-Vertex Cover problem. The generalization to
parallel tree search for other FPT algorithms is straight-forward. Our parallel FPT method is
designed for the coarse-grained multicomputer (CGM) [8,9] and bulk-synchronous parallel (BSP)
[27] machine models. A CGM simply consists of p processors, P0;P1;y;Pp�1; connected via any
communication network or shared memory. Each processor has OðN=pÞ local memory where N

refers to the total problem size. Consult [8,9,27] for more details.
Compared to previous results on parallel FPT algorithms [3,5], which apply to the theoretical

PRAM model only, our methods are portable and can be run efficiently on most commercially
available parallel machines, including shared memory machines, CC-NUMA, Beowulf clusters
and networks of workstations. Furthermore, the methods in [3,5] parallelize only the kernelization
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phase and leave the tree search unchanged. However, typical FPT implementations often spend
minutes on the kernelization and hours or days on the tree search. Hence, it is important to
parallelize both phases. The main contribution of this paper is to provide an efficient
implementation of parallel bounded-tree search.
The remainder of this paper is organized as follows. Section 2 reviews the definition of fixed

parameter tractability and previous results on the k-Vertex Cover problem. In Section 3, we
present our main result, a coarse-grained parallel FPT algorithm for the k-Vertex Cover
problem. Section 4 presents the experimental performance analysis of our method and Section
5 concludes the paper.

2. Review: fixed-parameter tractability and the k-Vertex Cover problem

Fixed-parameter tractability (FPT) has been proposed in [11–16] as a means of confronting the
obstacle of NP-completeness. Let S be a finite alphabet and let L be a parameterized problem such
that LDS� � S�: Problem L is fixed-parameter tractable, or FPT, if there exists an algorithm that
decides, given an input ðx; yÞAS� � S�; whether ðx; yÞAL; in time f ðkÞ þ na; where jxj ¼ n;
jyj ¼ k is a parameter, a is a constant independent of n and k; and f is an arbitrary function.
The goal is to isolate, in the parameter k; the component of the input that causes the exponential
time. The two fundamental algorithmic techniques for solving FPT problems are kernelization
and bounded-tree search [15]. As a two phase approach, kernelization and bounded-tree search
form the basis of many FPT algorithms. The first phase, kernelization, reduces the problem, in
polynomial time, to another problem instance bounded in size by a function of k: It was shown in
[16] that a problem is in FPT if and only if it is kernelizable. The second phase, bounded-tree
search, then attempts to solve the latter problem by exhaustive search, typically requiring time
exponential in k:
Although nearly half the NP-complete problems in [18] have been shown to be FPT [16], not all

problems admit a parametric solution. For example, the best algorithm to solve the Dominating

Set problem is exponential in n and k: For parameterized complexity, the analog of NP-hardness
is hardness for W ½1
; see [13]. Dominating Set is hard for W ½1
 and is therefore unlikely to be
fixed-parameter tractable.
The k-Vertex Cover problem has important applications in multiple sequence alignments for

computational biochemistry [25]. The Vertex Cover problem is defined as follows [18]: given a
graph, G ¼ ðV ;EÞ; determine a set, VCDV ; containing a minimum number of vertices such that
for all ðx; yÞAE; either xAVC or yAVC: The k-Vertex Cover problem consists of finding a
Vertex Cover of size k: In multiple alignments between gene sequences, whenever there are
conflicts between sequences, a way to resolve these conflicts is to exclude some sequences from the
sample. Define a conflict graph as a graph where every sequence is a vertex and every edge is a
conflict between two sequences. A conflict may be defined when the alignment of these two
sequences has a score below a given threshold. The goal is to remove the fewest possible sequences
that will eliminate all conflicts, which is equivalent to finding a minimum Vertex Cover for the
conflict graph. Consult Section 4.2 for more details.
The Vertex Cover problem is known to be NP-complete, but in the context of parameterized

complexity the problem is fixed-parameter tractable [11–15]. Consider the following k-Vertex
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Cover kernelization algorithm by Buss and Goldsmith [4]: given a graph G ¼ ðV ;EÞ and a
parameter k; find the set S consisting of all vertices v such that degðvÞ4k: Let jSj ¼ b: If b4k then
we conclude there can be no k-sized vertex cover in G: Otherwise, include S in the vertex cover,
remove all the elements of S from V (and all their incident edges from E). Let k0 ¼ k � b: If the
resulting graph, G0; has more than k � k0 edges, then we can conclude that no k-sized cover is
possible. Otherwise, the graph G0; which is called kernelized, has a vertex set V 0 bounded in size

by Oðk2Þ:
The next phase, bounded-tree search [15], is based on an exhaustive combinatorial search. The

search tree is a rooted tree and bounded in size by a function f ðkÞ: The nodes of the search tree are
labeled by k-solution candidate sets. Consider the following k-Vertex Cover algorithm by
Fellows [1,17]: observe that, given a graph G ¼ ðV ;EÞ; for each vAV and each vertex cover VC of
G; either vAVC or NðvÞDVC:1 Thus, given an instance /G; kS for the k-Vertex Cover problem,
the original input graph G has a k-vertex cover if /G � v; k � 1S or /G � NðvÞ; k � jNðvÞjS has
a solution. Since the parameter k reduces in each such step by at least one, we can decide in time

Oð2kjV jÞ whether G has a vertex cover of size k:

The first Vertex Cover algorithm is due to Buss and has an Oðkn þ 2kk2kþ2Þ time complexity
[4]. Improvements have been presented in [1,13,20,21,24,25]. Recent results in [7,11] present

solutions with times complexity Oðkn þ rkk2Þ for rE1:3: These algorithms exhibit trade-offs
between small differences in r and leading constants.

3. Coarse-grained parallel kernelization and bounded-tree search for the k-Vertex Cover problem

Most sequential FPT algorithms consist of two phases, kernelization and bounded-tree search
[15]. The main result of this paper is an efficient parallelization of both of these phases. In this
section, we describe our general methodology using the example of the well-known k-Vertex
Cover problem. For a list of other FPT problems that can be solved via kernelization and
bounded-tree search see [15].
We present a coarse-grained parallel k-Vertex Cover algorithm which parallelizes aspects of

the two sequential FPT algorithms described in [1]. The first algorithm in [1] combines Buss’
kernelization technique with a three-level, depth-first search strategy that produces a 3-ary search
tree (referred to as Theorem 1 in [1]). The second algorithm in [1] combines Buss’ kernelization
technique with case-based reduction rule application to determine a k-Vertex Cover (referred to
as Theorem 2 in [1]).
We now present a brief overview of our parallel k-Vertex Cover algorithm, with details to

follow in Sections 3.1 and 3.2.
All processors, Pi; 0pipp � 1; together perform parallel kernelization on the problem instance

/G ¼ ðV ;EÞ; kS; and the resulting instance /G0; k0S is then broadcast to all processors. Let
VCkern be the set of vertices determined by the kernelization phase to be in the vertex cover set,
VC: Each processor, Pi; 0pipp � 1; locally and deterministically executes the search tree phase
of the Theorem 1 algorithm on its instance of /G0; k0S as follows: Pi selects exactly the branching
nodes that lead it to leaf i at depth log3 p of the search tree. This approach is similar to
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search-frontier splitting, as each processor now has a unique problem instance, /G00
i ; k00

i S: Each
processor, Pi; 0pipp � 1; then locally performs a fully random depth-first search of the subtree
rooted at leaf i; starting with instance /G00

i ; k00
i S (see Fig. 1). When a processor finds a solution, it

outputs the set VCkern

S
VCi and signals all other processors to terminate.

In the following two sections, we describe in detail our parallelization of the kernelization and
the tree search, respectively.

3.1. Parallel kernelization

The parallelization of the kernelization phase is straight-forward. For a graph G ¼ ðV ;EÞ and
parameter k; Buss’ kernelization algorithm consists of the following steps: find the set S consisting
of all vertices v such that degðvÞ4k: Let jSj ¼ b: If b4k then we conclude that there can be no
k-sized vertex cover in G: Otherwise, include S in the vertex cover, remove all the elements of S
from V :2 Let k0 ¼ k � b: If the resulting graph, G0; has more than k � k0 edges, then we can
conclude that no k-sized cover is possible. Otherwise, /G0; k0S is a kernelized instance of /G; kS:
In the parallel setting, this operation reduces to Oð1Þ parallel integer sorts where edges are

sorted by vertex id in order to identify the vertices with degðvÞ4k: This sort can be implemented
via deterministic sample sort [6]. Note that other kernelization rules can be applied as described in
[1,16]. These rules are also easily reduced to Oð1Þ parallel integer sorts.

Algorithm 1. Parallel kernelization
Input: /G ¼ ðV ;EÞ; kS:
Output: /G0; k0S or ‘‘No’’.

ARTICLE IN PRESS

p-1

Theorem 1

i
0 1

Theorem 2

log3 p

k /

<G, k >
/ /

Fig. 1. Search path for processor Pi in Algorithm 2, using Theorem 1 and Theorem 2 of [1].

2For the remainder, we assume that whenever a vertex v is removed from a graph, all edges adjacent to v are removed

as well.
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(1.1) Simulate Buss’ kernelization algorithm on G ¼ ðV ;EÞ via Oð1Þ parallel integer sorts, using
deterministic integer sample sort [6].

(1.2) Output either a kernelized graph /G0 ¼ ðV 0;E0Þ; k0S; or VCðpkÞ; or ‘‘No’’.

—End of Algorithm—

Lemma 1. Algorithm 1 performs kernelization in time Oðkn
p
Þ using Oð1Þ h-relations for

communication between processors.

3.2. Parallel bounded-tree search

We first recall a few facts about sequential bounded-tree search. Let /G00 ¼ ðV 00;E00Þ; k00S be a
problem instance associated with a search tree node x currently under consideration in the
bounded-tree search and let VC be the current set of vertices known to be in the vertex cover. The
algorithm described by Theorem 1 of [1] consists of repeating the following steps until either the
correct VC is found, or it is determined that G does not have a k-cover.

Step 1: Randomly select a vertex, vAV 00:
Step 2: Starting from v; perform a depth-first search traversing at most three edges.
Step 3: Based on the possible paths derived from the search in Step 2, either expand node x into

three children (Cases 1 and 2) or process immediately (Cases 3 and 4):
Case 1. The path obtained in Step 2 is a simple path of length 3 consisting of a sequence of

vertices v; v1; v2; v3: Associate three children (i.e. subproblems) with node x as follows:

(a) /G000 ¼ ðV 00 � fv; v2g;E000Þ; k000 ¼ k00 � 2S; VC ¼ VC
S
fv; v2g;

(b) /G000 ¼ ðV 00 � fv1; v2g;E000Þ; k000 ¼ k00 � 2S; VC ¼ VC
S
fv1; v2g;

(c) /G000 ¼ ðV 00 � fv1; v3g;E000Þ; k000 ¼ k00 � 2S; VC ¼ VC
S
fv1; v3g:

Case 2. The path obtained in Step 2 is a 3-cycle consisting of the following sequence of vertices
v; v1; v2; v: Associate three children with node x as follows:

(a) /G000 ¼ ðV 00 � fv; v1g;E000Þ; k000 ¼ k00 � 2S; VC ¼ VC
S
fv; v1g;

(b) /G000 ¼ ðV 00 � fv1; v2g;E000Þ; k000 ¼ k00 � 2S; VC ¼ VC
S
fv1; v2g;

(c) /G000 ¼ ðV 00 � fv; v2g;E000Þ; k000 ¼ k00 � 2S; VC ¼ VC
S
fv; v2g:

Case 3. The path obtained in Step 2 is a simple path of length 2 (i.e. pendant edge) con-
sisting of a sequence of vertices v; v1; v2: This can be processed immediately as follows:
/G000 ¼ ðV 00 � fv1; v2g;E000Þ; k000 ¼ k00 � 1S; VC ¼ VC

S
fv1g:

Case 4. The path obtained in Step 2 is a simple path of length 1 (i.e. pendant edge) con-
sisting of a sequence of vertices v; v1: This can be processed immediately as follows:
/G000 ¼ ðV 00 � fv; v1g;E000Þ; k000 ¼ k00 � 1S; VC ¼ VC

S
fvg:

The running time of the algorithm is Oðð
ffiffiffi
3

p
Þk

k2 þ knÞ:
The algorithm described by Theorem 2 in [1] consists of scanning the adjacency list associated

with a graph instance at a given search tree node for specific branching cases. See [1] for details
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regarding these reduction rules. Note that, this algorithm no longer guarantees a 3-ary search tree.
The number of children created can be 2, 3, or 4, while the parameter ðkÞ can decrease by as
much as 8, depending on the rule that is applied. The running time of the algorithm is

Oðð1:324718Þk
k2 þ knÞ:

Our basic approach for parallelizing the tree search is quite simple. We initially create the first
Oðlog pÞ levels of the search tree in breadth-first fashion until we have obtained a search tree with
p leaves. This is done using the algorithm described by Theorem 1, in a deterministic fashion. We
then assign each of the p leaves to one processor and let each processor continue searching the tree
from its respective leaf. In this step, we use the algorithm described by Theorem 2. We assure that
this part of the tree search is well-randomized: that is, when a processor proceeds downwards in
the search tree, it selects a random node among the still unexplored children. See Fig. 1 for an
illustration. The following describes our tree search parallelization in more detail.

Algorithm 2. Parallel tree search
Input: /G0; k0S:
Output: VCðpkÞ; or ‘‘No’’.

(2.1) Consider the search tree T obtained by starting with graph G0 and iteratively expanding the
combinatorial search tree in breadth-first fashion, using the Theorem 1 algorithm, until
there are exactly p leaves g1ygp: Every processor, Pi; 0pipp � 1; computes the unique

path in T from the root to leaf gi: Let (G
00
i ; k00

i ), 0pipp � 1; be the subgraphs and updated
parameters associated with gi:

(2.2) Processor Pi; 0pipp � 1; starts with (G00
i ; k00

i ) and expands/searches the subtree below gi in a

randomized, depth-first fashion, using reduction rules of the Theorem 2 algorithm, as
follows:
Processor Pi randomly selects and expands one of the children, repeating this recursively
until either a solution is found or the parameter is exhausted (i.e. there is no solution). Pi

then backtracks in its subtree and randomly chooses another unexplored child. This
process is repeated until a solution is found (in which case it notifies all other processors
to halt) or the processor’s subtree has been completely searched.

—End of Algorithm—

While the above algorithm is fairly simple, it is non-trivial to analyze its performance. Consider
the path L in which a sequential algorithm traverses the search tree. The sequential processing
time is determined by the number lseq of nodes in L which need to be traversed until a first

solution is found. The parallel algorithm essentially sets p equally spaced starting points on L and
starts p search processes, one at each starting point. Let Li be the portion of L assigned to
processor Pi; and let li be the number of nodes in L which processor Pi needs to traverse until it
finds a first solution. The parallel time is determined by lpar ¼ min0pipp�1 li; the minimum number

of nodes that a process has to traverse until it reaches a solution node. The possible relative
speedup observed corresponds to the ratio between lseq and lpar:What relative speedup is obtained
through this parallel exploration of subtrees? After all, only one solution needs to be found.
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Clearly, it is possible that the parallel algorithm examines many nodes that the sequential
algorithm would never reach. In general, what kind of relative speedup can we expect?
A ‘‘balls-in-bins’’ model can be used to predict the relative speedup that could be expected for

our parallel tree search algorithm. Consider p processors and a path L of length L in which a
sequential algorithm traverses the search tree, and assume that there are m solutions in the search
tree which are randomly distributed (with uniform distribution) over the search path L: Consider
an array of p rows and n ¼ L=p columns. The ith row corresponds to Li and the entire array
corresponds to L: We mark m random array elements as solutions and measure lseq and

lpar ¼ min0pipp�1 li:
The expected number of nodes in L that need to be traversed by the sequential algorithm is

given by EðlseqÞ ¼ L
mþ1: The expected number of nodes lpar ¼ min1pipp li that need to be traversed

by the parallel algorithm is bounded by EðlparÞpL=p
mþ1þ p [10]. Therefore, we obtain an expected

relative speedup

EðspÞX
1

1
p
þ mþ1

L=p

:

The above is only a lower bound on the expected relative speedup EðspÞ: We have simulated the
‘‘balls-in-bins’’ experiment in order to obtain a better understanding of the exact value of EðspÞ:
The simulation results are shown in Fig. 2. The experiments were performed for L ¼
1 000 000; m ¼ 1; 10; 100; 1000; 10 000; 100 000 and p ¼ 3; 9; 27; 81; 243 processors. The x-axis
represents the number p of processors and the y-axis represents the relative speedup sp ¼ lseq=lpar:
Each data point shown corresponds to the average of 150 experiments. The diagonal line, sp ¼ p

represents linear relative speedup. The most striking result of the experiments is how close all data
points are to the diagonal line for m ¼ 1; 10; 100; 1000: These are the most interesting cases in
practice because the number of actual k-Vertex Cover solutions is typically small compared to
the very large, exponential size, search space. Even for m ¼ 10 000; that is where 1% of the entire
search space correspond to solutions, we observe a relative speedup of about p=2: Only for
m ¼ 100 000; that is where 10% of the entire search space correspond to solutions, we observe
very low relative speedup. Note that in this case, any sequential method would find a solution in
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such a short time that a parallelization is not even interesting. We ran the experiment for many
other combinations of L;m; and p; and the results were always very similar.
The close to linear relative speedup for low density m=L observed in Fig. 2 is consistent

with the bound on EðspÞ derived above. For m5L=p; the second part of the denominator

becomes negligible and we get an expected relative speedup EðspÞ of approximately p: It is
important to note that the above lower bound on EðspÞ is only a coarse lower bound.

The actual relative speedup can be considerably better. Furthermore, as the discussion in [22]
suggests, the uniform distribution of the m solutions over the array examined above
does not constitute a good scenario. On the contrary, when solutions are non-uniformly
distributed, the processor whose search path starts close to a cluster has a high
probability of finding a solution much faster than in the uniform case. Therefore, it can be
expected that the relative speedup observed is often better in the non-uniform case than in the
uniform case.

4. Experimental results

In this section, we discuss the experimental examination of our parallel FPT technique. We first
discuss our setup and methodology as well as the data sets used for the evaluation. We then
present the performance results obtained.

4.1. Experimental setup and methodology

We first implemented in C the sequential FPT algorithm described in [1, Theorem 2].
We will refer to this sequential C code as Code-s. While recent theoretical improvements
of the core result in [1], namely [7,20], exhibit trade-offs between small differences in the
asymptotic running time and leading constants, we believe that execution times measured
on a well-crafted implementation of [1] are a good representation of the current sequential
state-of-the-art.
We then implemented our parallel FPT method described in Section 3, using C and the MPI

communication library, by adding the relevant C and MPI code to Code-s. We will refer to this
parallel C/MPI code as Code-p. Note that, Code-s is the same as a one processor version of
Code-p with all MPI calls disabled and all code removed that is not required for the one-processor
case.
Our experimental platform consisted of a 32-node Beowulf cluster with 1:8 GHz Intel Xeon

processors, 512 MB RAM per node and 60 GB of disk storage per node. All nodes were
interconnected via a Cisco gigabit ethernet switch. Every node was running Linux Redhat 7.2 with
gcc 2.95.3 and MPI/LAM 6.5.6.
All sequential times were measured as wall clock times in seconds. All parallel times

were measured as the wall clock time between the start of the first process and the termination
of the last process. We will refer to the latter as parallel wall clock time. All times include
the time taken to read the input graph from a file and write the solution into a file.
Furthermore, all wall clock times were measured with no other user except us on the Beowulf
cluster.
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Our experiments proceeded in the following steps:

1. Sequential Experiments (Section 4.3)

(a) Sequential Code-s: We executed Code-s on a single processor of our parallel machine and
measured the sequential wall clock time.

(b) Sequential Code-p: We executed Code-p on a single processor of our parallel machine, using
multiple virtual processors (i.e. MPI/LAM processes), and measured the sequential wall clock
time.

2. Parallel Experiments (Section 4.4)

(a) Code-p Parallel wall clock times: We executed Code-p on 27 processors of our parallel
machine and measured the parallel wall clock time.

(b) Code-p Relative speedup: We executed Code-p on 1, 3, 9, and 27 processors of our parallel
machine and measured the relative speedup with respect to parallel wall clock time, where the
‘‘baseline’’ (i.e. time for one processor) was set to the minimum of the sequential times
measured in Steps 1a and 1b.

4.2. Data sets

For our experiments, we primarily relied on test data from the NCBI (http://www.ncbi.nlm.
nih.gov/). We obtained and processed various sets of amino acid sequences. For biologists,
sequence alignments are a very useful computational tool because alignments can be used to infer
evolutionary relationships among genes and proteins. Proteins that are closely related have more
similar amino acid sequences for an orthologous protein than more distantly related proteins.
This information can be used to construct phylogenetic trees which represent relatedness of
proteins.
A typical experiment involves a large set of amino acid sequences for an orthologous protein

from distantly related organisms which are suspected to have a common ancestor. The task is to
remove a minimum number of sequences (organisms) from the set that contradict the common
ancestor hypothesis. Alignments can also be used to determine the order in which variations in
sequences occurred, to infer when gene duplication events occurred, and to identify amino acid
residues necessary for protein functions.
To test our algorithm, sets of amino acid sequences were collected from the NCBI database.

Several protein modules that comprise large families of sequences (organisms) were chosen for
alignments. The data sets selected are listed in Table 1: Somatostatin is a neuropeptide involved in
the regulation of many functions in different organ systems. WW is a small protein domain that
binds proline-rich sequences in other proteins and is involved in cellular signaling. Protein kinases
comprise a large and important family of enzymes involved in cellular regulation. SH2 domain
protein modules are involved in targeting proteins to specific sites in cells by binding to phosphor-
tyrosine. Thrombin is a protease involved in the blood coagulation cascade and promotes blood
clotting by converting fibrinogen to fibrin. pleckstrin homology domain (PHD) is a protein
domain about 100 amino acid residues in length that is involved in cellular signaling.
The sequences in each data set were aligned using ClustalW [26], a hierachical multiple

alignment program that generates pairwise alignments for all of the input sequences and then
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ranks the scores of the pairwise alignments. The conflict graph, i.e. the input for the minimum
vertex cover problem, was created by selecting all sequences in the data set as vertices and
selecting all edges between sequences whose alignment had a score below a given threshold. The
thresholds values used are shown in Table 1, together with the sizes of the resulting conflict graphs
and the values of k and k0:
To also explore general graph classes and known hard problem instances, we also tested our

parallel FPT method on random graphs and grid graphs (see Table 2). We show results for one
random graph and one grid graph which are typical for the results obtained in our experiments for
these classes of graphs.

4.3. Performance results: sequential experiments

We executed Code-s on a single processor of our parallel machine and measured the sequential
wall clock time (see Fig. 3, first set of vertical bars). Each data point in Fig. 3 represents the average
of five experiments. We selected data sets Somatostatin, WW, PHD, random and grid (Tables 1 and
2) because they would complete on a single processor in a reasonable amount of time. We observe
that the wall clock times for Code-s shown in Fig. 3 do not strictly increase with either k or k0: The
structure of the graphs is clearly an important factor for the performance of Code-s.
While developing Code-p, we used simulation mode on a single processor for development/

debugging purposes. In this mode, MPI/LAM simulates p virtual processors as independent
processes on the same physical processor. We observed that Code-p simulated on a single
processor would, for small numbers of virtual processors, often run faster than Code-s. It
appeared that the simulated parallel code, exploring the search tree from multiple starting points,
would often find a solution quicker than the sequential code. Note that, in simulation mode, the
sequential wall clock time for Code-p is the sum of the wall clock times of the individual processes
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Table 1

Sequences used and resulting graph sizes

Data set Threshold jV j jEj k ¼ jVCj k0

Somatostatin 10 559 33 652 273 255

WW 10 425 40 182 322 318

Kinase 16 647 113 122 497 397

SH2 (src-homology domain 2) 10 730 95 463 461 397

Thrombin 15 646 62 731 413 413

PHD (pleckstrin homology domain) 10 670 147 054 603 603

Table 2

Random and grid graphs used

jV j jEj k ¼ jVCj k0

Random 220 2155 122 122

Grid 289 544 145 145
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plus the overhead created e.g. by the context switches and MPI/LAM. As illustrated in Fig. 4,
there is typically a net benefit only for a small number of virtual processors. Each data point in
Fig. 4 represents the average of five experiments. For most of our data sets, the minimum average
wall clock time is achieved by using three virtual processors. We conclude that, exploring the
search tree from multiple starting points as proposed in our parallel FPT method can also lead to
improvements of sequential FPT methods. Fig. 3 compares the average wall clock time for Code-s
on one processor with the minimum average wall clock time for Code-p on one processor in
simulation mode. In each case, except for Grid, we observe that Code-p simulated on one
processor runs faster than Code-s on one processor for the same data set. In some cases, the
difference is substantial. For the relative speedup measurements in the following Section 4.4, the
‘‘baseline’’ (i.e. time for one processor) was therefore set to the minimum of the wall clock times
measured for Code-s and one processor simulations of Code-p.
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4.4. Performance results: parallel experiments

We executed Code-p on 27 processors of our parallel machine and measured the average
parallel wall clock time. Fig. 5 shows the results for the Somatostatin, WW, Kinase, SH2,
Thrombin and PHD data sets. Each data point represents the average of ten experiments. We
observe that our parallel FPT method is able to solve ‘‘real world’’ problem instances of size
kX400 in less than 1:5 h; whereas previously, for sequential FPT methods, only k-Vertex Cover
problems for kp200 were considered solvable [16]. Similar to the sequential wall clock times
shown in Fig. 3, we observe that the parallel wall clock times shown in Fig. 5 do not strictly
increase with either k or k0: For the ‘‘real world’’ data sets shown, the structure of the graphs is
clearly an important factor for the performance of Code-p. Most interestingly, the PHD data set
with k ¼ k0 ¼ 603 can be solved in under 10 min; on average.
We executed Code-p on 1, 3, 9, and 27 processors of our parallel machine and measured the

average relative speedup with respect to parallel wall clock time. As discussed at the end of Section
4.3, the ‘‘baseline’’ (i.e. time for one processor) was set to the minimum of the wall clock times
measured for Code-s and one processor simulations of Code-p. Fig. 6 shows the results for the
Somatostatin and WW data sets and Fig. 7 shows the results for the random and grid graphs.
Each data point represents the average of 20 experiments. For both cases in Fig. 6, we observe
that the average relative speedup does not grow monotonically. For 27 processors, the average
relative speedup is larger than 20. For a smaller number of processors we observed some ‘‘noise’’
in the average relative speedup caused by considerable variations in individual running times.
Some ‘‘lucky draw’’ events can occur where the search happens to find a solution near
instantaneously.
For Fig. 6, we observe that the average relative speedup grows monotonically in both cases. For

the random graph data set in Fig. 6(a), the slope of the average relative speedup curve is
considerably lower. We observed the same effect for other random graphs. For the grid graph
data set in Fig. 6(b), we note that there exist exactly two solutions. As discussed in Section 3.2 and
illustrated in Fig. 2, the number of solutions in the search tree is also very important for the
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relative speedup. We conjecture that this is the reason why, in Fig. 6(b), the slope of the average
relative speedup curve is very close to linear.

5. Conclusion

In this paper, we have studied the potential of parallelism when applied to the bounded-tree
search phase of FPT algorithms. We have implemented and tested a new parallel FPT method for
the k-Vertex Cover problem and provided the first experimental examination of parallel FPT
techniques.
By solving ‘‘real world’’ problem instances with kX400 in typically less than 1:5 h; our code

can handle larger instances of k-Vertex Cover than any previously reported sequential
implementation.
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