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ABSTRACT

Given a set S of s points in the plane, where do we place a new point, p, in order to
maximize the area of its region in the Voronoi diagram of S and p? We study the case
where the Voronoi neighbors of p are in convex position, and prove that there is at most
one local maximum.

Keywords: Computational geometry; locational planning; optimization; Voronoi dia-

gram.

1. Introduction

Suppose that we want to place a new supermarket where it wins over as many
customers as possible from the competitors that already exist.

Let us assume that customers are equally distributed and that each customer
shops at the market closest to her residence. Our task then amounts to finding a
location, p, for the new market amidst the locations p; of the existing markets, such
that the Voronoi region of p, that is, the set of all points in the plane that are closer
to p than to any p;, has a maximum area.

Surprisingly, not much seems to be known about this problem. The area of
Voronoi regions has been addressed in the context of games, where players can in
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turn move their existing sites, or insert new sites, such as to end up with a large total
area of their Voronoi regions; see the Hotelling game described in Okabe et al.,®
and related work by Cheong et al.* and Ahn et al..! But none of these papers gives
an explicit method for maximizing the region of a new site. After the conference
version of the present paper® appeared, the problem of maximizing the Voronoi
region of a new site has been addressed by Cheong et al..> They showed how to
compute, in time O(né~*+nlogn), a location for a new site whose Voronoi region
approximates the maximum size, up to a 1 — ¢ factor.

In this paper we describe the first nontrivial step towards an ezact solution of
the area maximization problem. We are given a finite set, S, of point sites py, ..., ps,
and we want to place a new site, p, at a location that maximizes the area of its
Voronoi region VR(p, S U {p}).

Two aspects of this problem statement need to be clarified. First, the Voronoi
region of p is formally undefined in case p = p; holds for a point p; € S. In the
context of our maximization problem, this can be fixed as follows. Suppose that p
moves towards p; along a straight line [. Then the bisector of p and p; converges to
the line through p = p; perpendicular to [. If we suppose that p is free to choose
its direction of attack against p;, we can define, as p’s Voronoi region, the largest
part of VR(p;, S) that can be cut off by a line through p;. For all points p;, these
maximal region parts can be computed in total time O(s). The maximum area p
can win, in this way, is a candidate for the final solution. Consequently, we may
now assume that p & S holds.

Second, if p settled at some location outside of the convex hull of S its region
would be unbounded. There are several ways of dealing with this fact, as will be
discussed in Section 4. In the following we are assuming that the feasible locations
for p are restricted to some closed domain F' inside the convex hull of S. Then the
Voronoi region of p in the Voronoi diagram V(S U {p}) is always of finite area.

Suppose that the Voronoi region p consist of parts of the former regions of
certain sites py,...,pn in V(S5); these sites form the set N of Voronoi neighbors of
pin V(S U {p}). In general, this set N spans a polygon that is star-shaped as seen
from p.* As our main result, we show that if the set IV is in conver position then
there can be at most one local maximum for the Voronoi area of p, in the interior
of the locus of all positions that have N as their neighbor set. The proof is based
on a delicate analysis of certain rational functions; it will be given in Section 3.

In Section 4 we analyze the loci of identical Voronoi neighbors, for a given set
S of point sites. Moreover, we discuss how a possible extension of our result to
the case of general star-shaped Voronoi neighborhoods could be used in an overall
algorithm for determining exactly the location of p that attains a maximum Voronoi
area. Finally, we mention some directions for future work in Section 5. The following
Section 2 contains some preliminaries, among them tractable formulae for the area

2A set P is called star-shaped as seen from one of its points, p, if any line segment connecting p
to a point in P is fully contained in P.
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of a Voronoi region with convex neighbor set.
For general properties of Voronoi diagrams see the monograph by Okabe et al.?
or the surveys by Fortune® and Aurenhammer and Klein.?

2. The Area of a Voronoi Region

First, we restate some basic definitions and facts. Let S be a set of s point sites in
the plane that are in general position, that is, no four of them are co-circular, no
three of them co-linear. By V(S) we denote the Voronoi diagram of the set S. It
consists of Voronoi regions VR(g, S), one to each point g of S, containing all points
in the plane that are closer to g than to any other site in S. The planar dual of
V(S) is the Delaunay triangulation, DT(S), of S. It consists of all triangles with
vertices in S whose circumcircle does not contain a site of S in its interior. The
circumcircle of a Delaunay triangle is also called a Delaunay circle. Both, V(S) and
DT(S), are of complexity O(s) and can be constructed in optimal time O(slog 8).

The set N of all Voronoi or Delaunay neighbors ¢ of site p forms a polygon,
P(N), that is star-shaped as seen from p. In this section we derive some useful
formulae for the area of the Voronoi region of a new site p with neighbor set N ;
assuming that P(NN) is convex. It is based on computing the signed areas of certain
triangles. Let (vp,v1,v2) be the vertices of a triangle D, where v; = (a;,b;) in
Cartesian coordinates. Then,

fl—l

2
SignedArea(D =3 ;ﬂ aibir1 — ai41b;)

gives the positive area of D if (v, v1,v2) appear in counterclockwise order on the
boundary of D; otherwise, we obtain the negative value. Here, indices are counted
mod 3.

Now let p;, piy1 be two consecutive vertices on the boundary of P(N}), in coun-
terclockwise order. Unless p is co-linear with p; and p;,;, these three point sites
define a Voronoi vertex v; that may or may not be contained in P (N); see Figure 1.

Let D; denote the triangle (p;,vs, pis1), for i = 0...n — 1. Its signed area is
positive if and only if these vertices appear on D; in counterclockwise order, that
is, if and only if v; lies outside the convex polygon P(N).

Lemma 1. With the notations from above we have the following identity.

Area( VR(p, S U {p})) = %(Am(P )+ Z SignedArea(D;))

i=1

Proof. The area of VR(p, S U {p}) equals the sum of the areas of the triangles
Ti := (vit1,p,v;). Let T} be the result of reflecting triangle T; about its edge
vivi+1. The union of all these triangles equals P(IV) minus those triangles D, that
are contained in P(N), plus those D; not contained in P(N); see Figure 2. O
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; . Py

Fig. 1. The triangles D; = (pi,vi,pit1)- Fig. 2. The triangles T; = (v;+1,p,vi) and
Only Dg,Dy,Do are inside the convex their reflected images T7.

neighbor polygon, P(N). Their signed ar-

eas are negative, whereas D3, and D4 have

a positive area.

Lemma 1 reduces the problem of maximizing the area of the Voronoi region of
p to maximing the sum of the signed areas of the triangles D;, assuming N is fixed.
Two vertices of D; are the given points p;, p;+1. Only the third vertex, v;, depends
on p, and its movement is constrained to the bisector of p;, pis;.

Next, we express the signed area of D; as a function of p in different ways. To
this end, let p; = (s4,t;), and let m; = (f‘—i';iﬂ-, t—“L;—"'i) be the midpoint of p;pi41.
We put b; = |p;im;| and [; = |pm;|; see Figure 3 for an illustration.

Lemma 2. Let p = (z,y) be the new point site, different from p; and p;+.. Then
the following identities hold.

2—-p2 -
—Si A P S S—
SignedArea(D;) = b; 3 SignedArea(Fy) (1)
T = B
Pt = tirr) +Y(Sit1 — 8i) + Sitir1 — Sivats
_ p2 (B 8)(@ = sip1) + (y — ) (y — tit1) (3)

Yo —si)(ti — tig1) + (v — i) (Sig1 — 84)

Proof. Let us first assume that p does not lie on the line through p; and p;1;.
Let C denote the diametral circle of the line segment p;p;+1. By definition, D; =
(pi, Vi, pi+1)- Clearly, the following equivalences hold.

p lies outside of C' & I; > b;

pre
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p=(z,y)

Piv1 = {31'.+] s tj.+1)

Fig. 3. Computing the signed area of the triangle D; as a function of p. In this case, the
sign is negative.

« SignedArea(D;) < 0

& Voronoi vertex v; is contained in P(N)

Let h; denote the height of triangle D;, so that Area(D;) = b;h;. The Voronoi
vertex v; can be expressed as a vector sum

vi =m; + hie;,

where e; denotes the unit vector that runs from m; towards v; along the bisector of
Di, Pit+1. We have e; = ﬁ(ti —tit1, Si+1 — §¢) if SignedArea(D;) < 0; otherwise the
direction of e; is reversed. On the other hand, p = (z,y) lies on a circle of radius
«./h? + b? centered at v;. Plugging the cartesian coordinates of v; into the equation
of this circle, and solving for h;, leads to formula (2), since the coefficient of h;
reduces to zero. y

The numerators in formulae (1) and (2) are identical, and so are the denomina-
tors. Formula (3) follows directly from (2), using the identity

b2 = (Sf: '“236+1 )+ (t:' —2f='+1 )2, -
It is interesting to observe that in the situation shown in Figure 3 the area
of triangle D; is also given by b2 cot @;, where a; denotes the angle at vertex p
of triangle F;. Indeed, as p moves along circle Cy, the values of o; and I; do not
change. When p is colinear with v; and m; we obtain Area(F;) = [;b;. Moreover,

cos? % —gin? & 1 oy o

2 2 T T

cot ;= e — _(cot — — tan —
2sin £t cos S 2 2 2

2 2
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kb 128
2'b; U 2 by

If p lies on the line through, but differs from, p; and p;41, then the denominator
of (2), that is, the signed area of F;, becomes 0, and the area of D; is infinite
since Voronoi vertex v; is at infinity now. The numerator of formula (2) is the
equation of the circle C. Therefore, the area of D; vanishes whenever p is placed
on C\ {pi,pi+1}, because v; is then equal to m;.

At the given points p; and p;s; the signed area of triangle D; is undefined,
and there is no continuous way of closing these gaps. However, when point p is
restricted to move along a line {Y = eX + f} through p;, the area function can be
continuously extended. If we substitute, in formula (3) of Lemma 2, ex + f for y,
where f = t; — es;, then the root x — s; cancels out, and we obtain a finite value at
z = 3; that depends on e.® '

3. Uniqueness of the Local Maximum

In this section we assume that IV, the set of Voronoi neighbors of the new site, p,
consists of n points in convex position. Then the locus, Ly, of all placements of p
that have N as their neighbor set is contained in the convex polygon P(N).

Now we state our main result.

Theorem 1. Let N be a convexr neighbor set. Then the area of the Voronoi region
of a new point p has at most one local mazimum in the interior of P(N) N Ln.

As usual, a function f is said to have a local maximum at point a if f(a) > f(b)
holds, for all b in a neighborhood of a.

Proof. By Lemma 1 it is sufficient to prove that the sum of the signed areas
of the triangles D; has at most one local maximum in the interior of P(N). It is
enough to show that this sum attains at most one maximum along each line through
P(N).

We substitute, in formula (2) of Lemma 2, the variable y by the coordinates
eX + f of a line G. By performing partial fraction decomposition, we obtain

—SignedArea(D; (X)) = X‘Afa- + ;X +d;.
If G does not pass through p; or p;4; then there is a a proper pole at X = a;,
where G intersects the line G; through p;, pi+1; compare the discussion at the end
of Section 2. More precisely, if the point G N G; lies outside the line segment p;p;+1
then, in formula (1) of Lemma 2, we have [; > b;, while the sign of the area of F;
changes from — to 4. Consequently, the sign of —D;(X) changes from — to +. But

bThe same holds in case line G passes through p; 41 because we can replace, in the denominator
of formula (3), s; with s;41 and t; with £;41.

L
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if G intersects the interior of p;p;,; then I; < bi, so that —D;(X) changes from +
to —.

If line G does pass through the given point p; or Pit1, then there is no pole, and
we have 4; =0.

Let us assume that line G equals the X-axis, and let

a1fas...Sanl<r<h <...<b

denote the n points that correspond to its intersections with the lines G;. By the
convexity of P(IN), the two intersections of the X-axis with the boundary of P(N)
must be consecutive in this sequence; they are denoted by [ and r.

Figure 4 shows the behavior of

f(X) == SignedArea(D;) =

i=1
= A L R * B
= ;X*ai_X—~I+X—r“§X—bg+cx+d

as a function of X. By the above discussion, we have Ay, B;>0and L,R > 0.

-+ e +-
L 1

2|

+ o= +

A4

Fig. 4. Between ! and r, the function f(X) can have at most one local minimum.

First, we assume that both L and R are strictly positive. We want to prove that
f(X) has at most one local minimum in the interval (I,r). Since f comes from —oo
at [, and returns to —oo at r, it is sufficient to show that its second derivative

1 " _ = Ai L R : ——---———.B‘S
O L o w o o

has at most two zeros in (I,r). We split the function into two parts,

m

A; L
9(X) :=Z X—ap X =I7 and

i=1

. B R
M) =) =R~ =

i=1
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such that f”/2 = g — h holds, and discuss g and h independently.

Lemma 3. Each of the functions g and g” has at most one zero in (I,0), and
each of h,h" has at most one zero in (—oo,r).

Proof. Let z; # zo € (I,00) be such that g is a zero of g. Then,
L

and by multiplying both sides by fi"—:%)—g we obtain
A ($0 -0 L
; (o —a:)® (1 —1)3  (zy —1)3 (5)
_ i A; ((:r:; —a;)3 (xp — 3)3) B L (6)
T & (21— ai)3 \(zo — ai)3 (21— 1)° (z; — 1)
< ; @ —a) (@ —IP =g(z1) , if 21 > zo. (7)
Analogously, we have
0 = g(20) > g(z1) (8)

if £ < 2o holds. The alternatives (7) or (8) follow from (6) because a; < | < z¢, 21
implies that

(.’l?]_ - G;‘)S (:If[) - 5)3

(0 — a:)3 (21 - 1)®
is of value < 1if z; > x¢ holds, and of value > 1, otherwise. Consequently, g has
at most one zero in (I, 00). The other claims are proven analogously. |

As a consequence of Lemma 3, the function g has at most one zero and at most
one turning point to the right of /. Since g has a negative pole at ! and tends to 0 for
large values of X, its graph has one of the two possible shapes shown in Figure 5,
together with the possible shapes of the graph of h.

Our next lemma implies that f”/2 = g — h has at most two zeros in the interval

1,7).

Lemma 4. The graphs of the functions g and h have at most two points of inter-
section over (I, 7).

Proof. If neither g nor h have a zero in (I,) their graphs do not intersect; see
Figure 5. Suppose that h has a zero in (I,); then it has a unique minimum, m. Let
us assume that p; and p, are, from left to right, the first points of intersection of
the two graphs in (I, 7).
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We argue that ps must be situated to the right of minimum m of h. Indeed, to
the left of m function h is decreasing, and runs below the X-axis. But below the
X-axis, function g is increasing. Thus, at most one intersection, p;, can be situated
to the left of m.

D D2 ‘1

(A A

Fig. 5. The possible shapes of the graphs of g and h. There can be at most two points of
intersection between [ and r.

If py lies to the left of the maximum, M, of function g, or if g does not have
a maximum, then, in (p2,00), the two graphs are separated by the wedge between
their tangents at ps. To the right of M, function g is decreasing and runs above
the X-axis, while h is increasing above the X-axis. In either case, there can be no
further point of intersection to the right of ps. O

So far we have shown that the function f takes on at most one local minimum
along each line G that enters and leaves the convex polygon P(NN) through interior
edge points.

It remains to generalize this statement to the case where the line G passes
through one or two of the given points of N, upon entering and leaving P(N).
First, suppose G enters through p; and leaves through an edge, so that L = 0 and
R > 0 hold. We study the same functions f,g,h as before, but on the interval
(@m,7). Clearly, function g is strictly positive now. It comes from +oo and tends
to 0 for large values of X. Hence, its graph can intersect the graph of A at most
once. Consequently, function f has at most one turning point. Since f comes from
+o00 at X = a,, and tends to —oo at X = r, it can have at most one minimum in
between.
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If both L and R vanish because line G enters and leaves P(V) through vertices
Ppi, pj then we consider the interval (a,,,b;) between the innermost poles. Since both
graphs of g and h are strictly positive now, they have at most one point in common.
Function f comes from and returns to +cc at a,, and b;. Because f has at most
one turning point in between, it has exactly one minimum.

This completes the proof of Theorem 1.

To give an example, let us assume that n points are evenly placed on the bound-
ary of the unit circle. For n < 4 there is no local maximum of the Voronoi area. In
fact, there is a unique local minimum at the center for n = 3; for n = 4, the cross
formed by the four point sites consists of minimal positions. But for n > 5 we have
a unique local maximum at the center of the circle.

4. Global Considerations

In the preceding section we have studied the situation where the new site, p, moves
only locally, so that the set N of its Voronoi neighbors does not change. During a
global move of p, three events may happen. First, its set of Voronoi neighbors can
change.

As before, let Ly be the locus of all placements of p that have exactly the points
in N as their Voronoi neighbors. Figure 6 shows an example where the set Ly is not
connected. In general, L consists of several maximal connected subsets Cy called

Fig. 6. Each of the shaded cells has p1,...,p12 as neighbor set.
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the neighborship cells of N, whose nature is determined by the following Lemma 5.
Observe that for two neighboring sites, ¢ and 7, on the convex hull of S we can
define, as their Delaunay triangle and circumcircle, the halfplane defined by the
line through g, r that does not contain a site of S.

Lemma 5. Let S be a set of s point sites in the plane. The neighborship cells with
respect to S are the cells of the arrangement of the Delaunay circles of S. Each cell
C has, as its neighbor set N, all sites that span a Delaunay circle containing C.
The total complezity of all neighborship cells is in O(s?).

Proof. The standard incremental algorithm for constructing the Delaunay tri-
angulation is built on the following fact. On inserting a new site, p, into the Delau-
nay triangulation of S, there will be a Delaunay edge of DT'(S U {p}) connecting p
with ¢ € S if and only if p lies in the circumcircle of a Delaunay triangle of DT(S)
that has g as a vertex. This shows that all points of the same cell have the same set
of Voronoi neighbors, namely all sites that span a Delaunay circle containing the
cell. Moreover, edge-adjacent cells have different sets of Voronoi neighbors. Indeed,
if p leaves a Delaunay circle spanned by u,v,w through the arc between u and v
then point w can no longer be a Delaunay neighbor of p because the edge pw would
cross the edge uv of the Delaunay triangle (u,v,w) of DT(S U {p}). O

The arrangement of O(s) many circles can be constructed in time O(sA4(s)) by
a deterministic® algorithm, or in expected time O(slog s + k), where & denotes the
complexity of the arrangement; see Sharir and Agarwal.l?

Another event happens when p hits the boundary of the convex hull of the site
set S. At this point, the region of p becomes unbounded. There are several ways of
dealing with this phenomenon. The most simple one we suggest here is to assume
that a certain feasability domain, F', is given, that consists of neighborship cells
contained in the interior of the convex hull of S, and that the placement of p is
restricted to F' (“far out of town there are no customers to win”). One could also
think of allowing unbounded Voronoi regions, and measuring their area by the angle
between the two unbounded Voronoi edges. Another approach could be to specify
population densities, instead of the uniform distribution, with or without defining
a feasibility domain F.

Finally, the position of the new site, p, could coincide with one of the existing
sites, p; € 5. At these points the area function fails to be continuous; in fact, the
former region of p; is split among p and p; by a bisector through p = p; whose slope
is perpendicular to the direction in which p has approached p;, as we discussed
in Section 1. But apart from the points p;, the area function is smooth, as was
shown independently by Okabe and Aoyagi” and by Piper? who generalized work
by Sibson.!!

©As usual, A:(s) denotes the maximum length of a Davenport-Schinzel sequence of order ¢ over s
characters,



474 F. Dehne, R. Klein & R. Seidel

Let us assume the uniqueness of the local maximum proven in Section 3 for
convex Voronoi neighbor sets were also true for the general star-shaped neighbor sets
N. Then we could employ the following technique for finding the global maximum
within the whole feasibility domain F. First, we compute how large an area p can
obtain by moving close to an existing site from the right direction. This takes total
time O(s). Next, we compute the Delaunay triangulation of S, and the arrangement
of all Delaunay circles in time O(sA4(s)). We inspect each cell C of F in turn, and
compute the optimal placement of p within the closure of C'. Within the interior of
C we can simply follow the gradient which leads to the (unique!) maximum, or to
the boundary of C. Finally, it would remain to check for maxima on the boundary
of C, which consists of circular arcs, by Lemma 5.

5. Conclusions

In this paper we have shown that the Voronoi area of a new site has at most one
local maximum in the interior of each neighborship cell, if the Voronoi neighbors
are in convex position. This result gives rise to many further questions.

The obvious open problem is if the maximum is still unique if the neighbors are
in star-shaped position. The main difference to the convex case is the following.
The line G, along which the new site p was supposed to move in the proof of
Theorem 1, can now intersect edge extensions of the neighbor polygon P(N) inside
P(N), too. Consequently, the functions g and h in the proof of Lemma 3 become
more complicated. We expect that considerably more (mathematical) effort will be
necessary in order to settle this problem.

Other questions concern the customer model. Also, it would be interesting to
study metrics different from the Euclidean, that are frequently used in location
planning. From a theoretical point of view, it would also be interesting to investigate
higher dimensions.
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