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Abstract. We describe an algorithm for the FEEDBACK VERTEX SET problem on
undirected graphs, parameterized by the size k of the feedback vertex set, that runs
in time O(ckn3) where c = 10.567 and n is the number of vertices in the graph.
The best previous algorithms were based on the method of bounded search trees,
branching on short cycles. The best previous running time of an FPT algorithm for
this problem, due to Raman, Saurabh and Subramanian, has a parameter function of
the form 2O(k log k/log log k). Whether an exponentially linear in k FPT algorithm for
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this problem is possible has been previously noted as a significant challenge. Our
algorithm is based on the new FPT technique of iterative compression. Our result
holds for a more general form of the problem, where a subset of the vertices may be
marked as forbidden to belong to the feedback set. We also establish “exponential
optimality” for our algorithm by proving that no FPT algorithm with a parameter
function of the form O(2o(k)) is possible, unless there is an unlikely collapse of
parameterized complexity classes, namely FPT = M[1].

1. Introduction

The FEEDBACK VERTEX SET problem for undirected graphs can be informally described
as the problem of finding a set of vertices that “covers all the cycles” in the graph in
the sense that every cycle in the graph includes at least one vertex of a solution set. We
consider here a generalization of the problem, where a subset of the vertices of the input
graph may be forbidden to belong to a solution set. This generalized form of the problem
is formally defined as follows:

FEEDBACK VERTEX SET (FVS)

Instance: An undirected multigraph G = (V, E)
(i.e., loops and multiple edges are allowed),
a forbidden subset U ⊆ V of vertices,
and a positive integer k.

Parameter: k
Question: Is there a subset S of the vertices not in U , S ⊆ V −U , of size at most k,

|S| ≤ k, such that G − S is acyclic?

In an instance of the problem as defined above, we will refer to the vertices of U as
forbidden vertices, and we will refer to the vertices of V −U as unforbidden or normal
vertices. We will also refer to G as simply a graph, although loops and multiple edges
are allowed. This generalized form of the FEEDBACK VERTEX SET problem was first
considered by Bar-Yehuda et al. [BGNR].

The FEEDBACK VERTEX SET problem (in its usual, ungeneralized form) is NP-
complete for both directed and undirected graphs [GJ]. There are numerous applica-
tions of the problem in areas such as circuit testing, deadlock resolution, analyzing
manufacturing processes and in various contexts in computational biology [BGNR],
[ENSS], [FHS], [FHP+], [KW]. The minimization version of the problem is approx-
imable within a factor of 2 in polynomial time [BBF]. See Festa et al., for a 1999
survey [FPR].

The FVS problem has been extensively studied from the parameterized point of
view [BBG], [B], [DF1], [DF2], [KPS], [RSS1], [RSS2]. A parameterized problem is
said to be fixed-parameter tractable (FPT) if it can be solved in time f (k)nc for some
function f (unrestricted), where n is the total input size, k is the declared parameter and
c is a constant independent of k and n. This running time may be written as O∗( f (k))
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in the notation introduced by Woeginger [W] that focuses attention on the exponential-
time costs due to the parameter and ignores the polynomial-time costs due to the overall
input size. Highlights of previous research on the FVS problem in the parameterized
framework include:

• A randomized FPT algorithm due to Becker et al. [BBG] running in time O∗(4k)

finds a minimum feedback vertex set of size k with probability at least 1− (1−
4−k)c4k

for an arbitrary constant c.
• After several rounds of improvement, the best previous deterministic FPT algo-

rithm, due to Raman et al. [RSS2], using some ideas from [RSS1] and [KPS], has
a running time of O∗(2O(k lg k/ lg lg k)). The basic idea for this and most previous
algorithms is to branch on short cycles in a bounded search tree approach. See
[DF2], [N1], and [N2] for a survey of this and other FPT techniques.

A number of problems concerning FVS have notably remained open:

(1) Is there an O∗(2O(k)) FPT algorithm for FVS on undirected graphs?
(2) Is there a polynomial-time algorithm that kernelizes FVS on undirected graphs

to a kernel of size polynomial in k? See [DF2], [N1], and [N2] for a discussion
of kernelization and FPT.

(3) Is the FVS problem in FPT for directed graphs?

In this paper we answer the first of these significant open problems by an ap-
proach based on the relatively new technique of iterative compression [RSV], [DFRS],
[M], [GGH+]. As we prepare the final version of this paper, we have become aware that
independently a solution to (1) has been described by Guo et al. [GGH+], also based on
iterative compression. Our algorithm differs in some details, and has a run-time analy-
sis that is superior to the apparently slightly earlier solution to question (1) described
in [GGH+].

In the next section we provide a brief discussion of the iterative compression tech-
nique and its application to the FVS problem. In Section 3 we describe our FPT algo-
rithm for the solution-compression form of the FVS problem. In Section 4 we prove
an “optimality” result for our algorithm (giving a lower bound on the possibility of
further qualitative improvements). In Section 5 we conclude with a review of open
problems.

2. Iterative Compression Applied to FVS

The FPT technique of iterative compression seems first to have appeared in an FPT
algorithm devised by Reed et al. for the problem of deleting k vertices to render a
graph bipartite [RSV]. The approach was articulated as a general FPT design technique
in [DFRS]. Some applications of the method can be found in [RSV], [DFRS], [M],
and [GGH+].
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Here we use this approach to solve the FVS decision problem by recursively solving
the following constructive solution-compression form of the problem:

SOLUTION COMPRESSION FOR FEEDBACK VERTEX SET

Instance: An undirected multigraph G = (V, E)
(loops and multiple edges are allowed),
a forbidden subset U ⊆ V of vertices and
a solution set S ⊆ V −U such that G − S is acyclic, where |S| = k + 1.

Parameter: k
Output: Either: (1) a solution set S′ of size k, or

(2) NO (i.e., no solution of size k is possible).

We employ an FPT algorithm for the above compression form of the FVS prob-
lem in the following way. We recursively solve a constructive form of the problem of
deciding whether a graph G = (V, E) admits a feedback vertex set of size k with
vertices to be chosen from V − U . In this constructive form of the decision problem
we are required either to produce a solution of size k, if one exists, or to return NO
otherwise.

Given an instance (G = (V, E),U ⊆ V, k), we recursively address the constructive
decision problem for the instance (G − v,U, k) where v is an arbitrarily chosen vertex
in V − U . If this recursive call on G − v returns NO, that is, no k-vertex solution for
G − v is possible, then clearly the correct answer for G is NO as well.

Alternatively, if the recursive call on the instance (G − v,U, k) returns a k-element
solution S ⊆ V −U , then S ∪ {v} is a solution of size k + 1 for G. We now employ as
a subroutine the FPT algorithm for the solution compression problem. If f (k)nc is the
running time for SOLUTION COMPRESSION FOR FVS, then our recursive solution to the
constructive decision problem runs in time f (k)nc+1, where n is the number of vertices
in the graph G.

In the next section we describe our FPT algorithm for the problem of SOLUTION

COMPRESSION FOR FVS.

3. An FPT Algorithm for FVS Solution Compression

We will use the following reduction rules that can be easily applied to simplify (or
summarily decide) an instance of the problem. Recall that some vertices (the vertices in
U in the problem definition) may be forbidden to belong to a solution set.

Rule 1: The Degree 1 Rule. If v is a vertex (forbidden or not) of degree 1 in G, then
delete v. The parameter k is unchanged.

Rule 2: The Degree 2 Rule. If v is a vertex (forbidden or not) of degree 2 in G, with
neighbors a and b (allowing possibly a = b), then modify G by replacing v and its two
incident edges with a single edge between a and b (or a loop on a = b). The parameter
k is unchanged.
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Rule 3: Annotation Contraction. If u and v are adjacent forbidden vertices (that is,
u, v ∈ U ) then contract one of the edges between u and v. The parameter k is unchanged.

Rule 4: The Loop Rules. If there is a loop on an forbidden vertex v then answer NO.
If there is a loop on an unforbidden vertex v ∈ V −U then take v into the solution set,
and reduce to the instance (G − v,U, k − 1).

Rule 5: Multiedge Reduction. If there are more than two edges between u and v
(forbidden or not) then delete all but two of these. The parameter k is unchanged.

Rule 6: Multiedge Selection. If there is an forbidden vertex u that is connected by
two edges to an unforbidden vertex v, then take v into the solution set, that is, reduce to
the instance (G − v,U, k − 1).

The soundness of all these reduction rules is self-evident. In time O(n) we can
determine if any of the above reduction rules can be applied to a problem instance. Note
that applications of the rules may cascade. We say that an instance is reduced if none of
the reduction rules can be applied.

Note that if we reduce an instance (G,U, k) to an instance (G ′,U ′, k ′) by a series
of applications of the above reduction rules, then given a solution S′ of size k ′ for G ′,
we can in time O(n) recover a solution S of size k for G. We will always harmlessly
assume that the instance we are working with is reduced.

Algorithm for SOLUTION COMPRESSION FOR FVS

Input: A reduced instance (G = (V, E),U ⊆ V, k), and a solution S ⊆ V −U of size
k + 1.
Output: Either a solution of size at most k, or NO if none exists.

Step 1: Branch on all 2k+1 subsets of S. The branch corresponding to a subset A ⊆ S
represents the search for a size k solution S′ that includes the vertices of A, that is,
A ⊆ S′, and that does not include any of the vertices of S − A = A′.

Thus, in the instance (G ′,U ′, k ′) that represents this branch of Step 1:

(1) the vertices of A are deleted,
(2) the vertices of A′ are forbidden,
(3) k ′ = k − |A|, and
(4) the instance is further reduced according to Reduction Rules 1–6.

We will argue below that for the reduced instance (G ′ = (V ′, E ′),U ′, k ′) considered
on any of these 2k+1 branches of Step 1, we have either:

(i) |V ′ −U ′| ≤ 4k, or
(ii) we can immediately determine that the answer is NO.

Step 2: On each branch of Step 1, exhaustively analyze the resulting reduced instance
by checking each k ′-element subset of the unforbidden vertices to see if any provides a
solution.
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Step 2 requires checking at most
(4k

k

)
subsets. A simple bound on the running time

of our algorithm is O(ckn2) where c = 18.963, since(
4k

k

)
≈ (9.4815)k

by Stirling’s approximation of n factorial. A more refined version of our algorithm,
detailed in Section 3.3, runs in time O∗(10.567k).

3.1. The Reduced Instance Bound for Step 1

The correctness of the algorithm is obvious because of its extreme simplicity. What is
less obvious is the claimed bound of 4k on the number of unforbidden vertices in the
reduced instance generated on a branch of Step 1 that need to be considered further.

Let A ⊆ S and A′ = S − A as in the description of Step 1. The immediate instance
graph G ′ on the A-branch of Step 1 consists of two sets of vertices:

(1) The (now) forbidden vertices of A′, where we have the bound |A′| ≤ k + 1.
(2) The other vertices, which we denote F . Some of these may be forbidden.

This immediate branch instance is further reduced, and this reduction process may
result in some modification of the above picture. For example, connected components of
the subgraph generated by A′ would be contracted to a single vertex, by repeated appli-
cations of Rule 3. To simplify the argument, we will assume that the immediate branch
instance is already reduced so that our description of the vertices of G ′ as partitioned into
A′ and F is accurate (these sets would be modified by further reduction, but a bipartition
with the same properties we make use of below would result in any case). The following
structural claims hold.

Lemma 1. The subgraph 〈F〉 induced by F is acyclic.

Proof. Otherwise S would not be a solution for G.

Henceforth we may use F (for convenience) to denote also the forest induced by
the vertices in the vertex set F .

Lemma 2. Each leaf l of the forest F is adjacent to at least two distinct vertices in A′.

Proof. In view of Lemma 1 and Reduction Rules 1 and 2, there must be at least two
edges connecting l to vertices in A′. Reduction Rule 6 would apply if l were connected
to only one vertex of A′.

The vertices in the forest F can be partitioned into three sets. Let L denote the leaves
of F , let J be the vertices that have degree 2 in the forest subgraph 〈F〉. We will refer
to the vertices of J as the subdivision vertices of F . Let B, the branch vertices of F , be
the vertices of degree at least 3 in the subgraph 〈F〉.

Lemma 3. Each vertex j ∈ J is connected to at least one vertex of A′.
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Fig. 1. A maximum path-matching of the subdivision vertices (“J vertices”) of the forest F , showing that
π(F) = 11+ 3 = 14.

Proof. Otherwise, in view of Lemma 1, Reduction Rule 2 would apply.

Definition 1. Let F be a forest with the vertex set partitioned into the three sets: (1) the
leaves L , (2) the subdivision vertices J and (3) the branch vertices B of F . A path-
matching of the J -vertices of F of size r consists of:

(1) r mutually disjoint 2-element subsets {xi , yi } ⊆ J , 1 ≤ i ≤ r ,
(2) for each i , 1 ≤ i ≤ r , a path ρi in F from xi to yi , subject to the requirement

that for i �= j , the paths ρi and ρj are vertex disjoint.

Definition 2. The potential π(F) of the forest F is defined to be the sum of the number
of leaves |L| of F and the size of a maximum path-matching of the J -vertices. (See
Figure 1 for an example.)

Lemma 4. Suppose that for the reduced instance (G ′,U ′, k ′)with vertex set partitioned
into A′ and F as above we have π(F) ≥ k ′ + |A′|. Then the answer for this instance is
NO.

Proof. Since π(F) ≥ k ′ + |A′|, there must be a set P of at least k ′ + |A′| paths in
G ′ that begin and end at vertices of A′, and that are pairwise internally vertex-disjoint.
This is ensured by the definition of π(F) and by Lemmas 2 and 3. If (G ′,U ′, k ′) were
a YES-instance, then there would be a feedback vertex set S′ consisting of at most k ′

unforbidden vertices. In particular, S′ could not contain any vertices of A′. LetP ′ denote
the subset of paths in P that are disjoint from S′. Since the paths in P are pairwise
internally vertex disjoint, so that, intuitively speaking, any vertex of S′ can hit at most
one of them, |P ′| ≥ |A′|. However, here we reach a contradiction, since the vertices of
A′ together with the paths in P ′ must form a cycle disjoint from S′.
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Lemma 5. For any forest F on m vertices, π(F) ≥ (m + 1)/2.

The proof of Lemma 5 is somewhat involved, and we defer the discussion to the
next subsection.

Lemma 6. If on the branch of Step 1 corresponding to A ⊆ S we have a reduced
instance (G ′,U ′, k ′) where the vertices of G ′ are partitioned into A′ and F as in the
discussion above, and where |F | ≥ 4k + 1, then this is a NO-instance.

Proof. By Lemma 5, π(F) ≥ 2k+1. The rest follows by Lemma 4, since |A′| ≤ k+1
and k ′ ≤ k.

3.2. The Proof of Lemma 5

Lemma 5 states that any forest F on m vertices has potential π(F) ≥ (m + 1)/2.

Proof. There are two parts to the argument:

(1) We prove the lemma for trees of maximum degree 3. The proof is by structural
induction.

(2) We then prove the lemma for arbitrary trees by minimum counterexample, using
(1) essentially as the base case. The lemma for arbitrary forests follows almost
trivially.

As it is simpler, we treat the second step first, assuming (1) for the moment. Let T
be a counterexample tree having a minimum number of vertices, |T | = m. By (1), T
must have at least one vertex v of degree 4 or more. We consider breaking T into two
trees T1 and T2 as illustrated in Figure 2. The vertex v is “broken” into two copies by
choosing an incident edge e and “detaching” T1 as the subtree joined to the rest of T at
v by the edge e, and by making one of the copies of v a leaf in T1. The tree T2 consists

Fig. 2. Breaking T into T1 and T2 at v.
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of T with e and the subtree (T1) attached by e removed. Thus in T2, the degree of (the
other copy of) v is decreased by 1, and we have |T1| + |T2| = |T | + 1. See Figure 2.

Let mi = |Ti | for i = 1, 2. Thus m1+m2 = m+1. The lemma must hold for each of
the trees Ti , since T is presumed to be a minimum counterexample. Therefore π(Ti ) =
(mi + 1)/2 for i = 1, 2. Choose suitable path-matchings of the sets of subdivision
vertices Ji in the Ti that witness this. Combining these witness structures in T (“putting
T back together”) gives

π(T ) ≥ (m1 + 1)/2+ (m2 + 1)/2− 1

with the−1 term because a leaf is lost when the two copies of v are fused back together.
(Note that the copy of v in T2 has degree at least 3 in T2 and therefore does not belong to
J2, so that there are no other losses in combining the two witness structures.) This gives

π(T ) ≥ (m + 3)/2− 1 = (m + 1)/2

and the lemma is proved, assuming (1).
To prove the lemma for trees of maximum degree 3, we induct on the structure of

such trees. Each such tree T is considered to be rooted at a vertex r , where either: (1) r
is a leaf of T , or (2) r has degree 2 in T . We will refer to (1) and (2) as the types of the
rooted trees we discuss.

Trees of maximum degree 3 are generated by two operations on these rooted trees:

(i) A unary operation x(T ) (extension of T ) that can be applied to rooted trees of
type either (1) or (2) and that consists in adding a new vertex r ′ connected to r ,
with r ′ becoming the root of the resulting “extended” tree.

(ii) A binary operation T1 ⊕ T2 (join of T1 and T2) that applies only when both T1

and T2 are of type (1), that is, have roots of degree 1. In this operation, the roots
of the two trees are identified, resulting in a rooted tree of type (2).

The two operations are illustrated in Figure 3.

Fig. 3. The parsing operations for trees of maximum degree 3.
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An elementary induction shows that all trees of maximum degree 3 can be parsed
in terms of these two operations on (smaller) rooted trees. For a rooted tree of type (1)
or type (2) our induction hypothesis is as follows. Here we consider that the vertices
of T are partitioned into the four sets: {r}, L , J and B, of the root, the leaves, the
subdivision vertices and the branch vertices, respectively, as in earlier discussions, but
with the exception of the root. In particular, here we do not consider that the root belongs
to J , even for rooted trees of type (2).

Induction Hypothesis. One of the following claims holds:

(1) |J | is even and the J -vertices of T admit a perfect path-matching in the sense
defining π(T ).

(2) |J | is odd and the J -vertices can be path-matched in T with the exception of
one vertex u ∈ J , and furthermore the path-matching can be accomplished so
that there is a path from u to the root r that is disjoint from the paths in T that
realize the path-matching of J .

The induction hypothesis is illustrated in Figure 4.
It is straightforward to verify the several cases of the induction step for the two

parsing operations. For example, we can verify that for the operation T1 ⊕ T2 where
both T1 and T2 satisfy case (2) of the induction hypothesis with non-path-matched J -
vertices, respectively, u1 and u2, the outcome T of the operation satisfies case (1) of the
induction hypothesis. In this outcome, the paths from the non-path-matched vertices ui

to the joined roots ri are combined to form a path matching u1 to u2 in T . We leave the
other cases to the reader.

By the above inductive argument, it follows that there can be at most one unmatched
J -vertex in a maximum path-matching of J in an (unrooted) tree T of maximum degree 3,
where the vertices of T are partitioned into the three sets L , J and B. Since |B| = |L|−2
and therefore

m = |L| + |J | + |B| = 2|L| + |J | − 2

Fig. 4. An example of the induction hypothesis for |J | odd.
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we have

π(T ) ≥ |L| + (|J | − 1)/2 = (m + 1)/2,

which proves the lemma for trees of maximum degree at most 3.

3.3. A More Efficient Version

Lemma 4 shows that there is a simple way to improve the efficiency of our algorithm.
On the branch of Step 1 corresponding to a subset A of the (k + 1)-sized solution S, we
can answer NO if for the reduced instance we have π(F) ≥ k ′ + |A′|. Since k ′ = k−|A|
and |A′| = k + 1− |A|, and using Lemma 5, the total bound on the number of possible
solutions explored in Steps 1 and 2 is

k∑
i=0

(
k + 1

i

)(
2((k + 1− i)+ (k − i)− 1)− 1

k − i

)
=

k∑
i=0

(
k + 1

i

)(
4k − 4i − 1

k − i

)
.

Define

f (x, k) =
(

k

x

)(
4(k − x)

k − x

)

and suppose f (x, k) is maximized for x∗ = x(k). Then our sum above is bounded by
(k + 1) · f (x∗, k + 1).

We next work out two estimates x1(k) and x2(k) such that

x1(k) ≤ x∗(k) ≤ x2(k)

and we will therefore have a bound on our sum of

(k + 1) ·
(

k + 1

x2(k + 1)

)(
4((k + 1)− x1(k + 1))

(k + 1)− x1(k + 1)

)
.

(The reason for the two estimates is that the first part of f (x, k) increases with x , and
the second part decreases with x .)

We study the ratio f (x, k)/ f (x + 1, k). The maximizing value x∗ is located (essen-
tially) at the point where this ratio is equal to 1. Considered as real functions, the partial
derivative of f ′(x, k) = f (x, k)/ f (x + 1, k) with respect to x is positive in the range
[0, k). Hence, f ′(x, k) is an increasing function of x in that range. It follows that, over
the reals, there is a unique x∗ such that f ′(x∗, k) = 1.

Assuming that k is large, the ratio is approximately:

f (x, k)

f (x + 1, k)
≈

(
x + 1

k − x

)
(4)

(
4

3

)3

.

This yields the estimates:

x1(k) = (27/283)k and x2(k) = (28/283)k.

Using the bound (based on Stirling’s approximation) that(
ak

bk

)
≤

(
aa

bb(a − b)a−b

)k

for constants a > b, we obtain the bound on our total cost sum of (k + 1)(10.567)k .
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4. Optimality

Our FPT algorithm for the problem of SOLUTION COMPRESSION FOR FVS yields, by
the approach of Section 2, an FPT algorithm for the parameterized FEEDBACK VERTEX

SET problem that runs in time O(ckn3) where c = 10.567. In qualitative terms, we have
given an algorithm with a running time of the form O∗(2O(k)). We next show that this
is, in a qualitative sense, “optimal” for the problem.

Theorem 1. There can be no FPT algorithm for FEEDBACK VERTEX SET with a running
time of the form O∗(2o(k)) unless FPT = M[1].

Proof. The standard NP-completeness reduction from VERTEX COVER to FEEDBACK

VERTEX SET does not change the value of the parameter. Hence, if FEEDBACK VERTEX

SET has a 2o(k) p(n) algorithm, for some polynomial p, then the same holds for VERTEX

COVER. The existence of such an algorithm for VERTEX COVER implies FPT = M[1]
and has other consequences considered unlikely [IPZ], [CJ], [DEF+], [CF].

Remark 1. The consequence FPT = M[1] is highly unlikely, since it is known that
FPT= M[1] if and only if satisfiability of 3SAT instances on n variables can be decided
in time O∗(2o(n)). (See [DEF+] and [CF] for further information and discussion.)

Remark 2. A number of other FPT optimality results have been shown for various
problems [DFR] and [CJ]. A notable example is the parameterized PLANAR DOMINATING

SET problem, for which there is an FPT algorithm with a running time of O∗(2O(
√

k))

[ABF+]. It has been shown that there can be no FPT algorithm for this problem with a
running time of the form O∗(2o(

√
k)) unless FPT = M[1] [CJ].

5. Open Problems

There are two compelling problems concerning FVS that remain unresolved.

• Is the FEEDBACK VERTEX SET problem for directed graphs in FPT? This is cur-
rently an open problem even for the restriction to planar digraphs.
• Is there a polynomial-time kernelization algorithm for FVS on undirected graphs

that reduces an instance (G, k) to (G ′, k ′) where k ′ ≤ k and the size of G ′ is
bounded by a polynomial in k?

Perhaps an iterative compression approach similar to the one employed in our main
result here might be of use in addressing the FVS problem for digraphs.

The potential practical significance of our algorithm should also be investigated.
Our approach to the FVS problem here is a new one. The “flat” parallelism of Step 1
(where there are many branches of the algorithm created “all at once,” as contrasted with
many branches created by repeated binary branching, as is more typically the case for
FPT algorithms) could conceivably be significant for highly parallel implementations.
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The reduction rules that we have employed here are all local and elementary in
character. It could be productive to explore if global “crown type” reduction rules for
the problem might be possible, as in the case of VERTEX COVER and other problems
[ACF+], [CFJ], [DFRS]. Such reduction rules might be of use in addressing the very
natural open problem concerning polynomial-size kernelization. Alternatively, perhaps
some new lower bound techniques such as those recently developed in [CFKX] can be
used to show that no polynomial-size many-one kernelization for FVS is likely to be
possible.
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