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ABSTRACT 
 
This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube 
generation. This low overhead compression mechanism provides block-by-block and record-by-record compression 
by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the 
decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 
30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for 
Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing. 
 
Keywords: OLAP, Data cube, Compressing, Parallel processing 
 
 
1 INTRODUCTION 
 
Data warehouses provide the primary support for Decision Support Systems (DSS) and Business Intelligence (BI) 
systems. One of the most interesting recent themes in this area has been the computation and manipulation of the 
data cube, a relational model that can be used to support On-Line Analytical Processing (OLAP). Data cube-based 
OLAP systems pre-compute multiple views of selected data by aggregating values across all possible attribute 
combinations (a group-by in database terminology). For a d-dimensional input set, there are 2d possible group-bys. 
The resulting data structures can then be used to dramatically accelerate visualization and query tasks associated 
with large information sets [30].  
 
Within the context of massive data volumes, data cube computation has to be very efficient with respect to speed 
and space. Many research studies have shown that parallel computation effectively speeds up data cube construction. 
Data cube compression, on the other hand, not only is crucial for computing and storing data cubes in limited space 
but also reduces I/O access time. Though compression algorithms are quite common in the literature, most are 
poorly suited to database/cube environments as they (i) offer relatively poor compression ratios or (ii) result in 
significant run-time penalties [20, 37, 39, 40]. 
 
This paper focuses on the investigation of even more efficient data cube compression techniques in the context of 
parallel OLAP computation systems, the Parallel Algorithms for New Data Warehousing Architectures (PANDA) 
[12, 13, 14, 15, 16] framework in particular. We propose an efficient data cube compression algorithm, XTDC—
Extended Tuple Differential Data Cube Coding, as well as a group of corresponding data structures that can be 
employed in the context of high performance parallel OLAP computation. This paper also demonstrates that the 
XTDC method can be applied to the Hilbert Space Filling Curve - an appealing mechanism for multi-dimensional 
indexing frameworks [29, 35, 48]. We also propose two data cube computation algorithms, random query and sub 
cube construction, based on the compressed form of the XTDC data structure. The experimental results show that 
the typical compression ratio for a full data cube in the PANDA system, in which the fact table has 10 dimensions 
and 106 tuples, is 29.4 to 1 (without sacrificing running time). The dimensional data reduction is from 9778MB to 
332MB (96.6%). The single view compression ratios are between 26 and 51 to 1. 
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The paper is organized as follows. Section 2 reviews the most interesting database compression techniques. Section 
3 proposes the efficient data cube compression algorithm, XTDC, and corresponding data structures as well as two 
data cube computation algorithms based on the compressed data structure. This section also applies the Hilbert 
Space Filling Curve technique to XTDC. Section 4 presents the performance analysis, and Section 5 concludes the 
paper and discusses possible extensions of our methods. 
 
 
2 RELATED WORK 
 
In the context of data warehouse applications, we are only interested in lossless data compression techniques, which 
allow the original data to be fully recovered from its compressed form. There are two very important properties of 
conventional lossless data compression techniques: 1). Data is processed serially (FIFO), and 2). The encoder and 
decoder share the same data model [17, 24, 25, 44, 45, and 49]. We note that the random access of databases, such 
as tuple query, insertion, deletion, and update, conflicts with the serial processing and consistent data model 
properties of traditional data compression. 
 
Database compression techniques have been researched since the1990’s [4, 5, 9, 10, 21, 34, 37, 39, 40, 41, and 47]. 
Some of them are more interested in page (block) level compression. For example, Oracle applies a block-based 
dictionary compression technique, which reaches about a 3.1 compression ratio for a database of 55GB of data 
without a performance penalty in data warehouse applications [39]. Another actively researched class of database 
compression solutions tries to find more efficient data distributions from the characteristics and knowledge of the 
relation, thus achieving high compression ratios. Also the tuple-structure of a relation is preserved in its compressed 
form in order to support high performance database operations through the avoidance of unnecessary compression 
and decompression. 
 
Ray, Haritsa, and Seshadri proposed the Column Based Attribute Compression algorithm (COLA) in 1995 [40]. 
COLA uses a separate frequency distribution table for each attribute in a relation. The experimental compression 
ratio is 21.27% for a synthetic numeric relation. Bit compression (BIT) is a well-known technique that represents 
each numerical attribute in bits instead of bytes. Goldstein, Ramakrishman, and Shaft proposed a derivative 
algorithm of BIT in 1998 by compressing relations in blocks [20] (we refer to it as Block-BIT in this paper). The 
typical compression ratios on real data sets are between 3 and 4 to 1. The CPU cost of decompressing a relation is 
approximately 1/10 the CPU cost of GZIP. 
 
Ng and Ravishankar proposed a block-oriented database compression technique, the Tuple Differential Coding 
(TDC) method [37]. In TDC, all attributes in a relation are mapped into numeral domains. Tuples are converted into 
ordinal numbers in ascending mixed-radix order. A compressed block only stores the value of the first tuple as a 
reference. Each succeeding tuple is replaced by its difference with respect to its preceding tuple. The ith tuple in the 
relation can be reconstructed from the first tuple and the first i−1 difference values. TDC uses the difference in the 
tuple level, which also keeps the tuple information of each attribute. The typical compression ratios of TDC are 
between 4 and 6.6 to 1 for the tables with 106 tuples with 8 dimensions [37]. 
 
 
3 DATA CUBE COMPRESSION 
 
The multi-dimensional model is the most popular model used in data warehousing environments to support OLAP 
operations [30]. Data cubes, generated from fact tables, consist of the surrogate keys of the dimensional tables plus 
the measure fields. These surrogate keys are usually consecutive integers, which are automatically generated during 
the data warehouse Extract, Transform, and Load (ETL) stage. Considering the properties of the data warehouse and 
data cube computation, we propose the eXtended Tuple Differential Data Cube Coding (XTDC) strategies that build 
upon a number of ideas of existing techniques, specifically, TDC [37], BIT, and Block-BIT [20]: 

1). Treat dimensional data and measure data separately. The main I/O access task is related to the large views, 
which have a large number of records and high dimensions. The major objective in compressing data cubes 
is therefore to reduce the storage of dimensional data. Given the characteristics of data warehouse 
applications, the dimensional data are usually represented as integers. The compression ratio mentioned 
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later in this paper is the ratio of the size of the original dimensional data divided by the size of the 
compressed dimensional data. 

2). Compute tuple differences to compress the dimensional data at the block level. XTDC uses the fundamental 
idea of the Tuple Differential Coding [37] to code the tuples in block wise fashion. Each tuple is 
represented using the difference between it and its preceding tuple. In order to avoid the risk of data 
overflow in the case of large views with high dimensions, two tuple operations, tuple-plus and tuple-minus, 
are proposed to support a wider range and faster data computation.  

3). Compact the differences into bits. 
4). Compact all the differences (the compressed dimensional data) together to remove gaps caused by byte-

alignment. All the measure data are stored in the second part of the block. 
5). Dynamically determine the number of tuples to be compressed into one block according to the value of the 

maximum difference in one block 
6). Use a counter mechanism to represent consecutive 1-differences. For those views that have low dimensions 

but a large number of tuples, there is very high probability that the difference values of conjunctive tuples 
are 1’s because the attribute values of each dimension are usually consecutive integers.  

7). Keep the compression information in each block. The information, such as the number of tuples in the 
current block and number of bits of each difference value, are stored in the block header. They are 
dynamically calculated during the compression process and is used during decompression. 

 
XTDC is a block-level lossless data cube compression technique. It uses the knowledge of the characteristics of the 
multi-dimensional data model to guide the compression and decompression processes. XTDC preserves tuple 
structure in compressed views in order to get the benefits of database compression. The following section describes 
the details of the XTDC compacted data structure. 
 
3.1 The XTDC Compacted Data Structure 
 
XTDC keeps the compression information in each block, namely the block header, in order to preserve the tuple-
structure in compressed data for high performance data access and to compress data cubes in block level. In this way, 
each compressed data block contains all necessary information to decompress this block or to localize the required 
data (tuples) from the compressed data directly. As Table 3.1 presents, a typical structure of a compressed block 
consists of three parts: 

1). The Block header contains the compression information for this block. The length and the content of the 
block header may vary according to the different compression algorithms. It is also good for efficient 
indexing to store the uncompressed first tuple in the block header. 

2). The Dimensional data area contains in bit form all the compressed dimensional data — the difference 
values — of the tuples in this block, in order to avoid the spare bits between tuples that may be caused by 
byte-alignment. 

3). The Measure data area contains all the measure data in original form (uncompressed format). The offset of 
this segment in the current block is given by: measure offset = length of block header + ⎡(number of tuples 
− counter) × (number of bits for dimensional data)/8⎤. The offset of the measure data of ith tuple is 
(measure offset)+(i−1)×(number of bytes for measure data). 

 
Table 3.1. The XTDC data structure of a compressed data view block 

Length of block header 
Number of tuples for this block 
Number of bits for dimensional data of each tuple 
Number of bytes for measure data of each tuple 
Counter 

Block header 
 

First tuple in uncompressed format 
Compacted tuple differences (in bit) Dimensional data 

 … 
Measure data of 2nd tuple  Measure data 

(Uncompressed) … 
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Because most data cube operations are read-only in data warehouse applications, XTDC focuses on storing as many 
encoded tuples in a block as possible, rather than designing a more flexible data structure for update operations. The 
following section discusses the details of using this data structure in the XTDC algorithms. 
 
 
3.2 The Extended Tuple Differential Data Cube Coding Algorithm – XTDC 
 
As we discussed previously, the principle idea of the tuple differential coding algorithms is to store the difference 
values of the consecutive tuples. The mixed-radix values of tuples can be calculated according to Eq.(3.1) of 
Definition 1[37]. 
 
Definition 1 A relational scheme R=< A1,A2, ...,An > is a sequence of attribute domains, where Ai = {0, 1, ..., |Ai| − 
1} for 1 ≤ i ≤ n. The value of one tuple < a1, a2, ..., an > is defined as: 
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In enterprise level data warehousing environments, a view to be compressed may have high dimensions with high 
cardinalities. Consequently, there is a very high risk of data overflow when mapping each tuple to a mixed-radix 
value in such environments. However, when views are fully sorted, the differences between two conjunctive tuples 
are usually very small. We propose two tuple operators, tuple_plus and tuple_minus, in order to encode views safely 
and efficiently. Theorem 1 gives the principle of the operators. 
 
Theorem 1 Given two consecutive tuples: < a1, a2, ..., an > and < a’1, a’2, ..., a’n >, the difference value of these two 
tuples is: 
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Algorithm 1 calculates the difference by directly manipulating the attribute values of the tuples to avoid data 
overflow. It is also efficient because it reduces the multiplicative operations to addition operations. 

 
Algorithm 1. Tuple Minus 
Input: Two tuples T1, T2 with d-dimension; 

 Cardinalities (C[i]) for each attribute domain (A[i]) 
Output: The difference between the mixed-radix value of T2 and T1 
1: difference = 0; 
2: for i = 0 to d − 1 do 
3:     difference = difference * C[i] + (T2[i] − T1[i]); 
4: end for 
5: return difference; 

 
During the decompression process of XTDC, we can exploit the fact that the preceding tuple has already been 
decoded into its uncompressed format when decoding the current tuple. We propose the tuple_plus operator to 
operate directly on attributes of tuples in order to avoid computing the mixed-radix values. 
 
XTDC is a block-level compression technique using the XTDC compacted data structure. The encoded dimensional 
data, the differences, are compacted by bits and grouped together to save maximal space. The block information is 
stored in the block header. The number of bits for each tuple difference value is dynamically determined by the 
maximum value of the differences. Algorithm 2 presents the details of the XTDC data cube compression algorithm.  
 

Algorithm 2. XTDC Data Cube Compression Algorithm 
Input: A view (in buf) to be compressed and its metadata 
Output: The Compressed view (out buf) 
1: Create a block header contains the first tuple; 
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2: index = 0; processed_tuples = 0; counter = 0; 
3: for all tuple[i] of in_buf do 
4:     difference = tuple_minus(tuple[i], tuple[i − 1]); 
5:     Compute the number of tuples in this block; 
6:     if tuple[i] is not the last tuple and can be fit in the block then 
7:         if consecutively difference == 1 then 
8:               counter + +; 
9:         else 
10:             difference_buf[index + +] = difference; 
11:       end if 
12:       max_difference = max(difference,max_difference); 
13:       tuples_per_block + +; 
14:     else 
15:       Compute offset of measure data in this block; 
16:       for j = 1 to tuples_per_block do 
17:           if (j > counter) then 
18:               compact different_buf[j] into log2(max_difference) bits in in_buf; 
19:           end if 
20:           out_buf[offset + +] = in buf[processed_tuples + j, dimension − 1]; 
21:       end for 
22:       complete current block-header; 
23:       processed_tuples+ = tuples_per_block; 
24:      if tuple[i] is not the last tuple then 
25:          copy tuple[i] to new block-header; 
26:          index = 0; counter = 0; tuples_per_block = 1; 
27:      end if 
28:     end if 
29: end for 
 

For each block, XTDC employs two phases: 
1). The Computation phase: XTDC calculates the differences of conjunctive tuples by using the tuple_minus 

(line 4) and dynamically computes the number of tuples in one compressed block (line 5). XTDC checks 
every tuple to determine if it can fit in the current block according to the changing value of the maximum 
difference (max_difference) and the number of consecutive 1’s(counter). The differences are stored in a 
buffer (difference_buf) in integer form in this phase. 

2). The Compact phase: After collecting enough differences for one block (or all tuples have been encoded), 
XTDC computes the offset (offset) of the measure segment of current block (line 15). The measure data is 
copied to the measure area of the block in uncompressed format (line 20). All of the differences, calculated 
in the first phase, are compacted in bit format into the dimensional area of the block (line18). Each of these 
differences occupies ⎡log2(max_difference)⎤ bits. Finally, XTDC completes the block header (line 22) and 
starts to compute the next block. 

 
Note that the XTDC technique supports access to each tuple at the block level without loading the whole view and 
decompressing it. However, in this particular project, we use the XTDC interface to decompress the whole view 
immediately after loading it into main memory. So, in our project, the XTDC decompression algorithm loads the 
whole compressed view and retrieves the compression information from the block header. It then computes the 
tuples one by one using the tuple_plus, and simply copies the measure data to output buffer. The next block is 
processed (if necessary) when all tuples of the current block are decoded. 
 
3.3 Applying the Hilbert Space Filling Curve Technique to XTDC  
 
The XTDC algorithm uses the tuple differential coding method to compress data cubes. Tuples are sorted in a 
specific order and then converted into an integer representation. The difference between consecutive integers is 
calculated and used to represent the original data. The method that performs the integer mapping must be “one-to-
one” in order to convert (decompress) the compressed integer back to a unique tuple representation. The Hilbert 
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Space Filling Curves technique traces a unique pathway though the points of a multidimensional space. In this sense, 
it may be used to provide a clean one-to-one mapping of a tuple to its ordinal or “indexed” position in the 
hypercubic space. We apply the Hilbert ordering to XTDC compression process in two phases: 1). Hilbert ordering 
maps the tuples (dimensional data) of the views to the sequence of the Hilbert Space Filling Curve and sorts the 
views by these sequential values. We note that a Hilbert re-sorting is required here because the core cube 
aggregation algorithms use a lowX ordering. 2). XTDC encoding uses steps similar to the standard XTDC approach 
except that the tuple_minus is the simple integer minus, and the first tuple is stored in its Hilbert sequence value in 
the block header. The decompression process is composed of two phases: XTDC decoding and Hilbert de-ordering.  
 
It is very important to note that the PANDA system utilizes the Hilbert Space Filling Curve to compute the sorted 
views for multidimensional indexing. As a result, there is a significant potential to improve the data cube 
compression performance because we effectively can get the Hilbert sorted views for “free”. 
 
3.4 Compressed Data Cube Computation 
 
Unlike conventional data compression techniques, XTDC preserves the tuple structure in compressed data, thereby 
allowing the OLAP computation system to manipulate the data cube in compressed format. By avoiding 
unnecessary decompression and compression computations, XTDC not only reduces the storage requirement and 
I/O bandwidth but also reduces main memory requirements. 
 
The XTDC algorithms are able to retrieve one single tuple from a compressed view without decoding the whole 
block. They also improve the quality of index structures such as B-trees and R-trees by reducing the number of leaf 
blocks. Algorithm 3 presents the steps of localizing a specific tuple in a compressed view. 
 

Algorithm 3. Locating One Specific Tuple in a Compressed view. 
Input: A compressed view in XTDC data format. 

Dimensional data of the specific tuple, t 
Output: Measure data of t (NULL for non-existing tuple) 
1: Locate the block that may contain t by checking the first tuple in block headers 
2: Load the entire block into main memory 
3: Compute the difference (v) between the required tuple (t) and the first tuple 
4: Accumulate the first i different values until we reach one that is equal to OR greater than v 
5: Return NULL if the different value is greater than v 
6: Compute the offset of the measure data segment in the current block according to the header 

information 
7: Return the ith measure data 

 
Generating sub views from a given view (parent view) is one of the primary operations of data cube computation [16, 
32]. The XTDC technique allows OLAP computation systems, such as PANDA, to compute a compressed sub view 
from a compressed parent view directly.   
 
Definition 2 Given a parent view, R=< A1,A2, ...,An >, ϕ < a1, a2, ..., an > is the value of tuple < a1, a2, ..., an > . Its k-
subview is R’=< A1,A2,...,Ak-1,Ak+1, ...,An >, ϕ' < a1, a2, ..., ak-1, ak+1, ..., an > is the value of tuple < a1, a2, ..., ak-1, 
ak+1, ..., an >. 
 
Theorem 2 Given a parent view R, the tuple value, ϕ', of its k-subview, R’, is: 
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Algorithm 4 computes a k-subview from a parent view using the XTDC data structure. 
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Algorithm 4. Construct a Compressed k-subview From a Compressed Parent View. 
Input: Vp, a compressed parent view in XTDC data structure. 
Output: Vs, the compressed k-subview in XTDC data structure. 
1: Initialize view buffer: view_buf. 
2: repeat 
3:       Load one block of Vp. 
4:       for all tuple(ti) of Vp do 
5:            Compute the value vpi of tuple ti. 
6:           Get measure data mpi of ti. 
7:           Compute the corresponding tuple value, vsi, in Vs. 
8:           Accumulate the measure data of Vs: view_buf[vsi]+= mpi. 
9:       end for 
10: until all blocks of Vp are processed. 
11: Construct the k-subview: Compact the view_buf in XTDC format. 
 

 
3.5 Compressing Data Cube in the PANDA System 
 
PANDA supports high performance parallel data cube computations. Its I/O Manager is a significant feature that 
handles efficient I/O access during the manipulation of massive data sets. We implement the XTDC algorithm as a 
Compression Interface and plug the interface into the I/O Manager in order to compress (and decompress) data 
cubes. In the data-writing phase, the tuples in the view buffer are compressed by block before they are physically 
written to disk. In the data-loading phase, the entire compressed view is loaded from disk and decompressed in main 
memory (Input Buffer). The details of the system structure and the XTDC Compression Interface implementation 
are discussed in [16, 33].  
 
In this section, we discussed the efficient data cube compression algorithm, XTDC, and its corresponding compact 
data structure as well as two OLAP operations – random point query and sub view generation — based on this data 
structure. We also demonstrated that the XTDC algorithms can utilize the Hilbert Space Filling Curve technique. 
Therefore, it has potential for use in OLAP systems that use the Hilbert space technique for multidimensional 
indexing. Finally, we introduced the strategy of applying the XTDC algorithms to a parallel OLAP computing 
system – PANDA. In the next section, we will demonstrate the experimental results and evaluate the performance of 
the XTDC algorithms. 
 
 
4 EVALUATION 
 
This section evaluates the performance of data cube compression techniques implemented in the PANDA System. 
The main goal of data cube compression is to reduce the space requirements of data cube computation while 
maintaining reasonable response time. Our tests therefore focus on two main issues: compression ratio (CR) and 
compression/decompression speed. In the context of data cube compression, our implementations compress the 
dimensional data and leave the measure data in uncompressed form. Our evaluations use the dimensional data 
compression ratio, CR = (dimension size without compression) / (dimension size with compression). Both 
compression and decompression processes are involved in data cube computation. We use wall-clock running time 
to evaluate the speed performance for both single view computation and full data cube computation. 

 
In the multi-dimensional model, a data cube is organized in exactly the same format as that of a conventional 
relational table. In order to compare the compression efficiency between XTDC and the existing database 
compression techniques, we implemented the TDC [37] and the BIT database compression algorithms. It is worth 
noting that when we apply the TDC database compression algorithm to achieve data cube compression in PANDA, 
we follow the fundamental ideas of [37] except that we use our tuple computation algorithms, tuple_minus and 
tuple_plus, to avoid data overflow during the computation of tuple differences. As proposed by [37], TDC uses Run 
Length Coding (RLC) to encode the number of leading zero components in each difference. In our particular 
implementation, we store the differences in integer form (4-byte), which costs less than using RLC encoding. We 
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also plug an Open Source conventional compression library, BZIP [6, 43]. All of our tests were conducted on a 
Linux cluster, whose primary characteristics are listed below [26]: 

• Linux Kernel 2.4.18-27.7.xsmp (Redhat 7.3) 
• 64-processor (dual processor nodes) 
• 32-node Beowulf configuration 
• Gigabit Ethernet (1000Mbps) 
• Switch with a 32Gbps 
• Each node has a 2 GHz Intel Xeon processor, 1.5GB RAM, and 60 GB IDE disks. 

 
We will look at a sequence of data cube compression tests, each designed to highlight one important characteristic. 
We evaluate fact tables with 6 to 10 dimensions. The number of tuples in these fact tables ranges from 100K to 2M. 
The fact tables themselves are created with PANDA’s Data Generator [16] by specifying parameters such as the 
number of tuples in the data set, the number of dimensions, and the cardinality in each dimension. In effect, we 
utilize a set of base parameters and then vary exactly one of these parameters in each of the tests. These base 
parameters are (with defaults listed in parenthesis): a) Fact Table Size (1M) and b) Dimension Count (10). Table 4.1 
lists the cardinalities used in all of our test cases. 
 
Table 4.1. The meta data of testing data cubes 

Name of Dimension A B C D E F G H I J 
Cardinality 6 10 50 8 25 12 3 15 8 16 

 
 
4.1 Single View Compression 
 
The efficiency of compression techniques can be clearly evaluated on single view tests. We use the Data Generator 
[16] to generate a group of fact tables with 500K, 1M, 2M, 5M, and 10M tuples respectively. All of these fact tables 
have 10 dimension attributes and 1 measure field. We arbitrarily create a group of single views corresponding to 
each fact table by using the Partial Data Cube generation module in PANDA. Each of these views has 7 dimensions 
and 1 measure field. The number of tuples and the original size of these views are listed in Table 4.2. For each single 
view, we apply different compression techniques, including BIT, TDC, XTDC, BZIP, and Linux GZIP. Because 
GZIP and BZIP are global range data compression techniques, their compression ratios are computed as total 
compression ratio. The BZIP libraries [43] are plugged into the same test harness as BIT, TDC, and XTDC. Both 
options for best compression (gzip -9) and for fast compression (gzip -1) of GZIP are used to evaluate compression 
ratio and running speed. 
 
Table 4.2. The data volume of views ABCDFJG 

Tuples in the Fact Table 10M 5M 2M 1M 500K 
Tuples in the View 6873327 4101573 1842122 959242 489775 
Uncompressed Size(MB) 210 125 56 30 15 

 
Figure 4.1 shows that the compression ratios of BIT, TDC, BZIP, and GZIP are between 5 and 12 to 1. With the 
increasing size of views, the ratios of conventional compression techniques (BZIP, GZIP) slightly increase because 
there are better data distributions in a larger range. The number of tuples in a view does not affect the compression 
ratio of BIT because its compression ratio is only determined by the number of bits for every tuple, which 
corresponds to the cardinalities of the dimensions. The compression ratio of TDC remains stable because it always 
stores differences in integer form, which costs 4 bytes in our system, no matter how small the differences are. The 
experiments show that XTDC reaches compression ratios between 26 and 51 to 1, which are much higher than the 
other techniques. In XTDC, the number of bits required to store the differences in a block is determined by the 
maximal difference of consecutive tuples in that block. Both the bit compaction technique and the counter 
mechanism help XTDC to reach higher compression ratios with an increasing number of tuples in a view. 
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Figure 4.1. Compression ratio comparisons for single view compression 
 
Figure 4.2 presents the total running time (compression time plus decompression time) of these compression 
algorithms. Data cube compression techniques (BIT, TDC, and XTDC) have the same range of running times, which 
are much faster than conventional ones.  

 

 
Figure 4.2. Total runtime (compression and decompression) comparison for single view compression 
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4.2 Full Cube Compression 
 
In full cube tests, 2d single views are created. These views cover all the possible combinations from 1-dimension to 
d-dimensions. The efficiency of single view compression will definitely affect the full cube compression. Figure 4.3 
presents the average of compression ratios for full cube computation. The fact tables of these cubes have 10 
dimensions and the same cardinality distribution as listed on Table 4.1. Consistent with the result in Figure 4.1, 
XTDC reaches a much higher compression ratio than the others (BIT, TDC) do.  

 

 
Figure 4.3. The comparison of full cube compression ratios 
 
It is worth noting that the fully materialized data cube is much bigger than the fact table. In one of our test cases — 
using a fact table with 10 dimensions and 106 tuples — the dimensional data of the fact table is 40MB, while the 
total dimensional data in the full data cube generated by this fact table is 9778 MB. XTDC reaches a 29.4 to 1 
compression ratio, which reduces the dimensional data from 9778 MB to 333MB. Figure 4.3 also shows that XTDC 
is more efficient in terms of compressing the full cube that has been generated by the fact table with the same 
dimensions but a larger number of tuples. In this experiment, XTDC reaches a 31.8:1 compression ratio when the 
fact table of the cube contains 2×106 tuples. Note that the compression ratios are lower on the full cube than the 
single views we tested in Section 4.1. As we discussed previously, XTDC uses one difference value (several bits in 
many cases) to represent the dimensional data of one tuple. As the number of dimensions decrease (and most views 
have less than the 7 dimensions used in the single view test), the ability to compress diminishes as well. Conversely, 
the greater the number of dimensions, the greater the benefit for compression. We also note that, as same as in single 
view compression, the compression ratios of BIT and TDC are not significantly affected as the number of tuples 
increases. 
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Figure 4.4. Runtime for parallel full cube generation with compression 
 
Figure 4.4 presents the speedup of PANDA with data cube compression on multiple processors. The result shows 
that XTDC, as well as BIT and TDC, works very well with PANDA’s parallel data cube computation. The running 
times are very close to the original ones. We do not include conventional compression techniques in the full cube 
tests because of the results of the single view experiments. In fact, the BZIP compression libraries significantly slow 
down full cube computation. In one of our experiments, PANDA with BZIP compression takes 872 seconds to 
generate a full cube using a fact table that has 10 dimensions and 5 × 104 tuples. The total compression ratio is 7.7 to 
1. As we can see from Figure 4.3 and Figure 4.4, XTDC reaches a compression ratio of 22.5 to 1 for a larger data 
cube, which is generated by using a fact table with 10 dimensions and 106 tuples, and does so in less than 900 
seconds. 
 
 
5 CONCLUSION AND FUTURE WORK 
 
This paper proposes an efficient data cube compression algorithm, XTDC, and its corresponding compact data 
structure. Building upon a number of existing compression algorithms, XTDC is effectively a combination of the 
following techniques: 

1). Tuple differential coding: Tuples in the views are mapped to integer values and the differences of the 
conjunctive tuples are used to represent the views.  

2). Bit compaction: The tuple differences are stored in bit form and are compacted. 
3). Block-wise compression: The tuples are compressed in blocks (pages). This not only increases the 

compression ratio by reducing the value range of the differences but also makes more efficient data access 
since all the compression information is localized in individual blocks. 

4). Handling dimensional data and measure data separately to remove the gaps caused by byte-alignment. 
5). Using meta data information: Knowledge of the data cube is used when compressing and decompressing.  

 
The XTDC technique preserves the tuple structure in compressed data cubes. Its data structure makes the 
compressed blocks accessible to common indexing methods such as B-trees or the packed R-trees that are actually 
used by PANDA. Because all information about tuples is encoded in individual blocks, the data cube operation can 
be done when the data cubes are still compressed. We propose two algorithms for random access and sub cube 
generation based on compressed data, which shows the possibility of manipulating the compressed data cube 
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without decoding the whole views, thereby improving OLAP computing performance. We also discuss that the 
Hilbert Space Filling Curve technique is well suited to the XTDC algorithms. Therefore, the XTDC technique has 
great potential for use in practical cube systems that use space filling curves for multidimensional indexing. 
 
The experimental results show that the XTDC technique is well suited for parallel OLAP computing systems. By 
integrating the XTDC algorithms into the PANDA system, the storage space requirements for OLAP computation 
are greatly reduced with very little performance penalty. The typical compression ratio is 29.4 to 1 for a full cube 
generation, in which the fact table has 10 dimensions and 106 tuples. The dimensional data reduction is from 
9778MB to 332MB (96.6%). The experiments also demonstrate that the XTDC algorithms have the ability to 
achieve higher compression ratios for larger data cubes which have more dimensions and more tuples.  
 
Because the XTDC technique preserves the structural information of the data cube in compressed form, it would be 
possible to extend the data cube operations on compressed data using the current design. First, it is very convenient 
to index compressed data blocks for fast random tuple location as the first tuple of a block is stored in the block 
header in uncompressed format. Because the number of blocks is reduced for the compressed view, the size of the 
index file is significantly decreased as well. Second, implementing compressed data cube computing inside PANDA 
will not only save main memory space during data cube computation but also avoid most of the data compression 
and decompression processes. Third, as we noted, the XTDC algorithms is suitable to the Hilbert Space Filling 
Curve, and the PANDA system utilizes the Hilbert ordering to compute the sorted views for multidimensional 
indexing. As a result, there is a significant potential to improve the data cube compression performance because we 
effectively can get the Hilbert sorted views for “free”. Both data cube compression and multidimensional indexing 
can share the full benefit of Hilbert ordering. 
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