
DOI: 10.1007/s00453-006-1213-2

Algorithmica (2006) 45: 263–267 Algorithmica
© 2006 Springer Science+Business Media, Inc.

Guest Editor’s Introduction

Frank Dehne1

Massive growth in data collections in diverse fields such as genomics, proteomics, parti-
cle physics and environmental monitoring has outstripped our present ability to analyze
all this data. In addition to large data size, some data analysis processes, e.g. in genomics
and proteomics, involve computationally very hard (e.g. NP-complete) problems. Re-
search into parallel computing aims at creating enabling technology for solving such
data intensive and computationally hard problems, thereby leading to new scientific
discoveries (see, e.g. [1]).

The importance of parallel computing has been widely recognized. The history of
parallel computers dates back to the ILLIAC IV used for the NASA space program in the
seventies, followed by a long line of large and expensive supercomputers in the eighties
and nineties built by companies like Cray, Thinking Machines, DEC, IBM, SGI and
Sun. During recent years, a new type of very powerful but much less expensive parallel
machines has emerged: the processor cluster built entirely from low-cost commodity
hardware. It consists of p standard processors (typically rack mountable standard PCs)
connected by a data switch (e.g. Gigabit Ethernet). The main advantage of processor
clusters is that they have a vastly superior price performance ratio and that they are much
more scalable. It is possible to build clusters with a very large number of processors, and
the majority of the current top 500 supercomputers [12] are indeed processor clusters.

The better scalability of processor clusters is very important for scientific applica-
tions because it enables the solution of scientific problems of a scale that was previously
unreachable, thereby leading to new scientific discoveries. The main disadvantage of
processor clusters is that it is often much harder to design efficient parallel algorithms
and application software. In processor clusters, computing and memory resources are
distributed and much more loosely coupled than in traditional parallel machines. This
leads to lower cost and better scalability but it also requires more sophisticated parallel
algorithms and application software. An important rationale for many current installa-
tions of traditional supercomputers, despite the higher cost, is the fact that the targeted
applications do have efficient parallel algorithms and software for traditional, shared
memory, supercomputers but no efficient parallel solutions for processor clusters. This
does not only lead to higher expenditures but it also prevents new science because the
superior scalability of processor clusters cannot be exploited and important large-scale
scientific computations remain impossible. In the popular literature, this lack of efficient
parallel software for scalable systems is often called the “parallel software barrier”.

1 School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6. frank@dehne.net,
http://www.dehne.net.



264 F. Dehne

number of
processors

speedup =
sequential running time
parallel running time

op
tim

al

classical parallel algorith
m

CGM algorithm

practical range 
for num. proc.

(a) (b)

Fig. 1. (a) Observed running time of a CGM algorithm for bipartite graph detection on an input graph with
10,000,000 nodes [2]. (b) Comparison of typical speedups: CGM algorithms and classical parallel algorithms.

The aim of the Coarse-Grained Multicomputer (CGM) model [9], [10] is to help
break this barrier. The CGM model is a fully coarse-grained version of Valiant’s BSP
model [13] and addresses a fundamental and long open problem for parallel algorithm
design: the need for a simple, practical and accurate model to analyze the performance
of parallel algorithms. Accurate performance prediction is crucial for the development
of efficient parallel software. In addition to analyzing parallel algorithm performance,
the CGM model also gives guidance towards good parallel algorithm design. The CGM
model is particularly well suited for cluster computing where message overheads are
a big problem. The CGM model addresses this problem in a very effective way. Good
CGM algorithms result in a fixed small number of large messages. This implies a fixed
small communication overhead that shrinks proportionally (relative to total time) as data
size increases. Figure 1(a) illustrates this effect for the problem of detecting whether a
graph is bipartite [2]. The three curves shown represent the total time, local computation
time (COMP) and communication time (COMM) of a CGM algorithm [11] executed
on a Pentium-based LINUX cluster with Gigabit Ethernet interconnect. The important
observation is that the curve for the communication time, as a function of the number
of processors, is flat. For most algorithms based on previous models (e.g. the classical
PRAM model or the more recent BSP [13]), the number of messages and resulting
message overhead grow considerably with an increasing number of processors, with the
consequence of considerable performance loss. CGM algorithms avoid such problems
because they have only one compute thread per processor and a small fixed number
of messages whose length grows with the increasing problem size, resulting in much
improved performance and scalability. The typical effect on speedup is illustrated in
Figure 1(b). In contrast to classical and BSP algorithms, the speedup for CGM algorithms
is typically close to optimal when the number of processors is small relative to the
number of data items in the input data set. For practical applications of high-performance
computing, this is usually the case. The number of data items is typically many millions
and the number of processors a few hundred or maybe thousands.

The CGM model has become popular with researchers who design and implement
parallel algorithms for processor clusters. Algorithmica published a 1999 special issue
on Coarse-Grained Parallel Algorithms [6]. The 2003 Conference on Computational



Guest Editor’s Introduction 265

Science had an entire session dedicated to CGM algorithms. Most of the earlier work
was on fundamental CGM algorithms and their implementation and testing on processor
clusters. Our own group has been working, e.g. on CGM methods for solving large
scale graph problems [11], [2] and Computational Geometry problems [9], [10] as well
as parallel external memory methods [7]. More recently, the focus has shifted towards
using the CGM paradigm for designing, implementing and analyzing large-scale parallel
applications for processor clusters. Our group has been working, e.g. on parallel methods
to build data cubes for data warehousing applications [8], resulting in the first parallel
data cube prototype system that can create data cubes at a rate of more than 1TB per
hour [4]. Another application includes a cluster-based parallel version of CLUSTAL W
for large-scale gene and protein sequence analysis [3].

This special issue of Algorithmica is dedicated to CGM algorithms for large-scale
scientific applications. As stated earlier, fields such as genomics, proteomics, particle
physics and environmental monitoring are in need of scalable parallel solutions to over-
come massive computational tasks that have created barriers to scientific progress. In
particular, massive growth in scientific data collections has outstripped our present abil-
ity to analyze all this data and, in addition, fields such as computational biology require
the solution of algorithmic problems with very high computational complexity (e.g.
NP-complete) on these ever-increasing input data sets (see, e.g. [1]). Because of their
superior scalability, processor clusters are important tools for solving such problems and
the CGM paradigm provides a promising new approach for designing and implementing
efficient parallel algorithms for processor clusters and help break the “parallel software
barrier”.

I now turn my attention to the papers published in this special issue. In response to
the Call for Papers, 30 submissions were received of which 10 papers were selected for
publication. These papers are grouped into three categories: Bioinformatics, Large-Scale
Data Analysis and Fundamental Methods.

Bioinformatics: Abu-Khzam, Langston, Shanbhag and Symons study parallel prob-
lems that are fixed-parameter tractable (FPT). In particular, they study the NP-hard vertex
cover problem and its applications in phylogeny and gene motif discovery. The paper
presents outstanding performance results for their approach, using real-life data such as
sh2 and sh3 domains. Due to the exponential nature of the problem, traditional methods
(pre-FPT and parallel-FPT) were unable to handle input data with more than 100 data
items, not even with months of computation. This paper reports on solving instances
with more than 10,000 data items in a few hours. Keane, Page, Naughton, Travers and
McInerney report on a fully cross platform coarse-grained distributed application for
building large phylogenetic trees. Their new system overcomes many of the limitations
imposed by the current set of parallel phylogenetic programs and it is now publicly
available. The next two papers deal with gene and protein sequence comparison. Alves,
Cáceres and Song present a new coarse-grained parallel algorithm for the all-substrings
longest common subsequence operation which is used, e.g. to find approximate tandem
repeats and the alignment of one sequence with several others that have a common
subsequence. Driga, Lu, Schaeffer, Szafron, Charter and Parsons discuss parallel and
sequential sequence alignment via a method called FastLSA. Experiments indicate that
their method scales well and can be parameterized to take advantage of cache memory
and main memory sizes.



266 F. Dehne

Large-Scale Data Analysis: The second set of contributions deals with large-scale
data analysis. The roots of this type of research are typically in the business domain,
e.g. in data warehousing and online analytical processing. Here, the goal is to analyze
very large databases of historical corporate data for business intelligence applications.
The main research questions deal with the huge size and high dimensionality of the
data and how to extract meaningful new information. With ever increasing scientific
databases, similar problems arise in scientific data analysis. For example, very large
and high-dimensional data sets need to be examined for environmental data analysis
with the goal of determining past successes/failures in environmental management and
predicting future trends. Typical operations include data summaries, data correlation,
feature extraction and view extraction which are the topics of the next four papers.
Chi, Koyutürk and Grama present a coarse-grained parallel algorithm for constructing
summaries of distributed data sets. Chilson, Ng, Wagner and Zamar study the parallel
computation of high-dimensional robust correlation and covariance matrices. Souza,
Matwin and Japkowicz discuss how parallelism can be used to improve the performance
of feature selection algorithms for data classification and present a coarse-grained parallel
version of the feature selection algorithm FortalFS. Bhatt, Flahive, Wouters, Rahayu and
Taniar study large-scale web ontologies and present a coarse-grained (data) parallel
method for materialized ontology view extraction.

Fundamental Methods: The final two papers improve on fundamental methods that
are part of many coarse-grained parallel algorithms for scientific applications: sorting and
load partitioning/balancing. Chaudhry and Cormen introduce Slabpose Columnsort, a
new oblivious algorithm for out-of-core sorting on distributed-memory clusters. Harvey,
Das and Biswas present a new workload partitioner that dynamically balances processor
workloads while minimizing data movement and runtime communication.

While the early years of research on coarse-grained parallel algorithms were mainly on
fundamental methods, we have progressed to a state where sufficient basic methodology
is available to support a shift of emphasis towards the study of large-scale applications
based on coarse-grained parallel methods. Here, we focus on scientific applications. As
shown in this special issue and other publications, coarse-grained parallel algorithms
are a useful framework for developing new cluster-based high-performance solutions
for scientific problems. As stated at the beginning, the goal is to overcome the parallel
software barrier and enable new scientific discoveries.

References

[1] D.A. Bader. Computational biology and high-performance computing. Communications of the ACM,
47(11):35–41, 2004.

[2] A. Chan, F. Dehne, and R. Taylor. Implementing and testing cgm graph algorithms on pc clusters
and shared memory machines. International Journal of High Performance Computing Applications,
19(1):81–97, 2005.

[3] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon. Solving large fpt problems on
coarse-grained parallel machines. Journal of Computer and System Sciences, 67(4):691–706, 2003.

[4] Y. Chen, F. Dehne, T. Eavis, D. Green, A. Rau-Chaplin, and E. Sithirasenan. cgmOLAP: Efficient parallel
generation and querying of terabyte size rolap data cubes. In Proc. 22nd International Conference on
Data Engineering (ICDE), Atlanta, GA, 2006, to appear.



Guest Editor’s Introduction 267

[5] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. Parallel rolap data cube construction on shared-nothing
multiprocessors. Distributed and Parallel Databases, 15:219–236, 2005.

[6] F. Dehne (Guest Editor). Special issue on coarse-grained parallel algorithms. Algorithmica, 24(3/4),
1999.

[7] F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari. Bulk synchronous parallel algorithms for
the external memory model. Theory of Computing Systems, 35(6):567–598, 2002.

[8] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the data cube. Distributed and
Parallel Databases, 11(2):181–201, 2002.

[9] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms for coarse-grained
multicomputers. In Proc. ACM Symposium on Computational Geometry, pages 298–307, 1993.

[10] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational geometry for coarse grained
multicomputers. International Journal on Computational Geometry, 6(3):379–400, 1996.

[11] F. Dehne, A. Ferreira, E. Caceres, S.W. Song, and A. Roncato. Efficient parallel graph algorithms for
coarse-grained multicomputers and BSP. Algorithmica, 33(2):183–200, 2002.

[12] H. Meuer, E.H Strohmaier, J. Dongarra, and H.D. Simon. Top 500 Supercomputer Sites.
http://www.top500.org/.

[13] L.G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–111,
1990.


