
Distrib Parallel Databases (2006) 19: 29–62
DOI 10.1007/s10619-006-6575-6

The cgmCUBE project: Optimizing parallel data cube
generation for ROLAP∗

Frank Dehne · Todd Eavis · Andrew Rau-Chaplin

C© Springer Science + Business Media, Inc. 2006

Abstract On-line Analytical Processing (OLAP) has become one of the most powerful and
prominent technologies for knowledge discovery in VLDB (Very Large Database) environ-
ments. Central to the OLAP paradigm is the data cube, a multi-dimensional hierarchy of
aggregate values that provides a rich analytical model for decision support. Various sequen-
tial algorithms for the efficient generation of the data cube have appeared in the literature.
However, given the size of contemporary data warehousing repositories, multi-processor
solutions are crucial for the massive computational demands of current and future OLAP
systems.

In this paper we discuss the cgmCUBE Project, a multi-year effort to design and implement
a multi-processor platform for data cube generation that targets the relational database model
(ROLAP). More specifically, we discuss new algorithmic and system optimizations relating
to (1) a thorough optimization of the underlying sequential cube construction method and
(2) a detailed and carefully engineered cost model for improved parallel load balancing and
faster sequential cube construction. These optimizations were key in allowing us to build a
prototype that is able to produce data cube output at a rate of over one TeraByte per hour.

Keywords ROLAP . Data cube . Parallel processing

∗Research supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

F. Dehne
Carleton University, Ottawa, Canada
e-mail: frank@dehne.net; www.dehne.net

T. Eavis
Concordia University, Montreal, Canada
e-mail: eavis@cs.concordia.ca; www.cs.concordia.ca/∼eavis/

A. Rau-Chaplin (�)
Faculty of Computer Science, Dalhousie University, 6050 University Ave. Halifax NS Canada B3J
1W5, Canada
email: arc@cs.dal.ca; www.cs.dal.ca/∼arc

Springer

30 Distrib Parallel Databases (2006) 19: 29–62

1. Introduction

While database and data management systems have always played a vital role in the growth
and success of corporate organizations, changes to the economy over the past decade have
even further increased their significance. To keep pace, IT departments began to exploit rich
new tools and paradigms for processing the wealth of data and information generated on
their behalf. Along with relational databases, the venerable cornerstone of corporate data
management, knowledge workers and business strategists now look to advanced analytical
tools in the hope of obtaining a competitive edge. This new class of applications comprises
what are known as Decision Support Systems (DSS). They are designed to empower the
user with the ability to make effective decisions regarding both the current and future state
of an organization. To do so, the DSS must not only encapsulate static information, but
it must also allow for the extraction of patterns and trends that would not be immediately
obvious. Users must be able to visualize the relationships between such things as customers,
vendors, products, inventory, geography, and sales. Moreover, they must understand these
relationships in a chronological context, since it is the time element that ultimately gives
meaning to the observations that are formed.

One of the most powerful and prominent technologies for knowledge discovery in DSS
environments is On-line Analytical Processing (OLAP). OLAP is the foundation for a wide
range of essential business applications, including sales and marketing analysis, planning,
budgeting, and performance measurement [17, 28]. The processing logic associated with
this form of analysis is encapsulated in what is known as the OLAP server. By exploiting
multi-dimensional views of the underlying data warehouse, the OLAP server allows users
to “drill down” or “roll up” on hierarchies, “slice and dice” particular attributes, or perform
various statistical operations such as ranking and forecasting. Figure 1 illustrates the basic
model where the OLAP server represents the interface between the data warehouse proper
and the reporting and display applications available to end users.

To support this functionality, OLAP relies heavily upon a data model known as the data
cube [16, 18]. Conceptually, the data cube allows users to view organizational data from
different perspectives and at a variety of summarization levels. It consists of the base cuboid,
the finest granularity view containing the full complement of d dimensions (or attributes),

Data MiningAnalysisQuery Reports

Olap ServerOlap Server

Meta Data Repository

Monitoring
Administration

Operational Databases

Data Warehouse

Data Marts

External Sources

Extract
Clean

Transform
Load

Refresh

Output

Front End Tools

Olap Engines

Data Storage

Data Cleaning
and

Integration

Fig. 1 The three-tiered OLAP model

Springer

Distrib Parallel Databases (2006) 19: 29–62 31

Red

White

Blue

By Make & Colour

By Colour

By Make

1993

1990
1991

1992

Chevy
Ford

By Year

By Colour
& Year

By Make &
Year

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

AA BB CC D

All

Fig. 2 (a) A three dimensional data cube for automobile sales data. (b) The lattice corresponding to a four
dimensional data cube with dimensions A, B, C and D

surrounded by a collection of 2d − 1 sub-cubes/cuboids that represent the aggregation of the
base cuboid along one or more dimensions. Figure 2(a) illustrates a small four-dimensional
data cube that might be associated with the automotive industry. In addition to the base
cuboid, one can see a number of various planes and points that represent aggregation at
coarser granularity. Note that each cell in the cube structure corresponds to one or more
measure attributes (e.g. Total Sales).

Typically, the collection of cuboids is represented as a lattice [18] of height d + 1. Starting
with the base cuboid—containing the full complement of dimensions—the lattice branches
out by connecting every parent node with the set of child nodes/views that can be derived
from its dimension list. In general, a parent containing k dimensions can be connected to k
views at the next level in the lattice (see Figure 2(b)).

In principle, no special operators or SQL extensions are required to take a raw data set,
composed of detailed transaction-level records, and turn it into a data structure, or group of
structures, capable of supporting subject-oriented analysis. Rather, the SQL group-by and
union operators can be used in conjunction with 2d sorts of the raw data set to produce
all cuboids. However, such an approach would be both tedious to program and immensely
inefficient, given the obvious inter-relationships between the various views. Consequently, in
1995, the data cube operator (an SQL syntactical extension) was proposed by Gray et al. [16]
as a means of simplifying the process of data cube construction. Subsequent to the publication
of the seminal data cube paper, a number of independent research projects began to focus on
designing efficient algorithms for the computation of the data cube [1, 3, 18, 21, 22, 30–33,
35, 36, 38, 40]. The algorithms can be divided into top-down and bottom-up approaches. In
the former case, we first compute the parent cuboids and then utilize these aggregated views
to efficiently compute the children. Various techniques have been employed for this purpose,
including those based on sorting, hashing, and the manipulation of in-memory arrays [1,
32, 40]. In all cases, the goal is to generate coarse granularity tables from views that have
previously been aggregated at a finer level of granularity. In contrast, bottom-up computation

Springer

32 Distrib Parallel Databases (2006) 19: 29–62

seeks to first partition the data set on single attributes [3, 30]. Within each partition, we
recursively aggregate at finer levels of granularity until we reach the point where no more
aggregation is possible/necessary. Bottom-up algorithms tend to favor views with a larger
number of dimensions.

In practice, materialized data cubes can be massive. In the Winter Corporation’s 2004
report [37], the largest three DSS databases exceed 20 Terabytes in size and the storage
requirements of more than 40% of production data warehouses exceed one Terabyte [8]. It is
therefore unlikely that single processor platforms can handle the massive size of future deci-
sion support systems. To support very large data cubes, parallel processing can provide two
key ingredients: increased computational power through multiple processors and increased
I/O bandwidth through multiple parallel disks. However, prior to our work, surprisingly little
academic research has focused on the design and implementation of parallel algorithms and
architectures for the fundamental data cube construction problem (see Section 2).

In [7, 4] we presented parallel data cube construction methods for relational OLAP (RO-
LAP) on shared disk and shared nothing architectures, respectively. In contrast to other work
(see Section 2), our methods scale well and show very good speedup for larger numbers of
processors. In addition, our methods integrate well with standard relational database systems
and do not require data conversion. On the basis of our preliminary experiments presented in
[7, 4], the Natural Sciences and Engineering Research Council of Canada (NSERC) funded
a multi—year project, and a dedicated 32 node Linux cluster, with the goal of building a
parallel system for ROLAP data cube construction. The latest version of this system, called
cgmCUBE, creates ROLAP data cube output at a rate of more than one TeraByte per hour
(16 GigaByte per minute).

In this paper we discuss the development of cgmCUBE and how we achieved the above
mentioned performance for our system through a very careful optimization of our earlier
system. The work presented in this paper represents approximately two person years of
system design and performance tuning. It improved the performance of the earlier system by
at least one order of magnitude. We discuss in detail the two parts of our work that lead to
most of the performance improvement:

1. Improvement of the underlying sequential cube construction method.
2. Improvement of the cost model for better load balancing and faster sequential cube con-

struction.

These results are the core of this paper and represent significant improvements on the state-
of-the-art in parallel systems for ROLAP data cube computations. Beyond cgmCUBE, these
results are of general interest because issues of load balancing and improving the sequential
base method are of almost universal importance for parallel cube generation.

The remainder of this paper is organized as follows. After a discussion of other work in
the area (Section 2), we give a general overview of our parallel approach for ROLAP data
cube construction, as well as an overview of the cgmCUBE software architecture (Section
3). In Sections 4 and 5 we present the core results of this paper: our work on optimizing the
underlying sequential cube construction method and our work on optimizing the cost model.
Section 6 concludes with a summary of our results and an outline of our planned future work.

2. Comparison with other work

As noted above, only a small number of parallel algorithms for data cube generation have
been presented in the literature. Muto and Kitsuregawa [26] describe an algorithm that uses

Springer

Distrib Parallel Databases (2006) 19: 29–62 33

a minimum cost spanning tree to define a view generation schedule. Load imbalances are
dynamically resolved by migrating view partitions from busy processors to idle processors.
However, no concrete implementation of the design is provided and the simulated results are
based upon assumptions that cannot be guaranteed in practice. In [20], Lu, Huang, and Li
describe a parallel data cube algorithm for the Fujitsu AP3000. The method uses hashing
to generate each of the 2d cuboids in the data cube. While an implementation is provided,
experimental results indicate little performance advantage beyond four or five processors.
A limited ability to exploit smaller intermediate group-bys, coupled with the overhead of
independently hashing each cuboid, constrains the potential of this approach. In [27], Ng,
Wagner and Yin describe four separate algorithms designed specifically for fully distributed
PC-based clusters and large data cubes. Best results were obtained with a technique that
“clustered” groups of cuboids on specific nodes. Scheduling decisions were determined
dynamically based upon the attribute similarity between the next view to be computed and
the cuboids already generated on each local disk. Experimental speedup results were good
for one to eight processors. However, relative performance improvements declined rapidly
when more than eight processors were used. The primary limitation on speedup appears to
be a scheduling mechanism that made incremental, local scheduling decisions rather than
global ones. Similar results for data sets with skew were recently presented in [24] where the
authors describe a dynamic load balancing scheme based on a master-slave style approach,
which is closely related to the approach in [26].

Perhaps the most significant previous work on parallelizing the data cube that has been
reported in the literature has been undertaken by Goil and Choudhary [14–15] for the IBM
SP2. (Recently, a similar approach based on cluster middleware was presented in [39]). The
approach of Goil and Choudhary has two distinguishing features. First, views are individually
partitioned across nodes rather than being clustered in groups. In theory, partitioning data
in this manner can simplify the load balancing process since an equivalent portion of the
input set can be distributed to each node. In practice, however, this kind of partitioning
is complicated by the fact that non-uniform record distribution within the data set may
make “perfect” partitioning impossible. Moreover, even if optimal partitioning could be
guaranteed, a significant amount of merging is required in order to aggregate duplicate
summary values from different processors. This requires considerable amounts of data to be
communicated between processors. More importantly, the Goil and Choudhary algorithm
uses a multi-dimensional OLAP (MOLAP) data cube representation. MOLAP systems store
and manipulate the logical cubes as multi-dimensional arrays. The obvious advantage of
doing so is that (1) only the aggregate values need to be stored and (2) the arrays provide an
implicit index for subsequent data cube queries. That simplifies the problem but as the number
of dimensions increases, the size of the logical data cube grows to enormous proportions and
various techniques must be used for data compression and indexing. Furthermore, a MOLAP
based system is tied to special data structures and database management systems, and any
data imported from a standard relational database system needs to go through a potentially
very costly conversion phase.

Because of the two main problems with the previously presented solutions, perfor-
mance/scalability and data accessibility, there is a strong motivation for research into high
performance relational OLAP (ROLAP) data cube construction. ROLAP keeps the data in
standard relational database format. Hence, no data conversion is required. Since all cre-
ated views are standard relational tables, they can also be queried with standard relational
methods. Our parallel data cube construction methods in [7] and [4] as well as the latest
cgmCUBE prototype software presented in this paper are based on the following objectives:
(1) Integration with standard relational systems, i.e. ROLAP. (2) Use of proven sequential

Springer

34 Distrib Parallel Databases (2006) 19: 29–62

algorithms for local ROLAP data cube computation. (3) Use of static global load balancing
based on a carefully designed cost model. (4) Special attention to minimizing communication
overheads and memory-disk transfers.

The case for ROLAP has been discussed above. Clearly, it is desirable that the parallel
method re-uses as much as possible from the sequential methods available in order to perform
local, sequential data cube computations. There is a large number of sequential ROLAP data
cube computation methods available in the literature, including [1, 3, 18, 30–32] and more
recently [21, 22, 33, 35, 36, 38]. As our sequential method for local ROLAP data cube
computation we chose Pipesort [32]. Even though this is a fairly “old” method, we chose
Pipesort over more recent methods for the following two reasons. (1) We chose to compute
cubes with 100% precision rather than iceberg cubes, and in order to support full integration
with standard relational systems, we require the views of the cube to be in standard table
format instead of a compressed format as is the case in the more recent papers. (2) Among
the remaining more traditional methods, Pipesort has the advantage over methods like BUC
[3] or [30] in that it performs well for a larger range of data distributions. This is an important
feature because the usefulness of the parallel ROLAP system would otherwise be rather
restricted.

An important feature of our approach is the use of static global load balancing based on a
carefully designed cost model. While in many cases dynamic scheduling is superior, this does
not appear to be the case for parallel ROLAP data cube construction. Those previous methods
that used dynamic load balancing [20, 24, 26, 27] observed a sharp drop in efficiency beyond
eight processors and did not scale well. Our approach, on the other hand, uses static global
load balancing and scales well, providing good speedup for larger numbers of processors [4,
7]. The key to the success of this approach is a carefully designed cost model which provides a
good a priori measure of expected computational loads. A large part of our work on optimizing
cgmCUBE was to improve on the cost model used. As outlined in the remainder, our new
optimized cost model played an important role in the improved performance of cgmCUBE.

3. Overview of high performance ROLAP data cube construction

We first give an overview of our parallel ROLAP data cube construction approach. Balancing
the load assigned to different processors and minimizing the communication overhead are
the core problems that need to be solved in order to achieve high performance and scalability.
Our method uses an explicit cost model that provides a global description of the complete data
cube generation process. As a result we are able to employ partitioning logic that equitably
pre-assigns sub-tasks to processors across the network. Given a d-dimensional dataset S, our
method for computing the 2d views on a p-processor parallel machine proceeds as follows.
(Please refer to Table 1 for a summary of the notation that will be used throughout the
paper.)

Step 1. Construct the cost model: We estimate the size of each of the 2d views in the lattice and
determine for each view the cost of directly computing its children. We use its estimated
size to calculate (a) the cost of scanning the view (b) the cost of sorting it and (c) the cost
of writing it to disk.

Step 2. Compute the sequential schedule: Using the bipartite matching technique presented
in [32], we reduce the lattice to a spanning tree that identifies a cost effective set of prefix-
ordered scan pipelines. In the remainder of this paper, a subtree of the data cube lattice
used as a view generation schedule is referred to as a schedule tree.

Springer

Distrib Parallel Databases (2006) 19: 29–62 35

Table 1 Summary of notation
Symbol Explanation

d number of dimensions in cube
k subset of dimensions, k ⊆ d
S Input data set
s over sampling ratio
p number of processors
Ri current record
Vi current view
n number of records
m number of views
C product of dimension cardinalities

Step 3. Compute the parallel schedule: We partition the schedule tree into s × p subtrees
(s = oversampling ratio) and then define p subproblems, each containing s subtrees.

Step 4. Compute the data cube in parallel: We assign the p subproblems to the p processors.
On each processor, we use the sequential PipeSort algorithm to build the local set of views.

It is important to note that the entire schedule tree is used when making load balancing
decisions. In other words, we do not require dynamic workload migration since we bring
together all relevant costing information before the computation and output of views actually
begins. By extension, no inter-processor communication is required after the subproblem
descriptions have been distributed. Given the size of the data cube, the effect of eliminating
cuboid merge costs is very significant. Furthermore, the PipeSort model (both sequential and
parallel) is designed to work directly with relational systems. The original data warehouse
can reside in a standard DBMS and, if desired, the 2d cuboids can be written back to the
same database.

In the remainder of this paper, we will discuss each of the above steps in detail. Our
parallel approach is based upon the sequential PipeSort algorithm [32]. PipeSort provides
two primary components. First and foremost, it explicitly defines the algorithm for the creation
of the schedule tree. Second, it provides a description of the process for building the view
pipelines identified by the schedule tree. In this section, we discuss the implementation of
both the sequential and parallel versions of the schedule tree generation algorithms. Pipeline
computation will be discussed in detail in the next section.

The sequential schedule tree

PipeSort constructs a cost-augmented lattice that defines the computational options or trade-
offs associated with data cube generation. It divides the “levels” of the lattice into a series
of bipartite graphs and, working bottom-up, matches each pair of contiguous levels in order
to identify the most efficient distribution of sort and scan orders that can be used to join
level i to level i − 1. The end result is a minimum cost spanning tree or schedule tree. This
schedule tree can then be decomposed into a sequences of scan pipelines, each of which
houses a subset of cuboids sharing a common attribute prefix. A single multi-dimensional
sort and scan, at the level of the parent view in the pipeline, can subsequently be used to
generate all cuboids with the same prefix order. Figure 3 provides a simple illustration for a
four dimensional cube.

Springer

36 Distrib Parallel Databases (2006) 19: 29–62

CBAD

CBA BAD ACD

BA

BCD

CBAD DBAC

A B D

all

C

CD

Fig. 3 The PipeSort schedule
tree. The prefix-ordered scan
pipelines are bolded. The dashed
lines represent sorting operations

The parallel schedule tree

At the heart of our parallel method is a min-max k-partitioning algorithm [2] that decomposes
the sequential schedule tree into subtrees. We note, however, that the standard min-max
algorithm must be modified in order to work in the data cube context. First, a min-max
k-partitioning does not provide a minimum cost (balanced) partitioning of the schedule tree
which is an NP-complete problem. Second, the min-max k-partitioning algorithm [2] is
designed for static graphs. In other words, it is expected that the edge weights remain fixed
during the execution of the algorithm. In our case, that is not true. When a subtree S is
extracted from the spanning tree for the purpose of network distribution, the root node of
S cannot be computed from its designated parent since that parent will now be computed
concurrently on another processor. Instead, the root view of S must be computed from the
original input set. To capture this additional complexity, we maintain a cut hash table that
records the current status/cost of the root edge of every partition. A simple illustration of the
algorithm’s adaptive costing can be seen in Figure 4.

Another important feature of our partitioning method is oversampling, that is the par-
titioning algorithm for p processors divides the schedule tree into s × p partitions, where
s refers to the oversampling factor. While min-max k-partitioning produces an optimal
partitioning of a weighted tree (i.e., the weight of the largest partition is minimized), this
partitioning may still be far from balanced. By initially producing a multiple of p subtrees,
we are able to combine these s × p subtrees into p subsets whose cumulative costs are
much more evenly balanced. To produce these subtree combinations, we use an iterative
technique that combines the largest and smallest trees with respect to construction cost.
A description of these subsets is then sent to each of the p processors where a sequential
pipeline computation algorithm constructs the views destined for the local node. Figure 5
shows an example of how a schedule tree is partitioned on a four processor machine. It is
important to note that, as for sequential PipeSort, the views computed on each local node
also comprise a sequence of prefix-ordered pipelines, which is an important property of our
method.

Springer

Distrib Parallel Databases (2006) 19: 29–62 37

cost(e) = raw sort
hash[e] = original cost

cost(e) = original
hash[e] = raw sort

e e e

cost(e) = original cost
hash[e] = nil

Fig. 4 The use of a “cut” hash table to support dynamic min-max k-partitioning

ABCD

ABC BDA ADC

AB

DCB

BCAD BDCA

A B D

all

C

DC

ABCD

ABC

AB

BDA

BD

B

all

ADC

AD

A

CA

C

DCB

DC

D

BC

Fig. 5 (a) The schedule tree. (b) A four-processor partitioning

3.1. cgmCUBE software architecture

In total, approximately 8,000 lines of C++ code support the full data cube system. The de-
velopment of the code base involved a number of independent programmers, several of whom
were in geographically distinct locations. A number of third-party software libraries were
utilized. Node-to-node communication is supported by LAM’s Message Passing Interface
(MPI) [25]. Thread functionality is provided by the Pthreads (POSIX Threads) libraries [29].
We also incorporated the LEDA Library of Efficient Data Structures and Algorithms graph
libraries into our data cube code base [23]. We selected LEDA because of its rich collection
of fundamental data structures (including linked lists, hash tables, arrays, and graphs), the
extensive implementation of supporting algorithms (including bipartite matching), and the

Springer

38 Distrib Parallel Databases (2006) 19: 29–62

Disk Subsystem

OS Support

I/O
Manager

Data Buffering
(Indirection)

PipeSort Application Layer

Sorting
Module

Aggregation
Module

Fig. 6 Software architecture of
the cgmCUBE system

C++ code base. Though there is a slight learning curve associated with LEDA, the package
has proven to be both efficient and reliable.

Having incorporated the LEDA libraries into our system, we were able to implement the
lattice structure as a LEDA graph, thus allowing us to draw upon a large number of built-in
graph support methods. In this case, we have sub-classed the graph template to permit the
construction of algorithm-specific structures for node and edge objects. As such, a robust
implementation base has been established; additional algorithms can be “plugged in” to the
framework simply by (1) sub-classing the lattice template, (2) over-riding or adding methods
and (3) defining the new node and edge objects that should be used as template parameters.

The final system, though large, has been constructed to be as modular and extensible as
possible. A basic block diagram of the architecture is shown in Figure 6. Extensions to the
core algorithms may treat the current system as a data cube back-end, using its core methods
as an API. Because of the emphasis on fundamental software engineering principles, the
current data cube engine is more than a mere “proof of concept”. It is a robust parallel OLAP
engine with the ability to support OLAP related research projects that build on it.

In order to support a robust experimental environment, we have written our own data
generation subsystem. In fact, the data generator has evolved into a significant application
in its own right. Because of the number of optional parameters that need to be passed to the
generator application (e.g., number of records in the data set, the number of feature attributes,
and the number of unique values in each dimension), coupled with the desire to maintain a
permanent record of specific data set “schemas”, we have constructed the data generator with
the compiler tools FLEX and BISON [12], the GNU equivalent of LEXX (lexical analysis) and
YACC (statement parsing). In so doing, we allow users to define a data set schema (in the form
of an ASCII text file) that identifies data set parameters as key/value pairs. This file is parsed by
the generator front-end to produce a final specification set that, in turn, is passed to the back-
end component that actually produces the data set. In other words, we have defined a small data
set specification language (DSSL) that provides tremendous flexibility in terms of defining
data characteristics and proved to be very helpful in the performance analysis of our system.

4. Optimizing pipesort

As discussed in Section 1, one of the important aspects of the performance optimization
for cgmCUBE is the improvement of the underlying sequential cube construction method.

Springer

Distrib Parallel Databases (2006) 19: 29–62 39

The final performance of cgmCUBE is ultimately limited by the efficiency of the underlying
sequential algorithms. Within the PipeSort context, this suggests that the algorithm for con-
structing each of the 2d cuboids deserves special consideration. While the PipeSort authors
described the algorithm for spanning tree generation in some detail, they provided very little
information on the computationally expensive pipeline phase. Though it is true that the views
of a given pipeline can be constructed in a single pass of the sorted input set, it is not at all
obvious that this can be done as efficiently as one might expect.

In this section we examine the parameters, goals, and logic of the pipeline algorithm
to determine whether variations in algorithm design or implementation can tangibly affect
runtime performance. Our analysis has led to the identification of four performance en-
hancements, i.e. components of the pipeline algorithm whose improvement can significantly
impact the overall runtime.

1. Data Movement. The PipeSort algorithm is data intensive. Because O(2d) views may
be created, many of which will have entirely different attribute orderings (necessitating
record permutations), the physical movement/copying of records and fields can become
extremely expensive on large, high dimension problems.

2. Aggregation Operations. At the heart of the pipeline process is the aggregation of data
into records of varying granularity. The existence of unnecessary or redundant aggregation
operations results in a needless slowdown in pipeline execution.

3. Input/Output Patterns. The PipeSort algorithm moves enormous amounts of data to/from
disk. In such environments, disk head movement and buffer flushing are a serious perfor-
mance issue.

4. Sorting. The first step in pipeline processing is a sort of the input view. Since (d
�d/2�) is a

lower bound on the number of sorts required to construct the full cube [30], a reduction
in sort costs will be an important component in improving overall performance.

In the remainder of this section, we discuss our approach to the optimization of each of
the performance limiters. Later in the paper, we demonstrate how these optimizations result
in an order of magnitude improvement in overall performance.

4.1. Optimizing data movement

Since 2d views of the data set need to be generated for a full cube computation, and each
pipeline requires a different ordering of attribute values, the amount of data movement is
a significant concern for an efficient PipeSort implementation. We identify two algorithm
components that require particular attention. First, the sort used to construct the top of each
pipeline, either Quicksort or Radix Sort, performs a large number of record movements during
the course of execution. Quicksort moves records after each of its �(n log n) comparisons,
while Radix Sort must write the input list to a sorted output list following each of its k iter-
ations. Second, considerable data movement is associated with pipeline processing because
the pipeline aggregation process relies upon a prefix ordering that is by definition different
from that of the input set (this is why a re-sorting is required). The order of the attributes in
the records of the input set must be permuted to that of the parent view in the pipeline before
aggregation can be performed.

Our goal in minimizing data movement is to eliminate record copying once the input set
has been read into memory. To accomplish this objective, we have designed the algorithm to
allow it to exploit data indirection. By indirection, we mean that instead of manipulating data
directly, we instead manipulate references to that data. Within the pipeline algorithm, there
are actually two distinct forms of indirection—and consequently, two types of references.
In the first case, we utilize vertical or record-based indirection. Here, we maintain a table

Springer

40 Distrib Parallel Databases (2006) 19: 29–62

of pointers (memory addresses) to the records in the sorted input set. For any operation that
would require a record as input, that record is obtained by following a pointer to the record’s
location in the original input buffer.

In the second case, we employ horizontal or attribute-based indirection. Here, we attempt
to largely eliminate the costs associated with permuting attribute values within individual
records. To do so, we maintain an attribute indirection table of size k that maps the intended
position of each of the k attributes in the pipeline parent view to its actual position in the
original record. Each pipeline has its own unique map. The cost of horizontal indirection is an
additional offset calculation for each attribute access. We note, however, that during pipeline
computation, the heavily accessed mapping table is likely to be held in the high speed L1/L2
processor caches, significantly reducing offset calculation costs. Data permutation, on the
other hand, generates true core-memory to core-memory swapping. Experimental evaluation
has shown that the cost of a full permutation of the input set is at least an order of magnitude
more expensive than that of horizontal indirection.

Figure 7 graphically illustrates the use of both forms of indirection. A two-dimensional
attribute reference is identified by first following the appropriate pointer into the input buffer
and then mapping the dimension reference to the proper position in the record array. We note
that although the input set does not appear to be sorted, it is nonetheless ordered as per the
requirements of the application (in this case by the attribute order defined in the attribute
indirection table).

Note that both the sort routines and the pipeline methods utilize both vertical and hori-
zontal indirection. Radix Sort and Quicksort are both implemented so as to work with record
references. Changes to record positions, whether on the basis of record comparisons (Quick-
sort) or counting-oriented re-orderings (Radix Sort), are reflected by changes in reference
positions. Once the input set has been (indirectly) sorted, the record indirection array is
passed to the pipeline processing module as input. The pipeline code makes a linear pass
through the reference table, using the attribute mapping table to identify values relevant to
each granularity level in the pipe.

Formal analysis of the indirection mechanism in [9] indicates that for an input set of
n records with k attributes to be sorted, vertical and horizontal indirection eliminates up

51%
48%

30%

16% 14%

0%

10%

20%

30%

40%

50%

60%

6 7 8 9 10

Dimensions

R
e

la
tiv

e
 I

m
p

ro
ve

m
e

n
t

Fig. 7 Resolving an attribute reference by way of vertical and horizontal indirection

Springer

Distrib Parallel Databases (2006) 19: 29–62 41

51%
48%

30%

16%

0%

10%

20%

30%

40%

50%

60%

6 7 8 9

Dimensions

14%

10

R
e

la
tiv

e
 I

m
p

ro
ve

m
e

n
t

Fig. 8 Relative improvement in performance due to indirection as a function of dimensions. (Fixed parameters:
Data size n = 100,000 rows. Views selected = all)

to n(k2 + 2k + 2) attribute copies from each pipeline computation. In practice this cost
reduction can be very significant. Consider, for example, an eight dimensional data set with
10 million records. Using a Radix Sort and indirection, the upper limit for data transfer costs
was shown in [9] to be 8 × 107. In the absence of indirection, the potential cost balloons to
8.2 × 108, a difference of over 70,000,000 operations.

Figure 8 shows, for full cube construction, the benefit of indirection in terms of relative
improvement. Relative improvement is defined as how much faster the optimized PipeSort
is than the original PipeSort due to a particular enhancement (in this case indirection). For
example, in computing the six dimensional data cube in Figure 8, the original PipeSort took
53.55 seconds, while the fully optimized PipeSort took 4.77 seconds for an overall relative
improvement of 1123%. This overall relative improvement is due to the contributions of
all four of the performance enhancements. The relative improvement due exclusively to the
introduction of indirection is 51%, while the other three enhancements accounted for the
remaining 1073% improvement.

We observe that in six and seven dimensions using indirection nearly halves the time
required. In these cases efficient in-memory computation is critical. However, in generating
higher dimensional cubes the relative improvement is less pronounced, largely because the
overall time taken is now dominated by increasing disk I/O costs. By 12 dimensions, the
relative benefit for large cubes typically falls below 5%, though it never represents a net
performance penalty. We note that, in practice, high dimension cuboid spaces are generally
represented as a partially materialized data cube (i.e., many of the large cuboids are not
constructed), in which case the relative improvement produced by indirection would be
similar to that of the low dimension spaces depicted in Figure 8.

4.2. Optimizing aggregation operations

Once the sorting phase has been completed, the input set is passed to the pipeline processing
module. As per the description of the original PipeSort paper [32], only a single pass of the

Springer

42 Distrib Parallel Databases (2006) 19: 29–62

input set is required to generate each of the m views in a given pipeline. As previously noted,
however, the details of a pipeline implementation were never provided. In fact, even though
this component of the algorithm would appear to run in O(n) steps, the overhead within each
of the n iterations can be very large, with the result that a straight-forward implementation
of the pipeline algorithm is be unacceptably expensive in practice.

To see why this might be the case, we need to examine what happens during each iteration.
The algorithm compares two records during each step—the current record Ri and previous
record Ri−1. It must examine the record Ri to find those changes in attribute values that
might affect any of the m cuboids in the current pipe. For a given attribute d , a change in its
value might or might not result in the creation of a new output record on a view Vi , where
1 ≤ i ≤ m, depending on whether or not d is actually a component of Vi . Checking each of
the d attributes to determine if it affects any of the up to d-attribute views in the m-length
pipe produces a O(d2m) run time for the record checking phase. Doing this for each of the
n input records quickly begins to erode the perceived benefit of a linear time algorithm.

The number of aggregation operations actually performed is another concern. Because
we are iterating through n records, each of which will contribute its measure value to the
subtotals of each of the m views, there is the potential for n ∗ m aggregation operations.
For large n and large m—and multiple pipelines—the amount of CPU time dedicated to
aggregation can be very significant.

Algorithm 1 presents a “lazy” pipeline algorithm that addresses these concerns. Essen-
tially, the algorithm loops over each record, aggregating input records into output views when
required. In Line 2, it identifies the first attribute—working from the most significant to the
least significant of the attributes relevant to the current pipeline—on which there is a change
in column value. If there has been no change, the measure attribute is simply aggregated into
the buffer of the parent view and it moves on to the next record. However, if there has been
a change, it uses the change position j as an implicit indicator of all affected cuboids. For
example, given that attribute checking proceeds from coarse to fine granularity in the prefix
order, we know that a view with at least l feature attributes must be affected if l ≥ j . Con-
versely, for a “coarse” view with less then j attributes, we can be guaranteed that a change
has not occurred on any of its attributes. We may therefore skip any further processing on this
view. For each of the n records, the total number of conditional checks is simply the number
required to find j , plus the number required to identify the affected cuboids. This O(d + m)
Pipeline Aggregation method is significantly more efficient than the naive O(d2m) design
described above.

Algorithm 1. Lazy Pipeline Aggregation

Input: A sorted input set of n record and d dimensions, and an ordered set of k dimensions
that form a pipeline prefix order.

Output: A set of m output views, each aggregated at a different level of granularity.
1: For all records in the input set
2: Find position of first change in current record
3: if change position j == k then

4: Aggregate measure value of parent view
5: else

6: perform lazy aggregation
7: end if

8: end for

Springer

Distrib Parallel Databases (2006) 19: 29–62 43

Returning to the issue of the number of aggregation operations, recall that O(mn) sum-
mations may be required. In Lines 3–7 of Algorithm 1, we use a technique called lazy
aggregation to dramatically reduce the required number of aggregation operations. In short,
aggregation only occurs on any of the m − 1 views beneath the parent view when a change in
attribute value has occurred on the next coarsest view. In other words, aggregation on these
views is never done directly from the records of the input set. Instead, we use the knowledge
that a change has occurred on view Vi−1 in the pipeline (i.e., an ancestor view) to trigger
an update on the running subtotal of Vi . The term lazy aggreation is indicative of the fact
that we hold off on aggregating into Vi until absolutely necessary. In fact, for a given input
data set and its associated pipeline, it is possible to show that lazy aggregation results in the
optimal/minimal number of aggregation operations.

Again, a practical example may be used to illustrate the potential performance gain.
Consider a data set of one million records, and a collection of k attributes, each with a
cardinality of ten. For a view A, the naive form of aggregation would result in n = 1, 000, 000
distinct aggregation operations. With lazy aggregation, however, summing into A would only
occur when triggered by record creation on its immediate parent, say AB. Since the size of
AB is bounded by its cardinality product

∏d
i=1 Ci , we can see that the total number of

aggregation operations required to compute A in this example is just 100. A more detailed
discussion of the implementation of Algorithm 1 is presented in [9].

Figure 9 shows for full cube construction the benefit of using lazy pipeline aggregation
over the straight-forward aggregation algorithm sketched in the original PipeSort paper [32].
We observe that the relative improvement due exclusively to lazy aggregation ranges between
740% and 980%. This makes lazy pipeline aggregation the most significant of our sequential
PipeSort enhancements. In six and seven dimensions using lazy aggregation reduces by
close to an order of magnitude the time required for cuboid generation. In generating higher

946% 980%
887%

785%

0%

200%

400%

600%

800%

1000%

1200%

6 7 8 9

Dimensions

10

740%

R
e
la

tiv
e
 I
m

p
ro

ve
m

e
n
t

Fig. 9 Relative improvement in performance due to the lazy pipeline aggregation algorithm as a function of
dimensions. (Fixed parameters: Data size n = 100,000 rows. Views selected = all)

Springer

44 Distrib Parallel Databases (2006) 19: 29–62

dimensional cubes the relative improvement is somewhat less pronounced, largely due to
increasing disk I/O costs, but is still very significant at over 700%. Again, the use of partial
cubes would, in practice, reduce the impact of increased I/O costs.

4.3. Optimizing input/output management

The preceding issues have been associated with computational performance. In this section,
the focus shifts to I/O issues relevant to the view construction phase. We note that PipeSort is
a very I/O intensive application. Specifically in high dimensions the output size can grow to
hundreds of times larger than that of the input. In this context, careful treatment of I/O issues
can lead to significant overall performance gains. Conversely, without adequate attention
to the execution and ordering of disk accesses, particularly write operations, the benefit of
algorithmic optimizations may be seriously undermined.

We have identified two areas in particular that have the potential to affect PipeSort per-
formance. The first is the problem of disk thrashing, a phenomenon that occurs when the
operating system tries to do a series of small writes to a set of distinct files stored at different
locations on the hard disk unit. The pipeline component of the PipeSort algorithm exhibits
exactly this type of structure as each of the n iterations in the pipeline loop has the potential
to generate m output records, each bound for a different file.

Modern operating systems attempt to limit the effect of this problem by buffering write
operations. If the OS delays the write operations too long, we are presented with a second
major problem—the operating system’s caches eventually become so saturated that a massive
amount of “house cleaning” is required to return the OS to a productive state. This wholesale
flushing is extremely resource intensive and is a serious drain on performance.

We address these issues with the introduction of an I/O manager specifically designed for
PipeSort. Embedded directly within the PipeSort framework, the job of the I/O manager is to
take over control of input/output operations from the operating system. Figure 10 illustrates
the basic I/O subsystem. For a pipeline of length m, the I/O manager controls m “view blocks”,
each associated with the resources required to manipulate one cuboid. When a logical write
is issued, the output record actually goes to the I/O manager which then places it into the
next available slot in the appropriate view buffer. If the current buffer is full, then the I/O
manager will instruct the operating system to write the entire buffer to disk.

For an output view of size j and an application buffer size of l, the use of an explicit
I/O manager reduces the number of write operations—and potential thrashing instances—
from j to j/ l. However, because the operating system is still free to buffer the PipeSort’s
write operations, it is entirely possible that it will continue to do so until it is overwhelmed
with back-logged I/O requests—our second major concern. To deal with this problem, we
introduce a throttling mechanism that prevents the operating system from ever reaching this
point. Specifically, when all processing for a given pipeline is completed, we issue a blocking
sync() call. The sync (or synchronization) call flushes all application I/O streams so that the
contents of any operating system buffers are physically written to disk.

We note, however, that the use of the sync-based throttle mechanism introduces an addi-
tional problem. Modern disk controllers employ a feature known as Direct Memory Access
(DMA). In short, DMA controllers can assume responsibility for moving segments of data
directly from memory to disk, thereby allowing the CPU to return to other, computationally
demanding tasks. It should be clear that the use of a blocking sync call largely eliminates the
benefit of DMA execution since the CPU stands idle as the I/O call executes.

We address this issue by recasting the PipeSort implementation as a multi-threaded appli-
cation. In the PipeSort, the use of separate I/O and computation threads allows us to enjoy the

Springer

Distrib Parallel Databases (2006) 19: 29–62 45

IO Manager

View Block

View Name

Dim Count

Buffer

Record Count

Current Rec.

Max Record

File Pointer
View Buffer

Pipeline
Output

Input Buffer

Disk
Device

Fig. 10 An illustration of the data cube I/O manager, showing the resources managed by one of its view
“blocks.”

benefits of DMA without the penalties of blocking sync calls. Specifically, we dynamically
generate a new I/O thread at the completion of each pipeline. The sole purpose of this I/O
thread is to invoke the blocking sync call. While the new thread waits for the call to terminate,
control returns to the original thread which then initiates execution of the next pipeline. In
this way, we can concurrently process portions of two pipelines—one doing I/O and one
doing computation—on a single CPU/DMA architecture. The end result is an I/O system
that is well tailored to the application and the resources it runs upon.

Figure 11 shows, for full cube construction, the benefit of using an explicit I/O manager
over the basic file I/O provided by the operating system. We observe that the relative perfor-
mance improvement due exclusively to use of the I/O manager ranges between 106% and
127%. In all cases careful management of I/O halves the time required to generate a data
cube. This is in large part due to the way in which the I/O managers overlaps computation
and I/O. Even at six dimensions the I/O system is saturated so that the relative performance
improvement derived from using the I/O manager remains basically constant even as the
amount of I/O grows with the number of dimensions.

4.4. Optimizing sorting operations

The first step in processing each pipeline is to sort the m records of the pipeline’s root
view. This entails a multi-dimensional sort on k ∈ {1 . . . d} attributes. An obvious ap-
proach to performing this multi-key sort operation is to use a well optimized comparison
sort like Quicksort [5]. Although Quicksort has a θ (m2) worst case time bound, its av-
erage case performance is O(m log m) and it has low constants in practice. Note that in
this application some dimensions may contain many duplicate values, so it is important
that pivot selection method used by Quicksort be well optimized for this case. As long
as this is done Quicksort behaves well, particularly when k, the number of attributes, is

Springer

46 Distrib Parallel Databases (2006) 19: 29–62

117%
127%

116% 118%

0%

20%

40%

60%

80%

100%

120%

140%

6 7 8 9

Dimensions

R
e

la
tiv

e
 I

m
p

ro
ve

m
e

n
t

106%

Fig. 11 Relative improvement in performance due to use of an I/O manager as a function of dimensions.
(Fixed parameters: Data size n = 100,000 rows. Views selected = all.)

large. When k is small a k-iteration Radix Sort [5], which requires O(kn), may outperform
Quicksort.

Our experimental evaluation suggests that for a data set of d dimensions and n records,
a k-attribute sorting is best performed with a Radix Sort rather than a QuickSort if 3k <

log n [9]. Our pipeline sorting mechanism therefore dynamically determines the appropriate
sort for a view of a given size and dimension count by evaluating this expression for each
input set. We note that while Radix Sort offers relatively little benefit for small problems,
it becomes an increasingly valuable algorithmic component as the data sets become very
large.

Figure 12 shows, for full cube construction, the benefit of adaptively selecting a sorting
method over simply using Quicksort. We observe that in six and seven dimensions the
relative performance improvement, due exclusively to adaptively selecting a sorting method,
is around 10%, while in higher dimensions there is no observable improvement. The lack of
improvement in higher dimensions is due to the fact that in such cases few of the root views
of pipelines meet the criteria for calling Radix sort, and those few that do tend to be too small
to benefit. The benefit of this enhancement is more clear in the context of computing partial
cubes. Figure 13 shows, for partial cube construction, the benefit of adaptively selecting a
sorting method sorting over simply using Quicksort. Here portions, all views up to a fixed
number of dimensions, of a ten dimensional cube were generated as is commonly done in,
for example, visualization applications. We observe that when all views consisting of three
dimensions or less are generated, the relative performance improvement due to adaptively
selecting a sorting method is close to 50%, this drops to around 15% for views of five
dimensions or less, and to zero beyond this point. The dynamic selection of a sorting method
can be an important optimization, especially for partial cubes, but its value depends very
much on the parameters of the problem.

Springer

Distrib Parallel Databases (2006) 19: 29–62 47

9%

12%

0% 0%
0%

2%

4%

6%

8%

10%

12%

14%

6 7 8 9

Dimensions

10

0%

R
e
la

tiv
e
 I
m

p
ro

ve
m

e
n
t

Fig. 12 Relative improvement in performance for full cube computation due to adaptive sort selection as a
function of dimensions. (Fixed parameters: Data size n = 100,000 rows. Views selected = all.)

48.84%

14.24%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

<= 3 <= 5

Dimensions

0.00 %

<=7

R
e

la
tiv

e
 I

m
p

ro
ve

m
e

n
t

Fig. 13 Relative improvement in performance for partial cube computation due to adaptive sort selection as
a function of subset of views selected. (Fixed parameters: Data size n = 1,000,000 rows. Views selected = All
views of 3d and less, 5d and less, and 7d and less, from a 10 dimensional cube.)

4.5. Sequential pipesort: Performance and scalability

We now examine the performance benefits obtained by the integration of our four main
PipeSort optimizations. Figure 14 shows for full cube construction that the relative

Springer

48 Distrib Parallel Databases (2006) 19: 29–62

0%

200%

400%

600%

800%

1000%

1200%

1400%

Dimensions

946% 980% 887% 785%

117% 127% 116% 118%

51% 48% 30% 16%

9% 12% 0% 0%

6 7 8 9

Lazy Aggr.

I/O Manager

Indirection

Adapt. Sort

10

740%

106%

14%

0%

R
e

la
tiv

e
 I

m
p

ro
ve

m
e

n
t

Fig. 14 Relative improvement in performance due to the four performance enhancements as a function of
dimensions. (Fixed parameters: Data size n = 100,000 rows. Views selected = all.)

performance improvement delivered by integrating these optimizations is 1123%, 1167%,
1033%, 919%, and 860% for 6, 7, 8, 9, and 10 dimensional cubes, respectively. These are
impressive performance gains that dramatically decrease the time required to generate a cube
of fixed size or, alternatively, allow significantly larger cubes to be generated in the same
time bounds. The key optimization is clearly lazy aggregation which accounts for a signifi-
cant fraction of the performance improvement. However, especially in the case of computing
partial cubes, (See Figure 15) the other optimization plays a very significant role accounting
for relative performance gains of up to 375%.

In this section we have been primarily focussed on the relative performance improvement
due to our optimizations, however is is also interesting to consider the absolute improvement
in terms of time. Figure 16(a) contrasts the performance of the two sequential algorithms on
100,000 records, while Figure 16(b) looks at a data set of 1, 000, 000 records. The curves are
very similar in both cases and clearly demonstrate the runtime reductions achieved with the
optimized algorithm. At ten dimensions, for example, the run-time for the original PipeSort
algorithm is approximately 1000% greater than that of the Optimized algorithm (808 sec-
onds versus 98.4 seconds on 105 records, and 7548 seconds versus 724 seconds on 106

records). In other words, a single processor machine running the new algorithm (assuming
adequate resources) would likely beat a 10-processor parallel machine running the original
code.

5. Optimizing the cost model

In previous sections, we have assumed the existence of a cost model that populates the lattice
with estimates of cuboid construction costs. Developing an accurate predictive costing model
is an important and challenging task. Moreover, it is the accuracy of the cost metrics, as

Springer

Distrib Parallel Databases (2006) 19: 29–62 49

0%
23%

107%106%

243%

26%

0%

100%

200%

300%

400%

500%

600%

700%

800%

Adaptive
Sorting

Indirec-
tion

I/O
Manager

Lazy
Aggregation

653%
680%

Full Cube Partial Cube
R

e
la

tiv
e

 I
m

p
ro

ve
m

e
n

t

Fig. 15 Relative improvement in performance due to the performance enhancements as a function of dimen-
sions for full and partial cubes. (Fixed parameters: Data size n = 1,000,000 rows. Views selected = all and
views of 3 dimensions and less.)

0

100

200

300

400

500

600

700

800

900

6 7 8 9 10

R
u
n
 T

im
e
 (

se
c)

Number of Dimensions

Optimized
Standard

0

1000

2000

3000

4000

5000

6000

7000

8000

6 7 8 9 10

R
u
n
 T

im
e
 (

se
c)

Number of Dimensions

Optimized
Standard

Fig. 16 (a) Performance comparison for sequential PipeSort on 105 records. (b) The same comparison for
106 records

much as any other component of the system, that dictates the quality/balance of the workload
distribution. Specifically, if the algorithm does not accurately represent the true cost of
constructing pipelines, then there is no guarantee that the decomposed spanning tree will
distribute equivalent workloads to each of the processors.

We note that the parallel cost model is in fact substantially different from the sequential
model. In particular, the sequential framework only concerned itself with the relative costs
of sorting and scanning. By incorporating these costs into a bipartite matching algorithm, it
was possible to construct efficient pipelines. The designers of the PipeSort did not concern
themselves with the I/O costs of the data cube, even though the enormous size of the output
makes such costs substantial. They did not do so because in a sequential environment the I/O

Springer

50 Distrib Parallel Databases (2006) 19: 29–62

costs are fixed. In other words, no matter how a view is created (e.g., ABCD versus DBCA),
it always contains the same number of records and, consequently, will always have the same
I/O cost. While this is also true in parallel, note that computation is no longer associated
with a single processor. Instead, just as each processor will do its own pipeline computation
(sorts and scans), it will do its own I/O as well. For this reason, good load balancing can only
be achieved if we can incorporate I/O costs into the costing model. In practice, the resulting
parallel cost model is significantly more complex than its sequential counterpart.

For illustrative purposes, we break the costing infrastructure into two basic phases. The
first deals with the estimation of cuboid sizes while the second takes these size estimates
and determines pipeline construction costs. We then take a detailed look at combining both
components of the framework.

5.1. Cuboid size estimation

Since the cuboids that populate the lattice have yet to be created, we must estimate their
final sizes. This is in fact a very difficult thing to do accurately in a data cube context since
we know nothing about the distribution of data in the fact table. Nevertheless, a number of
techniques for size estimation have been described in the literature [19, 34]. The simplest of
these involve (1) the cardinality product and (2) sample scaling. However, while the product
of the dimension cardinalities provides a crude upper bound for view estimates, it tends to
dramatically over-estimate the sizes for high dimensional views. By contrast, sample scaling
takes a small sample of the input set, computes a cube and then scales up the estimates. In
practice, however, it tends to significantly underestimate the number of duplicate records that
will be found in large data sets.

In [34], the authors propose a view estimation method that builds upon the Probabilistic
Counting algorithm first presented in [11]. The Counting-based method works as follows.
During a single linear pass over the data set, it concatenates the d-dimension fields into
bit-vectors of length L and then hashes the vectors into the range 0 . . . 2L − 1. The algorithm
then uses a probabilistic technique to count the number of distinct records (or hash values)
that are likely to exist in each of the 2d cuboids. To improve estimation accuracy, a universal
hashing function [5] is used to compute k hash functions that, in turn, allow the algorithm to
average the estimates across k counting vectors. The end result is a method that can produce
very accurate cuboid size estimates (with a bounded error), even for data sets with significant
skew.

We have implemented the algorithm in [34] and verified its accuracy. For example, the
algorithm produces estimation error in the range of 5–6 % with 256 hash functions. However,
its running time on large problems is disappointing. Specifically, despite an asymptotic bound
of O(n ∗ 2d), the constants hidden inside the inner computing loops are quite large. For the
small problems described in previous papers, this is not an issue. In high dimension space,
the running time of the estimator extends into weeks or even months.

Considerable effort was expended in trying to optimize the implementation of the al-
gorithm. Despite a factor of 30 improvement in running time, the algorithm remained far
too slow. We also experimented with the GNU-MP (multi-precision) libraries in an attempt
to capitalize on more efficient operations for arbitrary length bit strings. Unfortunately, the
resulting estimation phase was still many times slower than the construction of the views
themselves. At this point, it seems unlikely that the counting-based estimator is viable in
high dimension space.

Currently, we are using simpler statistical techniques to estimate view sizes. The funda-
mental idea is based on a probabilistic analysis that examines the cardinalities of the attributes

Springer

Distrib Parallel Databases (2006) 19: 29–62 51

of the data set. Specifically, the goal is to accurately estimate the number of duplicate records
likely to be generated for a specific set of attributes. While we have developed our own
method during the course of implementing the larger system, the spirit (and results) are very
similar to those described in [10]. It is important to note, however, that these techniques do
not actually examine the contents of the data set, only the cardinality data. As a result, they
are limited in their capacity to capture data-specific skew patterns, an important problem in
practice. Cost effective estimation therefore remains an important open area of research.

5.2. Pipeline cost estimation

In the previous section, we described how the sizes of views in the lattice might be estimated.
In this section, we describe a cost model that, given estimates of view sizes, predicts the time
required to generate those views. The model takes into account the contribution of the three
fundamental processes: (1) input/output, (2) pipeline scanning, and (3) sorting.

When modelling the costs of the algorithm, we must strike a balance between mapping
granularity and model transparency. In other words, our costing framework must be suffi-
ciently detailed to capture the salient features of the algorithms, but not so detailed that it
becomes unwieldy and difficult to modify if there are changes to the algorithm implementa-
tion, supporting libraries, or hardware. In the remainder of this section, we provide a concise
description of the current data cube costing infrastructure.

5.2.1. Input/Output

The I/O metric is the one component of the cost model that is heavily influenced by the
architecture of the machine being used. Specifically, I/O costs are intimately related to the
hardware and supporting software upon which the data cube implementation actually runs.
As such, it is necessary to experimentally define the relative impact of reading/writing data
to disk. That being said, the impact cannot be defined in “absolute” terms; it must instead be
a relative definition that can be measured against the scanning and sorting costs.

To represent I/O impact, we define what we call the Write I/O Factor. This expression
represents the degree to which a “write” to the local physical disk unit is more expensive than
a comparable write to a RAM (Random Access Memory) buffer. In a generic application
environment, such a measure would be virtually impossible to capture given the impact of
random disk head movements and OS intervention. Recall, however, that our I/O manager
assumes control of application input and output and reduces disk access to a finely coordinated
sequence of streaming reads and writes. We can therefore accurately capture the I/O factor
by experimentally comparing the cost of a RAM-to-RAM “write” versus a RAM-to-disk
“write” for data sets of sufficient size (small writes can be dominated by the initial disk head
movement). The Write I/O Factor for our local Linux cluster, for example, is 120. In other
words, for streaming writes the cost of sending data to disk is a little more than two orders
of magnitude greater than that of accessing the same records in a memory buffer.

Since each individual record is composed of k feature attributes and a single measure value,
the write cost for a k-dimensional data cube view with an estimated size of n is equivalent to
n(k + 1) × Write IO Factor. The reader will note that this form of I/O metric can be deemed
“relative” in that it is defined only in terms of n and k, parameters that will also be used by
the sorting and scanning cost functions.

Springer

52 Distrib Parallel Databases (2006) 19: 29–62

5.2.2. Scanning

Though conceptually we think of scanning as representing the process of linearly passing
through a parent view in order to compute a child, this is in fact not the case. Recall that the
pipeline algorithm uses a single scan of the n records of the input set to compute all m child
views in the pipeline. While a simple scan metric that incorporates the values of n and m
might seem to be an obvious solution, we cannot model scan costs in this fashion because
during the spanning tree construction and partitioning phases, we do not actually know how
many views will end up in a given pipeline. In other words, we do not know the value of m.

We deal with this problem by decomposing the scanning process into two components.
First, there is the portion of the scan cost that is associated with passing through the in-
put view and identifying the ith attribute in the set of k dimensions that represents an
attribute change on contiguous records. We will in fact incorporate this cost into the sort
metric (discussed below). Second, there is the component of the scan that is associated
with identifying a new record for view V (based upon the position of the attribute change),
and moving that aggregated record to the I/O manager’s output buffer. For a view V of
size n, this cost is exactly equivalent to n(k + 1). Furthermore, this cost does not depend
upon the number of views that end up in the final pipeline. Instead, each view must al-
ways be associated with this cost, regardless of its position in the pipeline or how it was
created.

5.2.3. Sorting

Each pipeline is associated with a sort on some input view. We have described the process
of dynamically choosing the appropriate sorting algorithm (Radix Sort or Quicksort). How-
ever, estimating the sort cost involves the computation of two other metrics. First, we must
include the read cost of the input view, defined as n(k + 1) × Read I/O factor (note that
the Read I/O factor might be slightly different than the Write I/O factor.) Second, we must
capture the cost of finding the position of the first attribute that differs in contiguous records,
i.e. the second component of the pipeline scan. While we cannot know where that position
will be for an individual record (e.g., 1 ≤ pos ≤ k), we can define the average or amortized
position as k/2. In other words, we expect that, on average, we will have to look at half of the
k attributes to find a change. The full cost of this portion of the scan is therefore n ∗ (k/2).
We will refer to this cost as the dim check metric. Putting the three sort components together,
we have sort = read cost + (Radix | Quicksort) + dim check.

We note that for the standard pipeline implementation, costing of the Radix and Quicksort
algorithms would be quite cumbersome due to the effect of data movement. Recall, however,
that the use of vertical and horizontal indirection virtually eliminates such costs, allowing us
to work with the much more manageable and more familiar 3kn and n log n metrics. Thus,
the fully materialized sort metric is defined as:

(n(k + 1) × Read I/O Factor) + ((3kn) | (n log n)) + (n × (k/2))

5.3. Putting it all together

While the previous sections have defined the cost functions that make up the larger model,
the careful reader may have noticed that there is still one slight problem with the direct
application of these metrics. Specifically, the I/O manager uses separate computation and I/O

Springer

Distrib Parallel Databases (2006) 19: 29–62 53

threads to exploit the functionality of modern DMA controllers. The result is that I/O and
computation are to a large degree overlapped. We note that this does not mean that we can
ignore I/O costs. Doing so would indicate to the bipartite matching algorithm that I/O costs
were effectively zero—an assumption that is most definitely untrue—leading to a partitioning
of work that would likely be poorly balanced.

At first glance, it would seem difficult to incorporate this knowledge into the model.
Specifically, the I/O costs for a given partition are not known until the spanning tree has
been cut; however, the cutting process itself relies upon accurate knowledge of the I/O costs.
We deal with this problem by further augmenting the min-max partitioning algorithm. To
accurately represent the construction costs in the new multi-threaded design, we define the
pipe weight

∑l
i=1 epipe as the sum of the sort/scan edges in a candidate partition and the I/O

weight
∑l

i=1 eIO as the sum of the I/O costs. We then define the actual partition weight as
max{∑l

i=1 epipe,
∑l

i=1 eIO}. In other words, for the current partition we dynamically decide
which of the two components, each with its own execution threads, will dominate or bound
the cost of the current computation. Since the execution threads almost completely overlap,
we know that the smaller of the two costs will be mostly absorbed by the larger cost and will
have little effect upon final run-time.

Figure 17 provides an illustration of the complete model for a sample partition defined on
a four-dimensional space, including the cost metrics for each of the relevant computational
components. The following costing features can be observed:� First, note that the existence of the “parent” cut requires that the “raw” data set be used as

input for the initial sort.� Edges from prefix-ordered pipelines are associated with scan and I/O costs, while non-
prefix views are associated with sort and I/O costs.� The actual partition weight in this example is bounded by the pipeline costs.

Finally, we note that the reader should not assume that the relative weights in this particular
example are indicative of general trends. Each data cube problem is unique, and the size and

ABC
1400

AB
150

BC
80

A
15

12500

DBCA
15000

raw

= partition weight: 337,2

pipe weight: 261,420

+ I/O weight: 75,840

= actual weight: 261,420

max{pipe weight, I/O weig

Natural Weight

min/max Weight

scan = 450
i/o = 5,400

scan = 30
i/o = 360

sort = 14,940
i/o = 2,880

sort = 205,000
i/o = 67,200

sort = 246,000
i/o = 67,200

i/o: n(k + 1) x Write I/O factor

read: n(k + 1) x Read I/O factor

scan: n(k + 1)

sort: read + [(3kn) | (n logn)] +

dim check: n x (k/2)

Fig. 17 Dynamic cost calculations for a sample partition from a four-dimensional space. The numeric values
inside each view represent the estimated sizes

Springer

54 Distrib Parallel Databases (2006) 19: 29–62

nature of the data set, coupled with the number of feature attributes, will produce different
partitioning patterns.

5.4. Parallel scalability and speedup

As described earlier, an accurate cost model is key to achieving good parallel throughput,
speedup, and scalability. If the cost model accurately estimates the size of cuboids and
correctly predicts the relative costs of sorting, scanning, and I/O, then the decomposition
into parallel subtasks based on it may lead to good parallel speedup and scalability. If not,
e.g., if the estimates are off by more than a few percent, then the parallel speedup will be
poor, little scalability will be evident, and throughput will be low. The performance analysis
in this section examines these issues using two experimental platforms, namely a distributed
memory Linux cluster and a shared disk Sunfire cluster.

1. Linux Cluster. The Linux system is a 64-processor (1.8 GHz), 32-node Beowulf configu-
ration, with a 100-Mb/sec Ethernet based network. Each node has its own pair of 40 GB
7200 RPM IDE disks. (We note, however, that to simplify the interpretation of results,
only one CPU and one disk were utilized on each node.) Every node was running Linux
Redhat 7.2 with gcc 2.95.3 and MPI/LAM 6.5.6 as part of a ROCKS cluster distribution.

2. SunFire 6800 Cluster. The SunFire 6800 is a 24-processor shared memory SUN multi-
processor that runs the Solaris 8 operating system. (We use this machine in a distributed
memory fashion. There is no change in code from that used on the Linux machine.) Our
SunFire 6800 uses SUN 900 MHz UltraSPARC III processors with one GB of RAM per
CPU. Finally, the SunFire comes equipped with a SUN T3 shared disk array.

In the following experiments all sequential times were measured as wall clock times in
seconds. All parallel times were measured as the wall clock time between the start of the
first process and the termination of the last process. We will refer to the latter as parallel
wall clock time. All times include the time taken to read the input from files and write the
output into files. Furthermore, all wall clock times were measured with no other user except
us on the clusters. We note that wall clock time is a combination of I/O and CPU time, as
well as OS processing (e.g., cache flushing). We do not break run times into these individual
components, however. cgmCube is a large, complex OLAP framework and represents more
than a single algorithm, or even a combination of algorithms. Part of the engineering objective
in the current project is to efficiently interact with a sophisticated contemporary operating
systems environment. It is therefore important not to exclude OS contributions. Moreover,
cgmOLAP allows the OS to perform bursts of I/O when the I/O Manager is inactive (i.e., its
buffer are not yet full). This “background” OS I/O is difficult if not impossible to measure
accurately. As a result, we believe wall clock I/O to be the most representative and useful
metric for the current system.

We will look at a sequence of data cube tests, each designed to highlight one important
characteristic or parameter of the model. In effect, we utilize a set of base parameters and
then vary exactly one of these parameters in each of the tests. These base parameters are
(with defaults listed in parenthesis):

1. Processor Count (16)
2. Fact Table Size (2 million rows)
3. Dimension Count (10)
4. Over-sampling Factor (2)
5. Skew (uniform distribution)

Springer

Distrib Parallel Databases (2006) 19: 29–62 55

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8 12 16 20 24

R
u
n
 T

im
e
 (

se
c)

Number of Processors

Actual
Optimal

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 8 12 16 20 24

E
ff
ic

ie
n
cy

 (
%

)

Number of Processors

Fig. 18 Parallel wall clock time in seconds as a function of the number of processors on a Linux cluster and
(b) corresponding parallel efficiency. (Fixed parameters: Data size n = 2,000,000 rows. Dimensions d = 10.)

When default values are not, or cannot, be used for a particular test, this fact will be
clearly noted. Finally, we add that each point in the graphs represents the mean value of three
separate test runs. Note that in general the variation between runs was less then 3%.

Finally, to assess the peak throughput of the cgmCUBE system we focussed on generating
large high dimensional cubes. For example, we generated data cubes using a 14-dimensional,
10 million record data set. The resulting cubes were up to 1.2 TeraBytes in size, contained
16,384 cuboids, and were produced in under 72 minutes on a 24-processor Linux cluster. In
general we were able to produce data cube output at a rate of over one TeraByte per hour.

5.5. Speedup

Figure 18 shows, for full cube construction, the parallel wall clock time in seconds as a
function of the number of processors on a Linux cluster and corresponding parallel efficiency.
The input set consists of 2 million 10-dimensional records. Note that for the “shared nothing
cluster” the input set is horizontally partitioned across the set of p disks. Figure 18(a) depicts
the performance curve. Also shown is the optimal curve, calculated as Topt = Tsequential/p.
Note that the actual performance tracks the optimal curve closely. For 24 processors, our
method achieves a Speedup of 20.18. In Figure 18(b), we provide the corresponding efficiency
ratings. With smaller processor counts (i.e., p ≤ 12), efficiency values lie somewhere between
90–95%, while for processor counts beyond this point, the ratings are between 83% and
90%. Given the complexity of the data cube generation problem, these results represent
an extremely efficient use of parallel resources. Moreover, the relatively mild decrease in
efficiency at 16+ processors suggests that even higher processor counts are likely to provide
acceptable efficiency. We note that the decrease in efficiency is due primarily to the difficulty
of balancing increasingly smaller workload partitions. As with most parallel algorithms, an
increase in the size of the input—in terms of both records and dimensions—would minimize
this issue. However, as we note below, this may not be terribly important in practice.

We now examine parallel cube generation on the SunFire 6800. Note that these tests utilize
16 of the SunFire 6800’s 24 processors as these were all that were available to us. With the
disk array it is important to note that one single instance of the base table is accessible to all
processors. Figure 19(a) shows the Speedup curve, while Figure 19(b) provides the efficiency
ratings. From two to eight processors, the efficiency again exceeds 90%. At 16 processors,

Springer

56 Distrib Parallel Databases (2006) 19: 29–62

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8 16

R
u

n
 T

im
e

 (
se

c)

Number of Processors

Actual
Optimal

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

E
ff

ic
ie

n
cy

 (
%

)

Number of Processors

Fig. 19 (a) Parallel wall clock time in seconds as a function of the number of processors on a Sunfire cluster and
(b) corresponding parallel efficiency. (Fixed parameters: Data size n = 2,000,000 rows. Dimensions d = 10.)

efficiency slips to about 80%. Since this is slightly more noticeable than the decrease on the
Linux cluster, it begs the question, “Is this an algorithmic issue?” Our analysis suggests that
the answer is likely no. Rather, it is the nature of the SunFire disk array itself that is beginning
to affect performance. Specifically, the disk array houses a fixed number of independent disk
units. This creates a bottleneck at high processor counts because the parallel system’s ability
to reduce I/O costs is more limited than its ability to reduce computation costs (i.e., fewer
disk heads than processors). These results suggest that shared disk data cube implementations
would be best suited to parallel settings with a small to moderate processor count. We note that,
in practice, this observation would not likely be seen as a significant restriction. Specifically,
because data warehouses would almost certainly be constructed as dedicated systems, unlike
the multi-purpose MPPs often seen in scientific computing environments, small to moderate
parallel systems would often be the platform of choice.

5.6. Data set size

In this section, we analyze the effect on performance as we increase the size of the input set,
holding other parameters constant. Figure 20 depicts the running time on the Linux cluster
for data sets ranging in size from 500,000 records to 10,000,000 records. Before examining
the curve, we note the following. As we increase problem size, the performance of the
I/O component of the algorithm will effectively increase at a linear rate since it essentially
performs streaming writes to disk. On the computational side, however, run-time is bounded
by the time to perform sorting. Recall that we may either use QuickSort of Radix Sort for
this purpose. In higher dimensional space (e.g., the 10-dimensional set used for the test),
Quicksort will generally be chosen for smaller data sets, but will give way to Radix Sort
once the sets become very large. Thus, we would expect to see a slightly super-linear growth
pattern for the smaller sets (due to the O(n log n) Quicksort), but then a more or less linear
pattern after a certain point (due to the asymptotically linear bound of Radix Sort).

Returning to Figure 20, we see a curve that closely resembles the expected shape. On small
sets, there is a modest super-linear increase in run-time. Between 5 million and 10 million
records, however, we see a curve that is almost perfectly linear in shape. At this point, almost
all of the sorting is performed by Radix Sort. Consequently, the curve begins to flatten out.
This, in fact, is a very encouraging sign for data cube implementations that will deal with
even larger fact tables.

Springer

Distrib Parallel Databases (2006) 19: 29–62 57

0

100

200

300

400

500

600

700

800

900

500K1M 2M 5M 10M

R
u

n
 T

im
e

 (
se

c)

Number of Records

Fig. 20 Parallel wall clock time in seconds as a function of the number of records in the input

5.7. Dimension count

In this test, we examine the effect of increasing the number of dimensions for data sets with
a fixed row count (the default of 2,000,000). Figure 21 illustrates the effect of increasing the
number of dimensions in the problem space from six to 14. Recall that an increase of one
in the dimension count corresponds to a doubling in the number of views to be produced.
Interestingly, the general shape of the curve is quite similar to that of the data set size
test (Figure 20). The explanation for this, however, is slightly different. In this case, the
combination of data set size and dimension count is likely to favour the QuickSort for most
of the large sorts. It is important, incidentally, to distinguish between large and small sorts
because even though most of the views in the lattice would have smaller dimension counts
and would thus be sorted with Radix Sort, it is the large views at the top of the pipelines that
dominate overall sorting costs. In any case, based upon this observation one might expect

8

16

32

64

128

256

512

1024

2048

4096

8192

6 8 10 12 14

R
u

n
 T

im
e

 (
se

c)

Dimension Count

Fig. 21 Parallel wall clock time
in seconds as a function of the
number of dimensions

Springer

58 Distrib Parallel Databases (2006) 19: 29–62

0

20

40

60

80

100

120

140

160

1 2 3 4

R
u

n
 T

im
e

 (
se

c)

Over Sampling Factor

0

200

400

600

800

1000

1200

1 2 3 4

R
u

n
 T

im
e

 (
se

c)

Over Sampling Factor

Fig. 22 Parallel wall clock time in seconds as a function of over-sampling factor on (a) two million records,
and (b) 10 million records, respectively

this curve to continue to increase at a super-linear rate. It does not do this because I/O costs
become increasingly important as we pass 10 dimensions. This is the case because in high
dimensional space a large percentage of the views are almost as large as the original fact table.
Given the significant penalty attached to writing all of this data to slow secondary storage,
the I/O phase of the algorithm begins to dominate the in-memory computation. Since the I/O
in this system is strictly linear (i.e., it is streaming, not random access), the growth curve
again begins to flatten out. We may therefore conclude that for significantly large problems,
either in terms of data set size or dimension count, increases in input parameters result in a
roughly linear increase in run-time performance.

5.8. Over-sampling factor

Recall from Section 3 that the use of a sample factor represents an attempt to reduce run-time
by improving the quality of workload partitioning. Figure 22 provides experimental evidence
that our approach is justified. In both test cases, we vary the sampling factor sf from one (i.e.,
no over-sampling) to four. Figure 22(a) presents results for the default data set of two million
records, while Figure 22(b) looks at 10 million records. The results are virtually identical.
In both cases, the use of an over-sampling factor, with s f = 2, reduces the base run-time by
approximately 35%. This reduction in run-time is entirely the result of improved partitioning.
For larger values of sf , however, performance begins to decline. There are two reasons for
this. First, as previously noted, each additional partition on each compute node is associated
with a slightly more expensive sort of the raw data set. Second, as we continue to partition the
original tree, we create subtrees with increasingly shorter pipelines. The effect is to reduce
the degree to which sorts can be shared by multiple views. As such, it appears quite likely that
an over-sampling factor of two will be optimal for virtually all practical parallel architectures.

5.9. Record skew

In this section we present tests that are designed to illustrate the impact of record skew
on the algorithm’s costing model. Recall that the current size estimator assumes a uniform
distribution of data. One would expect then that as the values of each dimension become
increasingly skewed (i.e., many more occurrences of some dimension values than others), the
size estimates would become increasingly inaccurate. By extension, load balancing decisions

Springer

Distrib Parallel Databases (2006) 19: 29–62 59

0

20

40

60

80

100

120

0.0 0.5 1.0

R
u
n
 T

im
e
 (

se
c)

Zipf Skew Factor

Fig. 23 Parallel wall clock time
in seconds as a function of the
number skew

would suffer, resulting in larger run-times. Figure 23presents performance results for data sets
that have been created with varying degrees of skew. We note that skew is produced with a zipf
function [41], a technique commonly employed in the data cube literature [3, 34]. In this case,
zipf = 0 corresponds to no skew, zipf = 0.5 to moderate skew, and zipf = 1 to heavy skew.

As the graph demonstrates, there is relatively little difference between the results for
uniformly distributed data and those of the skewed sets. We note that results are similar for
skew tests conducted on input sets of 500,000, 1 million, and 5 million records. There are
two reasons for this. First, though estimation quality does decrease, resulting in suboptimal
load balancing, this degradation is partly offset by reductions in I/O costs for skewed data.
Specifically, the introduction of significant skew creates more clustered data cube output,
thereby reducing view size and, in turn, reducing run-time. Second, the use of the zipf
function for data cube input sets tends to create a very regular pattern of skew. In particular,
all dimensions are skewed to the same degree, with the result that the associated errors in
size estimation tend to be “amortized” across the network. In other words, costing errors
are unlikely to be disproportionately associated with any one node. The result, at least with
this form of synthetic skew pattern, is that the algorithm handles estimation errors somewhat
better than one might expect. Obviously, not all data sets would exhibit this kind of regularity

0

100

200

300

400

500

600

700

1 2 4 8 12 16

R
u
n
 T

im
e
 (

se
c)

Number of Processors

Actual
Optimal

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

E
ff
ic

ie
n
cy

 (
%

)

Number of Processors

Fig. 24 Parallel wall clock time in seconds as a function of (a) the number of processors, and (b) the
corresponding parallel efficiency, on the Weather dataset

Springer

60 Distrib Parallel Databases (2006) 19: 29–62

in their skew patterns. Real world data sets are much more likely to have arbitrary clusters and
pockets of skew that might lead to more irregular workload partitioning. We have therefore
obtained a one million record data set containing information on weather patterns. While
not a typical OLAP subject, the weather set makes an appropriate test set in that it consists
of categorical attributes of reasonably low cardinality, and it has a meaningful “total” field
that can serve as the measure attribute. In our case we have extracted the following 10
feature attributes from the 20-attribute records (cardinality in parenthesis): hour of day (24),
brightness (2), present weather (101), lower cloud amount (10), lower cloud base height
(11), low cloud type (12), middle cloud type (13), high cloud type (11), solar altitude (1800),
and relative illuminance (218). The measure attribute is total cloud cover (9). Figure 24(a)
depicts the parallel speedup on the weather data set for one to 16 processors (both actual and
optimal), while Figure 24(b) provides the efficiency ratings. Observe that as the processor
count increases to 16 processors, there is a slightly more noticeable decline in efficiency
than was seen in the original experiments in Section 5.5. We believe this to be the result of
estimation error that is not evenly distributed to each of the p nodes. As previously discussed,
the design of efficient yet precise estimators, particularly in the presence of considerable data
skew, is still an open problem. Nevertheless, the parallel efficiency of our method still exceeds
80% for 16 processors.

6. Conclusion

In this paper, we have presented a new method for the parallelization of the data cube, a
fundamental component of contemporary OLAP systems. We have described an approach
that models computation as a task graph, then uses graph partitioning algorithms to distribute
portions of the task graph to each node. We also presented a highly optimized pipeline
processing algorithm for local (sequential) cube computation.

As noted in Section 1, relatively little work in the area of parallel data cube construction
has been published so far. Given the significance and size of the problem, there is a gen-
uine need for research on parallel data cubes. In this paper, we have provided one of the
most comprehensive frameworks for the parallel computation of the data cube. Of particular
significance is the fact that we have complemented our algorithmic work with an extensive
implementation that demonstrates the viability of relational data cube systems as high per-
formance OLAP platforms. We expect that the lessons learned during this process will be of
significant benefit to those constructing similar systems, whether in academia or industry.

Going forward, we expect that the current system will serve as a computational backend
for further OLAP related research. For example, we have already constructed a robust multi-
dimensional indexing subsystem and parallel query engine for the data cube [7]. We are also
looking at new techniques for data cube compression and visualization, as well as seamless
integration with existing database systems and OLAP products.

References

1. S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and S. Sarawagi,
“On the computation of multidimensional aggregates,” in Proceedings of the 22nd International VLDB
Conference, 1996, pp. 506–521.

2. R. Becker, S. Schach, and Y. Perl, “A shifting algorithm for min-max tree partitioning,” Journal of the
ACM, vol. 29, pp. 58–67, 1982.

Springer

Distrib Parallel Databases (2006) 19: 29–62 61

3. K. Beyer and R. Ramakrishnan, “Bottom-up computation of sparse and iceberg cubes,” in Proceedings of
the 1999 ACM SIGMOD Conference, 1999, pp. 359–370.

4. Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin, “ Parallel ROLAP data cube construction on shared-
nothing multiprocessors,” Distributed and Parallel Databases, vol. 15, pp. 219–236, 2004.

5. T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, The MIT Press, 1996.
6. F. Dehne, T. Eavis, and A. Rau-Chaplin, “Parallelizing the datacube,” Distributed and Parallel Databases,

vol. 11 no. 2, pp. 181–201, 2002.
7. F. Dehne, Todd Eavis, and A. Rau-Chaplin, “Distributed multi-dimensional ROLAP indexing for the data

cube,” The 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003),
2003.

8. The Rising Storage Tide, 2003. http://www.datawarehousing.com/papers.
9. T. Eavis, “Parallel Relational OLAP,” PhD thesis, Dalhousie University, 2003.

10. W. Feller, An Introduction to Probability Theory and its Applications, John Wiley and Sons, 1957.
11. P Flajolet and G. Martin, “Probabilistic counting algorithms for database applications,” Journal of Com-

puter and System Sciences, vol. 31 no. 2, pp. 182–209, 1985.
12. Flex and Bison, 2003. http://dinosaur.compilertools.net/.
13. S. Goil and A. Choudhary, “High performance OLAP and data mining on parallel computers,” Journal of

Data Mining and Knowledge Discovery, vol no. 4, 1997.
14. S. Goil and A. Choudhary, “High performance multidimensional analysis of large datasets,” in Proceedings

of the First ACM International Workshop on Data Warehousing and OLAP, 1998, pp 34–39.
15. S. Goil and A. Choudhary, “A parallel scalable infrastructure for OLAP and data mining,” International

Database Engineering and Application Symposium, 1999, pp. 178–186.
16. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, “ Data cube: A relational aggregation operator

generalizing group-by, cross-tab, and sub-totals,” in Proceeding of the 12th International Conference On
Data Engineering, 1996, pp. 152–159.

17. J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2000.
18. V. Harinarayan, A. Rajaraman, and J. Ullman, “Implementing data cubes,” in Proceedings of the 1996

ACM SIGMOD Conference, 1996, pp. 205–216.
19. P. Hass, J. Naughton, S. Seshadri, and L. Stokes, “Sampling based estimation of the number of distinct

values of an attribute,” in Proceedings of International VLDB Conference, 1995, pp. 311–322.
20. X. Huang H. Lu and Z. Li, “Computing data cubes using massively parallel processors,” 7th Parallel

Computing Workshop (PCW ’97), 1997.
21. L.V.S. Lakshmanan, J. Pei, and J. Han, “ Quotient cube: How to summarize the semantics of a data cube,”

in Proceedings of the 28th VLDB Conference, 2002.
22. L.V.S. Lakshmanan, J. Pei, and Y. Zhao, “Qc-trees: An efficient summary structure for semantic OLAP,”

in Proceedings of the 2003 ACM SIGMOD Conference, 2003, pp. 64–75.
23. Leda, 2003. http://www.mpi-sb.mpg.de/LEDA/.
24. H. Lu, J.X. Yu, L. Feng, and X. Li, “Fully dynamic partitioning: Handling data skew in parallel data cube

computation,” Distributed and Parallel Databases, vol. 13, pp. 181–202, 2003.
25. The Message Passing Interface standard, 2003. http://www-unix.mcs.anl.gov/mpi/.
26. S. Muto and M. Kitsuregawa, “A dynamic load balancing strategy for parallel datacube computation,”

ACM 2nd Annual Workshop on Data Warehousing and OLAP, 1999, pp. 67–72.
27. R. Ng, A. Wagner, and Y. Yin, “Iceberg-cube computation with PC clusters,” in Proceedings of 2001 ACM

SIGMOD Conference on Management of Data, 2001, pp. 25–36.
28. The OLAP Report. http://www.olapreport.com.
29. Programming POSIX threads. http://www.humanfactor.com/pthreads.
30. K. Ross and D. Srivastava, “Fast computation of sparse data cubes,” in Proceedings of the 23rd VLDB

Conference, 1997, pp. 116–125.
31. N. Roussopoulos, Y. Kotidis, and M. Roussopolis, “Cubetree: Organization of the bulk incremental updates

on the data cube,” in Proceedings of the 1997 ACM SIGMOD Conference, 1997, pp. 89–99.
32. S. Sarawagi, R. Agrawal, and A.Gupta, “On computing the data cube,” Technical Report RJ10026, IBM

Almaden Research Center, San Jose, California, 1996.
33. Z. Shao, J. Han, and D. Xin, “Mm-cubing: Computing iceberg cubes by factorizing the lattice space,” to

appear in the Proceedings of the 16th International Conference on Scientific and Statitistical Database
Management (SSDBM), 2004.

34. A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy, “Storage estimation for multidimensional
aggregates in the presence of hierarchies,” in Proceedings of the 22nd VLDB Conference, 1996, pp.
522–531.

35. Y. Sismanis, A. Deligiannakis, N. Roussopolos, and Y. Kotidis, “Dwarf: Shrinking the petacube,” in
Proceedings of the 2002 ACM SIGMOD Conference, 2002, pp. 464–475.

Springer

62 Distrib Parallel Databases (2006) 19: 29–62

36. W. Wang, J. Feng, H. Lu, and J.X. Yu, “Condensed cube: An effective approach to reducing data cube
size,” in Proceedings of the International Conference on Data Engineering, 2002.

37. The Winter Report, 2003. http://www.wintercorp.com/vldb/2003 TopTen Survey.
38. D. Xin, J. Han, X. Li, and B. W. Wah, “Star-cubing: Computing iceberg cubes by top-down and bottom-up

integration,” in Proceedings Int. Conf. on Very Large Data Bases (VLDB’03), 2003.
39. G. Yang, R. Jin, and G. Agrawal, “Implementing data cube construction using a cluster middleware: Algo-

rithms, implementation experience, and performance evaluation,” in Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID’02), 2002.

40. Y. Zhao, P. Deshpande, and J. Naughton, “An array-based algorithm for simultaneous multi-dimensional
aggregates,” in Proceedings of the 1997 ACM SIGMOD Conference, 1997, pp. 159–170.

41. W. Zipf, The Psycho-Biology of Language: An Introduction to Dynamic Philology, Houghton Mifflin,
1935.

Springer

