
81CGM GRAPH ALGORITHMS

CGMGRAPH/CGMLIB: IMPLEMENTING
AND TESTING CGM GRAPH
ALGORITHMS ON PC CLUSTERS AND
SHARED MEMORY MACHINES

Albert Chan1

Frank Dehne2

Ryan Taylor3

Abstract

In this paper, we present CGMgraph, the first integrated
library of parallel graph methods for PC clusters based on
Coarse Grained Multicomputer (CGM) algorithms. CGM-
graph implements parallel methods for various graph
problems. Our implementations of deterministic list rank-
ing, Euler tour, connected components, spanning forest,
and bipartite graph detection are, to our knowledge, the
first efficient implementations for PC clusters. Our library
also includes CGMlib, a library of basic CGM tools such
as sorting, prefix sum, one-to-all broadcast, all-to-one
gather, h-Relation, all-to-all broadcast, array balancing, and
CGM partitioning. Both libraries are available for down-
load at http://www.scs.carleton.ca/~cgm.

In the experimental part of this paper, we demonstrate
the performance of our methods on four different architec-
tures: a gigabit connected high performance PC cluster, a
smaller PC cluster connected via fast ethernet, a network
of workstations, and a shared memory machine. Our
experiments show that our library provides good parallel
speedup and scalability on all four platforms. The commu-
nication overhead is, in most cases, small and does not
grow significantly with an increasing number of proces-
sors. This is a very important feature of CGM algorithms
which makes them very efficient in practice.

Key words: Coarse-grained multiprocessor, graph algo-
rithms, library, parallel algorithms implementation, proces-
sor cluster

1 Introduction

In this paper, we present CGMgraph, the first integrated
library of Coarse Grained Multicomputer (CGM; Dehne
et al. 1993) methods for graph problems including list
ranking, Euler tour, connected components, spanning for-
est, and bipartite graph recognition. Our library also
includes a library CGMlib of basic CGM tools that are
necessary for parallel graph methods as well as many other
CGM algorithms: sorting, prefix sum, one-to-all broad-
cast, all-to-one gather, h-Relation, all-to-all broadcast,
array balancing, and CGM partitioning. In comparison
with Guérin Lassous et al. (2000), CGMgraph implements
both a randomized as well as a deterministic list ranking
method. Our experimental results for randomized list
ranking are similar to those reported in Guérin Lassous et
al. (2000). Our implementations of deterministic list rank-
ing, Euler tour, connected components, spanning forest,
and bipartite graph recognition are, to our knowledge, the
first efficient implementations for PC clusters.

CGMgraph and CGMlib are based on the CGM/BSP
model (Valiant 1990; Dehne et al. 1993) and are opti-
mized for PC clusters. In the experimental part of this
paper, we show the performance of our methods on four
different architectures: THOG, CGM1, ULTRA and
SUNFIRE. The THOG cluster is a gigabit connected high
performance cluster, CGM1 is a smaller cluster connected
via fast ethernet, ULTRA is a network of workstations,
and SUNFIRE is a shared memory cluster. Our experi-
ments show that our library provides good relative paral-
lel speedup and scalability on all four platforms. The
communication overhead is, in most cases, small and
does not grow significantly with an increasing number of
processors. This is a very important feature of CGM algo-
rithms, which makes them very efficient in practice. The
communication overhead is, in most cases, dominated by
the local computation time, which implies good relative
speedup in practice.

Both the CGMlib and CGMgraph libraries are freely
available for download at http://www.scs.carleton.ca/
~cgm, together with a library installation script. The aim
of these libraries is to make efficient parallel graph meth-
ods available to a wider community of researchers who
can utilize them as building blocks for other parallel pro-
gramming projects (Chan and Dehne 2003).

The International Journal of High Performance Computing Applications,
Volume 19, No. 1, Spring 2005, pp. 81–97
DOI: 10.1177/1094342005051196
© 2005 Sage Publications

1DEPARTMENT OF MATHEMATICS AND COMPUTER
SCIENCE FAYETTEVILLE STATE UNIVERSITY
FAYETTEVILLE, NC 28301, USA

2SCHOOL OF ICT GRIFFITH UNIVERSITY NATHAN, QLD
4111, AUSTRALIA (F.DEHNE@GRIFFITH.EDU.AU;
HTTP://WWW.DEHNE.NET)

3SCHOOL OF COMPUTER SCIENCE CARLETON
UNIVERSITY OTTAWA, CANADA K1S 5B6

82 COMPUTING APPLICATIONS

2 Library Overview and Experimental
Setup

Figure 1 illustrates the general use of CGMlib and CGM-
graph, and Figure 2 shows the class hierarchy of the main
classes in CGMlib and CGMgraph. Note that all classes in
CGMgraph, except EulerNode, are independent. Both
libraries require an underlying communication library
such as MPI (Message Passing Interface) or PVM (Paral-
lel Virtual Machine). CGMlib provides a class Comm
which interfaces with the underlying communication
library. It provides an interface for all communication
operations used by CGMlib and CGMgraph and thereby
hides the details of the communication library from the
user. At this moment, an MPI implementation of Comm is
available as part of CGMlib. The aim of our design is to
provide portability of CGMlib and CGMgraph across dif-
ferent architectures and communication libraries. For any
other communication library, an implementation of Comm
is sufficient to port the entire CGMlib and CGMgraph. As
shown in Figure 1, CGMlib provides basic CGM func-
tionality (sorting, prefix sum, etc.) and CGMgraph uses
CGMlib in order to implement graph algorithms. The
design separates the two libraries so that other CGM algo-
rithms (in addition to the CGM graph library provided)
can also make use of the CGMlib methods.

The performance of our library was evaluated on four
parallel platforms: THOG, CGM1, ULTRA and SUNFIRE.

The THOG cluster is located in the High Performance
Computing Virtual Laboratory (HPCVL) at Carleton
University. This cluster consists of 64 nodes, each with
two Xeon processors. The nodes are of two different gen-
erations, with processors at 1.7 or 2.0 GHz, 1.0 or 1.5 GB
RAM, and 60 GB disk storage. The nodes are intercon-
nected via a Cisco 6509 switch using Gigabit ethernet.

The operating system is Linux Red Hat 7.1 together with
LAM-MPI version 6.5.6.

The CGM1 cluster is located in the Carleton/Dalhouise
CGMlab. This cluster consists 32 processor nodes. Each
node has two Xeon processors at 1.8 GHz with 1.0 GB
RAM and 80 GB disk storage. The nodes are intercon-
nected via 100 Mb Switched Fast Ethernet. The operat-
ing system is Linux Red Hat 7.1 together with LAM-MPI
version 6.5.6.

The ULTRA platform is an older network of worksta-
tions located in the Carleton University School of Com-
puter Science graduate laboratory. The network consists
of 10 Sun Sparc Ultra 10 workstations. The processor
speed is 440 MHz. Each processor has 256 MB RAM.
The nodes are interconnected via 100 Mb Switched Fast
Ethernet. The operating system is Sun OS 5.7 and LAM-
MPI version 6.3.2.

The SUNFIRE machines are located in the HPCVL lab
at Queen’s University. The SUNFIRE machines consist of
eight Sun Fire 6800 and two Sun Fire 15000 servers. A
total of 336 processors with 786 GB RAM is distributed
throughout these machines. The processors inside each of
these machines share their machine’s memory, so shared
memory communication is used. For communication
between processors in different machines, Gigabit Ether-
net links are used. Figure 3 shows the system view of the
SUNFIRE machines. The operating system is Sun OS 5.9
and Sun’s implementation of the MPI library. The soft-
ware development environment is Sun’s Forte 6 Develop-
ment Suite. Our tests are done using the processors within
a single box. Therefore, our results on the SUNFIRE
reflects the performance on shared memory machines.

For the remainder, p denotes the number of processors,
m denotes the total memory size of the parallel machine,
m/p is the memory per processor, and n denotes the total
input data size. All times reported in the remainder of this
paper are wall clock times in seconds. Communication
times reported are the accumulated wall clock times spent
by the MPI method calls. The reported computation times
are the difference between the total wall clock times and
the communication times. Note that the computation
times indicated include system time (e.g. garbage collec-
tion overhead). The input data sets for our tests consist of
randomly created test data.

Parallel graph methods are obviously targeted towards
very large graphs and the experiments should reflect that.
Unfortunately, test data sets of different sizes had to be
chosen for the different platforms because of the smaller
memory capacity of CGM1 and in particular ULTRA.
While the SUNFIRE and THOG could run our code on
data sets of size n = 10,000,000, CGM1 and ULTRA have
far less memory and could only handle data sets of size
n = 5,000,000 and n = 100,000, respectively.

Fig. 1 General use of CGMlib and CGMgraph (PVM
implementation not yet available).

83CGM GRAPH ALGORITHMS

Our experiments consisted of running CGMgraph and
CGMlib methods for variable numbers of processors on
each machine. For each experiment, we measured the total
wall clock time as well as the wall clock time for the com-
munication and the computation portion of the experiment.
Each data point in the diagrams presented in the remain-
der of this paper represents the average of three experi-
ments for CGMgraph and 10 experiments for CGMlib.

During the development of CGMlib and CGMgraph,
we observed irregular performance for large input data

sizes. Investigation showed that this was caused by the
C++/Linux memory management. When our code releases
unused memory, the memory management system attempts
to defragment the memory. This defragmentation occurs
at unpredictable times and can lead to performance degra-
dation. To remedy the problem, we provide our own
memory management for the class ObjList where
arrays are allocated manually and memory is managed by
our code. Our experience has shown that this can bring
very substantial performance improvements.

Fig. 2 Hierarchy of main classes in CGMlib and CGMgraph.

84 COMPUTING APPLICATIONS

3 CGMlib: Basic Infrastructure and
Utilities

3.1 CGM COMMUNICATION OPERATIONS

The basic library, called CGMlib, provides basic function-
ality for CGM communication. An interface, Comm, defines
the basic communication operations such as the following.

• oneToAllBCast (int source, CommObject-
List &data): broadcast the list data from proces-
sor number source to all processors.

• allToOneGather (int target, CommObject-
List &data): execute a gather operation on the lists
data from every processor to processor number
target.

• hRelation (CommObjectList &data, int
*ns): perform an h-Relation on the lists data using
the integer array ns to indicate for each processor
which list objects are to be sent to which processor.

• allToAllBCast (CommObjectList &data):
every processor broadcasts its list data to all other
processors.

• arrayBalancing (CommObjectList &data,
int expectedN = –1): shift the list elements between
the lists data such that every processor will contain
expectedN elements. expectedN = –1 indicates
that every processor receives the same number of ele-
ments.

• partitionCGM (int groupId): partition the CGM
into groups indicated by groupId. All subsequent
communication operations, such as the ones listed above,
operate within the respective processor’s group only.

• unPartitionCGM (): undo the previous partition
operation.

All communication operations in CGMlib send and
receive data in the form of lists of type CommObject-
List. A CommObjectList is a list of CommObject
elements. The CommObject interface defines the opera-
tions which every object that is to be sent/received has to
support. A class SimpleCommObject is provided which
puts an appropriate wrapper around any C++ object (as
long as it does not contain pointers). A class Basic-
CommObject is provided which puts an appropriate
wrapper around the basic C++ data types (int, float, etc.).

The above operations are defined for a CGM with local
memory m/p O(p). For larger local memory with m/p
O(p2), simpler versions allToAllBCast2 (...) and
arrayBalancing2 (...) for all-to-all broadcast
and array balancing, respectively, are available.

The library is designed such that everything is built on
top of the Comm interface which encapsulates basic send/
receive operations. This allows different implementations
of Comm to support different platforms. For the current
CGMlib, we provide an MPI implementation MPIComm.
In the future it is possible to add, for example, a PVM

Fig. 3 System view of the SUNFIRE 6800 machines.

≥ ≥

85CGM GRAPH ALGORITHMS

implementation of Comm which will enable the entire
CGMlib and CGMgraph to run on a PVM platform as well.

3.2 CGM UTILITIES

3.2.1 CGM Parallel Prefix Sums Definition 1 Given
a list of n items A = {a1, a2, , an} and an associative
operator , the prefix sum operation over A and is to
calculate another list of n items B = {b1, b2, , bn} such
that bi = a1 a2 bi.

A CGM implementation of the parallel prefix sum
algorithm is available. The algorithm is simple. The
method calculatePrefixSum (CommObject-
List &result, CommObjectList &data) per-
forms the following steps. Each processor calculates a
local prefix sum. The local total sum values are sent to
one processor via a allToOneGather. That processor
calculates a prefix sum of the total sums and sends the
results back to the other processors via an hRelation
operation. Finally, each processor adjusts its local prefix
sum values. The operator used for the prefix sum is flexi-
ble and is set via the class constructor.

3.2.2 CGM Parallel Sorting A method sort (Comm-
ObjectList &data) is provided which sorts the union
of the lists data from all processors. The comparison
operator used for the sort is flexible and is set via the class
constructor. We use the deterministic parallel sample sort
methods in Chan and Dehne (1998, 1999) and Shi and
Schaeffer (1992). Both methods require a local sequential
sort method for which the default in CGMlib is Heapsort.
However, any other local sequential sort method can be
assigned via the class constructor. While the method of
Shi and Schaeffer (1992) requires m/p O(p2), the algo-
rithm in Chan and Dehne (1998, 1999) requires only m/
p O(p) but is slightly more complex. Depending on the
local memory available, the user can select between the
two sorting methods via a method setScalability. In
theory, any fixed scalability can be achieved via the algo-
rithm in Goodrich (1996). However, this method is very
complex and incurs large overheads. Therefore, the method
in Goodrich (1996) is not implemented in this library.

3.2.3 CGM Request System In some CGM algorithms,
it is necessary for processors to obtain information from
other processors. This can be done by sending requests.
That is, every processor sends to other processors
requests for locally stored data items, and these items are
then delivered to the requesting processors. In the CGM
model, the requests are all handled jointly via h-Relation
and sort operations. The CGMlib provides methods send-
Requests (...) and sendResponses (...) for
routing the requests from their senders to their destinations
and returning the responses to the senders, respectively.

3.2.4 Other CGM Utilities Various utilities are pro-
vided. The most important is the class CGMTimers. We
provide six timers within CGMTimers which measure
computation time, communication time, and total time,
both in wall clock time and CPU ticks. Another utility
provided is a parallel random number generator. Its main
purpose is to make sure that all processors use different
seeds for the pseudo random number computation.

3.3 PERFORMANCE EVALUATION

We have measured the performance of our communica-
tion operations and utilities on THOG, CGM1, ULTRA
and SUNFIRE. In the following, we present the results for
h-Relation, prefix sum and parallel sort operations. For
each operation, we measured the performance on THOG
with n = 5,000,000 and n = 10,000,000, on CGM1 with
n = 5,000,000, on ULTRA with n = 100,000, and on SUN-
FIRE with n = 10,000,000. The data consist of randomly
created integers. For the h-Relation, the array ns is a dif-
ferent array of random integers for each processor.

Figure 4 shows the performance of our h-Relation
implementation on THOG, CGM1, ULTRA and SUNFIRE.
(See Thakur et al. 2005 for related studies.) Figure 5
shows the performance of our prefix sum implementa-
tion, and Figure 6 shows the performance of our parallel
sort implementation. For n = 5,000,000, THOG is about
twice as fast as CGM1. Both machines have comparable
processors, and the computation times are indeed similar.
However, THOG has a much more powerful switch,
which results in much faster communication times. For
our h-Relation implementation, we observe that the
curves for the total wall clock times are in all four dia-
grams similar to 1/p for p 10 but then become more
flat. This is particularly pronounced for THOG where we
have a larger number of processors available. It appears
to be caused by the communication times. The computa-
tion portion always appear to be similar to 1/p but the
communication times appear to go flat for p > 10. This is
caused by the fact that the total volume of data communi-
cated through the switch is the same, regardless of p. For
small p, sending the data to the switch through more
ports appears to bring some improvement in speed but
this effect disappears for larger p. This is an important
observation. The communication time for an h-Relation
operation can essentially be seen as a function of the total
data volume only, independent of the number of proces-
sors.

For our prefix sum implementation, we observe that all
experiments show a close to zero communication time,
except for some noise on THOG. The prefix sum method
communicates only very few data items. The total wall
clock time and computation time curves in all four dia-
grams are similar to 1/p.

…
⊗ ⊗

…
⊗ ⊗ …

≥

≥

≥

86 COMPUTING APPLICATIONS

Fig. 4 Performance of the h-Relation implementation (n = hp).

87CGM GRAPH ALGORITHMS

Fig. 5 Performance of the deterministic list ranking algorithm.

88 COMPUTING APPLICATIONS

Fig. 6 Performance of the parallel sort implementation.

89CGM GRAPH ALGORITHMS

For our parallel sort implementation, we observe a
small fixed communication time, essentially independent
of p. This is easily explained by the fact that the parallel
sort uses of a fixed number of h-Relation operations, inde-
pendent of p. Most of the total wall clock time is spent on
local computation which consists mainly of local sorts of
n/p data. Therefore, the curves for the local computation
and the total parallel wall clock time are similar to 1/p.

Also noticeable is that for the result on SUNFIRE, the
communication time is close to zero. This is because the
SUNFIRE is a shared memory machine.

4 CGMgraph: Parallel List Ranking and
Euler Tour

CGMgraph provides a list ranking method rankThe-
List (ObjList <Node> &nodes, bool rando-
mized, Comm *comm) which implements a randomized
method as well as a deterministic method depending on
the boolean randomized = TRUE/FALSE, respec-
tively. The input to the list ranking method is a linear
linked list where each node has four integer fields:
index is a non-negative integer index. The indices need
not be consecutive. Field next is a pointer that points to
the next node in the linked list. The pointer is stored as the
index of the next node. Field rank is an integer to be
filled by the rankTheList (...) method to represent
the rank of the node. Field tail is a pointer to be filled
by the rankTheList (...) method to represent the
last node in the linked list.

CGMgraph also provides a method to compute the Euler
tour traversal of a forest. The method is getEuler-
Tour (ObjList<Vertex> &r, ObjList<Vertex>
&v, ObjList<Edge> &e, ObjList<EulerNode>
&eulerNodes,Comm *comm).

The forest is represented by a list of vertices, a list of
edges and a list of roots. The input to the Euler tour method
is a forest which is stored as follows: r is a set of vertices
that represents the roots of the trees, v is the input set of
vertices, e is the input set of edges, and eulerNodes is
the output data of the method.

4.1 RANDOMIZED LIST RANKING

We implemented a simplified version of the randomized
list ranking method described in Dehne and Song (1996),
Reid-Miller (1994), and Sibeyn (1998, 1999). The fol-
lowing is an outline of our method which proceeds in
three phases.

Phase 1. A randomized method is used to approximate
a p-sample, which is defined as a subset of n/p selected
nodes with the property that two consecutive selected

nodes in the linked list have a distance of O(pk), k = O(1),
with respect to the linked list. The method simply selects
n/p random nodes. Clearly, the average distance between
two selected nodes is p. However, what is more important
is the maximum distance between two selected nodes
which is, with high probability, bounded by O(p log n).

Phase 2. Using simulated pointer jumping (Reif 1993),
implemented via the CGM Request System (Section 3.2),
every list node obtains a pointer to the next selected node
in the list, together with the distance to that node. All
selected nodes are then compressed into one processor
and sequential weighted list ranking is applied where the
weights are the distances obtained in the previous step.

Phase 3. All other (non-selected) nodes determine their
rank by obtaining the rank of the next selected node (as
determined in the previous step) and adding to it the dis-
tance obtained through the simulated pointer jumping.
The total number of h-Relation operations for all three
phases is, with high probability between O(p log n) and
O(log p + log log n). For practical purposes, log log n
can be assumed to be bounded by a constant (approxi-
mately 4 for our data sets).

4.2 DETERMINISTIC LIST RANKING

We also implemented the deterministic list ranking
method described in Dehne et al. (2002). The determinis-
tic algorithm is much more involved than the randomized
method. The following is a brief outline of the algorithm.
For more details, see Dehne et al. (2002). The basic struc-
ture of the deterministic method is the same as in the ran-
domized case. However, a different approach is used for
determining the selected nodes in Phase 1. The approach
consists of a combination of a CGM adaptation of deter-
ministic coin tossing (Reif 1993) and various merge steps.
At the end of this phase, the set of selected nodes has the
property that every node has a distance of at most O(p2)
from the next selected node in the list. This guarantees
that the entire algorithm requires between c log p and
2c log p h-Relation operations in total. The drawback of
this method is that it is more involved and incurs consid-
erably larger constant factors in the running times.

4.3 EULER TOUR

The Euler tour traversal of a tree is simple, once a list
ranking method is available. A Euler tour traversal in
linked list format is generated by converting each tree
edge into two directed edges. The edges have to be linked
together in the appropriate way to avoid self loops. See
Dehne et al. (2002) for more details. Then, list ranking is
applied to this linked list.

90 COMPUTING APPLICATIONS

4.4 PERFORMANCE EVALUATION

We have measured the performance of our randomized
and deterministic list ranking methods on THOG, CGM1,
ULTRA and SUNFIRE. In the following, we present the
results of our experiment. For each operation, we meas-
ured the performance on THOG with n = 10,000,000, on
CGM1 with n = 5,000,000, on ULTRA with n = 100,000,
and on SUNFIRE with n = 10,000,000.

Figure 7 shows the performance of the randomized list
ranking algorithm on THOG, CGM1, ULTRA and SUN-
FIRE. We observe that for all four machines, the commu-
nication time is only a small portion of the total time and
appears to be fixed even with growing p. The number of
rounds measured in our experiments was usually between
6 and 8, with small fluctuations. Recall that each round
has a fixed communication time (except for small p), as
discussed in Section 3.3 and that the randomized list

ranking requires between O(p log n) and O(log p +
log log n) h-Relation operations. With log n in the range
[1, 5] and log log n approximately 4, we expect between
five and nine h-Relation operations. What is somewhat
surprising at first is that, for our experiments, the number
of h-Relation operations remained always in the [6, 8]
middle range. However, even if it would not, the fluctua-
tion in number of h-Relation operations would not be
large. The experiments show that the log p factor is grow-
ing so slowly in practice that it has little influence on the
measured communication time which is essentially inde-
pendent of p. In summary, since the communication time
is only a small fixed value and the computation time is
dominating and similar to 1/p, the entire measured wall
clock time is similar to 1/p.

Figure 8 shows the performance of the deterministic
list ranking algorithm. Again, we observe that for all four
machines, the communication time is a small, essentially

Fig. 7 Performance of the randomized list ranking algorithm.

91CGM GRAPH ALGORITHMS

fixed, portion of the total time (though somewhat larger
than in Figure 7). The deterministic list ranking requires
between c log p and 2c log p h-Relation operations. With
log p in the range[1, 5], we expect between c and 10c h-
Relation operations. Since the deterministic algorithm is
more involved and incurs larger constants, c may be around
10 which would imply a range of [10, 100] for the number
of h-Relation operations. We measured usually around 20
h-Relation operations. The number is fairly stable, independ-
ent of p, which shows again that log p has little influence
on the measured communication time. The small increases
for p = 4, 8, 16 are due to the fact that the number of h-
Relation operations grows with , which is incre-
mented by 1 when p reaches a power of 2. In summary,

since the communication time is only a small fixed value
and the computation time is dominating and similar to 1/
p, the entire measured wall clock time is similar to 1/p.

Figure 9 shows the performance of the Euler tour algo-
rithm on THOG, CGM1, ULTRA and SUNFIRE. Our
implementation uses the deterministic list ranking
method for the Euler tour computation. Not surprisingly,
the performance is essentially the same as for determinis-
tic list ranking. Due to the fact that all tree edges need to
be duplicated, the data size increases by a factor of three
(original plus two copies). This is the reason why we
could execute the Euler tour method on THOG for
n = 10,000,000 only with p 10, and on SUNFIRE for
n = 10,000,000 only with p 6.

Fig. 8 Performance of the deterministic list ranking algorithm.

log p ≥
≥

92 COMPUTING APPLICATIONS

Fig. 9 Performance of the Euler tour algorithm.

93CGM GRAPH ALGORITHMS

5 CGMgraph: Parallel Connected
Components and Spanning Forest

CGMgraph provides a method called findConnected-
Components (Graph &g, Comm *comm) for the com-
putation of the connected components of a graph. It also
has a method findSpanningForest (Graph &g,
ObjList<Vertex> &spanningRoots, ObjList
<Edge> &spanningTreeEdges, Comm *comm) for
the calculation of a spanning forest of a graph. The input
to the above two methods is a graph represented as a list
of vertices and a list of edges.

5.1 OUTLINE OF METHOD

We implemented the connected component method
described in Caceres et al. (2000). The method also pro-
vides immediately a spanning forest of the given graph.
The following is a brief outline of the algorithm. For
more details, see Caceres et al. (2000). The method con-
sists of two phases.

Phase 1. Using the CGM Request System (Section 3.2),
log p iterations of the standard PRAM algorithm for con-
nected component computation (Reif 1993) are simulated
on the CGM. Each round of the PRAM algorithm creates
super vertices by combining adjacent vertices (or super
vertices). Each round reduces the number of vertices or
super vertices by at least a constant factor. Therefore,
after log p iterations, the number of (super) vertices is
reduced to O(n/p).

Phase 2. Each processor obtains a copy of the O(n/p)
(super) vertices and stores a subset of the edges (which
could be still more than n/p in total). Each processor first
builds a spanning forest for its subset of edges and then
log p binary merge steps are performed in which pairs of
processors merge their two spanning forests into one
spanning forest. After log p merging steps, we obtain one
single spanning forest with at most O(n/p) edges.

5.2 PERFORMANCE EVALUATION

We have measured the performance of the connected
components and spanning forest algorithms on THOG,
CGM1, ULTRA and SUNFIRE. In the following, we
present the results of our experiment. For each operation,
we measured the performance on THOG with n =
10,000,000, on CGM1 with n = 5,000,000, on ULTRA
with n = 100,000, and on SUNFIRE with n = 10,000,000.

Figure 10 shows the performance of the connected com-
ponents algorithm on THOG, CGM1, ULTRA and SUN-
FIRE. Figure 11 shows the performance of the spanning
forest algorithm on THOG, CGM1, ULTRA and SUNFIRE.
The only difference between the two methods is that the

spanning forest algorithm has to create the spanning for-
ests after the connected components have been identified.
Therefore, the times shown in Figures 10 and 11 are very
similar. (Note that the second graph in Figure 11 starts only
at p = 2.) Again, we observe that for all four machines,
the communication time is a small, essentially fixed, por-
tion of the total time. The connected component method
uses deterministic list ranking. It requires c log p h-Rela-
tion operations with log p in the range [1, 5]. The communi-
cation time observed is fairly stable, independent of p,
which shows that the log p factor has little influence on
the measured communication time. The entire measured
wall clock time is dominated by the computation time and
similar to 1/p.

6 CGMgraph: Parallel Bipartite Graph
Recognition

CGMgraph provides a method isBipartiteGraph
(Graph &g, Comm *comm) for recognizing whether a
graph is a bipartite graph, i.e. a graph that can be divided
into two vertex sets such that no edge connects vertices in
the same set. The input is a graph represented as a list of
vertices and a list of edges.

6.1 OUTLINE OF METHOD

We implemented the bipartite graph recognition algo-
rithm described in Dehne et al. (2002). The following is a
brief outline of the algorithm. For more details, see
Dehne et al. (2002).

The method proceeds in four steps. Step 1: a spanning
forest of the given graph is computed using the method in
Section 5. Step 2: using the method in Section 4, for each
spanning tree in the spanning forest, its Euler tour is
computed and for each node, the distance to the root of
its spanning tree is determined. Step 3: the nodes are cat-
egorized into two groups, the nodes with an odd distance
to their root and the nodes with an even distance to their
root. Step 4: if there is any edge whose two vertices do
not belong to different groups, then the graph is not
bipartite; otherwise the graph is bipartite, and the two
groups partition the vertices into the two disjoint vertex
sets given in the definition of bipartite graphs.

6.2 PERFORMANCE EVALUATION

We have measured the performance of the bipartite graph
recognition algorithm on THOG, CGM1, ULTRA and
SUNFIRE. We measured the performance on THOG with
n = 5,000,000 and n = 10,000,000, on CGM1 with n =
5,000,000, on ULTRA with n = 100,000, and on SUNFIRE
with n = 10,000,000.

94 COMPUTING APPLICATIONS

Figure 12 shows the performance of the bipartite graph
recognition algorithm on THOG, CGM1, ULTRA and
SUNFIRE. The results mirror the fact that the algorithm is
essentially a combination of Euler tour traversal and
spanning forest computation. The curves are similar to the
former but the amount of communication time is now
larger, representing the sum of the two. This effect is par-
ticularly strong on ULTRA which has the weakest net-
work. Here, the log p in the number of communication
rounds actually leads to a steadily increasing communica-
tion time which, for p = 9 starts to dominate the compu-
tation time. However, for THOG, CGM1 and SUNFIRE,
the effect is much smaller. For these machines, the com-
munication time is still essentially fixed over the entire
range of values of p. The computation time is similar to 1/
p and determines the shape of the curves for the entire
wall clock time. For THOG and CGM1, the computation

and communication times become equal for larger p but
only because of the decrease in computation time. For
SUNFIRE, the communication time is still less than one
half of the computation even for large p (p = 20), mean-
ing that the SUNFIRE has a behavior similar to the THOG
and CGM1 networks.

7 Summary and Future Work

In this paper, we have presented CGMgraph, the first
integrated library of parallel graph methods for PC clus-
ters solving deterministic list ranking, Euler tour, con-
nected components, spanning forest, and bipartite graph
recognition. We have also presented CGMlib, a library of
basic CGM tools such as sorting, prefix sum, one-to-all
broadcast, all-to-one gather, h-Relation, all-to-all broad-
cast, array balancing, and CGM partitioning. In our

Fig. 10 Performance of the connected components algorithm.

95CGM GRAPH ALGORITHMS

experiments, we demonstrated the performance of our
methods on four different architectures and showed that
our library provides good relative parallel speedup and
scalability on all four platforms.

Both CGMlib and CGMgraph are currently in beta
state. Despite extensive work on performance tuning,
there are still many possibilities for fine-tuning the code
in order to obtain further improved performance. Of
course, adding more parallel graph algorithm implemen-
tations to CGMgraph is an important task for the near
future. Other possible extensions include porting CGM-
lib and CGMgraph to other communication libraries, e.g.
PVM and OpenMP. We also plan to integrate CGMlib
and CGMgraph with other libraries, in particular the
LEDA library (http://www.algorithmic-solutions.com/).

ACKNOWLEDGMENTS

This research is partially supported by the Natural Sci-
ences and Engineering Research Council of Canada. A
preliminary version of this paper has appeared in the Pro-
ceedings of 10th European PVM/MPI User’s Group
Meeting (Euro PVM/MPI’03).

AUTHOR BIOGRAPHIES

Albert Chan received a Ph.D. in Computer Science
from Carleton University (Ottawa, Canada) in 2003. He
is currently Assistant Professor at Fayetteville State Uni-
versity in Fayetteville, North Carolina, USA.

Fig. 11 Performance of the spanning forest algorithm.

96 COMPUTING APPLICATIONS

Frank Dehne received a Ph.D. in Computer Science from
the University of Wuerzburg (Germany) in 1986. From 1986
to 2004, he was a Professor at Carleton University (Ottawa,
Canada). Since April 2004, he is a Professor at Griffith
University in Brisbane, Australia. Professor Dehne is a
Senior Member of the IEEE, and Editor of IEEE Transac-
tions on Computers and Information Processing Letters.

Ryan Taylor is a Master student at Carleton University
(Ottawa, Canada).

References

Caceres, E., Chan, A., Dehne, F., and Prencipe, G. 2000. Coarse
grained parallel algorithms for detecting convex bipartite
graphs. Proceedings of the 26th Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2000), Lec-

ture Notes in Computer Science Vol. 1928, Springer-Verlag,
Berlin, pp. 83–94.

Chan, A. and Dehne, F. 1998. A note on coarse grained parallel
integer sorting. Technical Report TR-98-06, School of
Computer Science, Carleton University. Available at http:/
/www.scs.carleton.ca/.

Chan, A. and Dehne, F. 1999. A note on coarse grained parallel
integer sorting. Parallel Processing Letters 9(4):533–538.

Chan, A. and Dehne, F. 2003. CGMgraph/CGMlib: implement-
ing and Testing CGM Graph Algorithms on P Clusters.
Proceedings of the 10th European PVM/MPI Users Group
Meeting (Euro PVM/MPI03), Lecture Notes in Computer
Science Vol. 2840, Springer-Verlag, Berlin, pp. 117–125.

Dehne, F., Ferreira, A., Caceres, E., Song, S.W., and Roncato, A.
2002. Efficient parallel graph algorithms for coarse grained
multicomputers and BSP. Algorithmica 33(2):183–200.

Dehne, F. and Song, S.W. 1996. Randomized parallel list ranking
for distributed memory multiprocessors. Asian Computer

Fig. 12 Performance of the bipartite graph recognition algorithm.

97CGM GRAPH ALGORITHMS

Science Conference (ASIAN ‘96), Lecture Notes in Com-
puter Science Vol. 1179, Springer-Verlag, Berlin, pp. 1–10.

Dehne, F., Fabri, A., and Rau-Chaplin, A. 1993. Scalable paral-
lel geometric algorithms for coarse grained multicomput-
ers. ACM Symposium on Computational Geometry, San
Diego, CA, May, pp. 298–307.

Goodrich, M.T. 1996. Communication efficient parallel sorting.
Proceedings of the 28th Annual ACM Symposium on The-
ory of Computing, Philadelphia, PA, May.

Guerin Lassous, I., Gustedt, J., and Morvan, M. 2000. Feasabil-
ity, Portability, Predictability and Efficiency: Four Ambi-
tious Goals for the Design and Implementation of Parallel
coarse Grained Graph Algorithms. Technical Report RR–
3885, INRIA (http://www.inria.fr/rrrt/rr-3885.html).

Reid-Miller, M. 1994. List Ranking and List Scan on the Cray
C-90. ACM Symposium on Parallel Algorithms and Archi-
tectures, Cape May, NJ, June, pp. 104–113.

Reif, J. 1993. Synthesis of Parallel Algorithms, Morgan Kauf-
mann Publishers, San Mateo, CA.

Shi, H. and Schaeffer, J. 1992. Parallel sorting by regular sam-
pling. Journal of Parallel and Distributed Computing
14:361–372.

Sibeyn, J.F. 1998. List ranking on meshes. Acta Informatica
35(7):543–566.

Sibeyn, J.F., Guillaume, F., and Seidel, T. 1999. Practical paral-
lel list ranking. Journal of Parallel and Distributed Com-
puting 56(2):156–180.

Thakur, R., Rabenseifner, R., and Gropp, W. 2005. Optimiza-
tion of collective communication operations in MPICH.
High Performance Computing Applications 19(1):49–66.

Valiant, L. 1990. A Bridging Model for Parallel computation.
Communications of the ACM 33(8).

