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to computational techniques for the prediction of PPIs.
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chapter will focus on computational prediction of PPI, reviewing
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laboratory. For comparison, the conventional large-scale
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experimental and computational methods of determining PPIs.
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Abstract Protein-protein interactions (PPIs) play a critical role in many cellular func-
tions. A number of experimental techniques have been applied to discover PPIs; however,
these techniques are expensive in terms of time, money, and expertise. There are also
large discrepancies between the PPI data collected by the same or different techniques in
the same organism. We therefore turn to computational techniques for the prediction of
PPIs. Computational techniques have been applied to the collection, indexing, validation,
analysis, and extrapolation of PPI data. This chapter will focus on computational pre-
diction of PPI, reviewing a number of techniques including PIPE, developed in our own
laboratory. For comparison, the conventional large-scale approaches to predict PPIs are
also briefly discussed. The chapter concludes with a discussion of the limitations of both

experimental and computational methods of determining PPIs.

Keywords Automated tools - Computational techniques - Interactome - PIPE -
Protein-protein interaction
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Abbreviations

AD Activation domain

BIND Biomolecular interaction network database
CAPRI Critical assessment of predicted interactions
DBD DNA binding domain

DBID Database of interacting domains

DIP Database of interacting proteins

InterPreTS Interaction prediction through tertiary structure
MINT Molecular interactions database

MIPS Munich information center for protein sequences
PDB Protein data bank

PID Potentially interacting domain pairs

PIPE Protein-protein interaction prediction engine
PPI Protein-protein interaction

PRISM Protein interactions by structural matching
SVM Support vector machine

TAP Tandem affinity purification

Y2H Yeast two-hybrid

1

Introduction

An overwhelming number of biological processes are mediated through the
action of proteins. In many cases, these proteins carry out their functions by
interacting with each other in either stable or transient protein complexes. The
nature and increasing complexity of these interactions is thought to be respon-
sible for the overall biological complexity in higher organisms. Therefore, it
is believed that humans, for example, are more sophisticated than the nema-
tode C. elegans, not only because we possess marginally greater number of
genes, but largely because human proteins form more intricate networks [1, 2].
Recent advances in the field of genomics and proteomics have lead to the dis-
covery and characterization of some of these networks [3,4]. An organism
may have numerous interactomes representing different tissue types, biolog-
ical states, etc. The complete elucidation of all interaction networks found in
an organism will have significant implications for science [5]. For example,
the cellular roles and molecular functions for previously ill-characterized pro-
teins may be inferred from the networks of interactions that they participate
in. Moreover, the conservation of protein interactomes across organisms will
also provide insight into their evolutionary relationships. Practically, know-
ledge of interaction networks will provide insight into their dependencies and
lead to enhanced approaches for drug discovery. For these reasons, the elucida-
tion of protein—protein interactions (PPIs) especially within the context of an
interaction network is an important goal in biological research [6, 7].

Until recently, PPIs were determined by carrying out experiments that
were specifically designed to identify a small number of specifically targeted
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interactions. However, the development of novel genomic techniques allows
for high-throughput experiments, which can now be carried out to exhaus-
tively probe all possible interactions within an entire genome. Saccharomyces
cerevisiae, also known as baker’s yeast, has emerged as the model organism
of choice for functional proteomics due to the elucidation of its genomic se-
quence in 1996 [8]. Since then, whole PPI maps have been determined using
various methods including yeast two-hybrid [9, 10], affinity purification/mass
spectrometric identification methods such as TAP-tagging [11, 12], and pro-
tein chips [13, 14]. Indirect large-scale approaches such as synthetic lethal
analysis [15] and correlated mRNA expression profile [16] have also been
used to investigate PPIs.

However, these methods are not without shortcomings. Not only are they
labor- and time-intensive, they also have a high cost associated with them.
Another important disadvantage is the poor accuracy of the data gener-
ated. Significant discrepancies between results of small-scale high-confidence
experiments and high-throughput studies have been reported [6, 17]. Inter-
study discrepancy is even higher when comparing data generated from dif-
ferent large-scale studies [6,17]. In addition, the PPI data obtained from
biological experiments often include many false positives, which may con-
nect proteins that are not necessarily related. Therefore, it is often necessary
to confirm the interactions by other methods. Consequently, there is a grow-
ing need for the development of computational tools that are capable of
effectively identifying PPIs as well as interpreting and validating the experi-
mentally derived data.

A wide range of computational methods have been developed to build,
study, and exploit protein interactomes (reviewed in [6,17]). First, compu-
tational methods have been developed to construct interaction databases
within which experimentally determined data is collected and annotated.
Automated data mining techniques can then be applied to extract relevant
information about potential interactions from the vast amount of PPI infor-
mation in these databases. As mentioned earlier, a number of experimental
techniques have been used to determine large-scale protein interaction maps.
Although the significant inconsistencies between interaction maps of the
same organism obtained using different techniques can be somewhat jus-
tified [6], computational methods have been successfully applied to assess,
validate, and carefully scrutinize these experimentally determined protein
interactomes. Based on the assumption that physically interacting proteins
have a high probability of also being functionally related, a number of com-
putational tools have been developed to exploit protein interaction networks
in order to predict functional features of the proteins. Lastly, computational
methods can also be used to predict novel PPIs by learning from known in-
teractions [6,17].

It is the objective of this chapter to provide an overview of these compu-
tational methods, with the main focus being on computational tools for the
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prediction of novel interactions. We also highlight the specific limitations for
each of the tools discussed, as well as the systematic shortcomings common
to most computational tools. A novel tool recently developed by our bioin-
formatics group (protein-protein interaction prediction engine, PIPE) is also
discussed. For comparison, the advantages and limitations of traditional “wet
lab” experimental approaches are also summarized.

Finally, due to space constraints, it is impossible to include all tools rele-
vant to the study of PPIs and the authors apologize in advance to all those
researchers whose work has not been cited here.

2
Traditional Methods of Determining PPIs

The yeast two-hybrid (Y2H) method was one of the first methods to be ap-
plied to the detection of PPIs. Two protein domains are required in the Y2H
assay that have specific functions: (i) a DNA binding domain (DBD) that helps
bind to DNA, and (ii) an activation domain (AD) responsible for activating
transcription of DNA. Both domains are required for the transcription of a re-
porter gene [10]. The Y2H assay relies on the fusion of DBD to a protein of
interest (X) at its N-terminus and the fusion of AD to another protein of in-
terest (Y) at the C-terminus, which forms DBD-X (bait) and AD-Y (prey). If
the bait and prey hybrids interact with each other, the transcription of the
reporter gene will be induced and, in this way, the interaction can be de-
tected [18].

Y2H analysis allows the direct recognition of PPI between protein pairs.
However, a large number of false positive interactions may arise, while a num-
ber of true interactions will be missed (i.e., false negatives). A false positive
interaction can occur by activation of RNA polymerase by a bait protein, by
the binding of the prey AD-Y protein with upstream activating sequences
(UAS), by non-specific binding of bait and prey proteins with some endoge-
nous proteins, or by the binding of “sticky” prey proteins with bait pro-
teins [19]. On the other hand, many true interactions may not be detected
using Y2H assay, leading to false negative results. In a Y2H assay, the inter-
acting proteins must be localized to the nucleus; since membrane proteins
are typically less likely to be present in the nucleus they are unavailable to
activate reporter genes, and hence are excluded. Proteins that require post-
translational modifications to carry out functions are also unlikely to behave
or interact normally in a Y2H experiment. Furthermore, if the proteins are
not in their natural physiological environment, they may not be folded prop-
erly to interact [20]. During the last decade, Y2H has been improved by
designing new yeast strains containing multiple reporter genes and new ex-
pression vectors to facilitate the transformation of yeast cells with hybrid
proteins [21].
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Tandem affinity purification (TAP) tagging was developed to study PPIs
under the native conditions of the cell [22]. Gavin et al. first attempted the
TAP-tagging method in a high-throughput manner to analyze the yeast in-
teractome [23]. This method is based on the double tagging of the protein of
interest on its chromosomal locus, followed by a two-step purification pro-
cedure using Staphylococcus protein A and calmodulin beads separated by
a tobacco etch virus (TEV) protease cleavage site. First, a target protein open
reading frame (ORF) is fused with the DNA sequences encoding the TAP tag
and is expressed in yeast where it can form native complexes with other pro-
teins. The tagged protein along with its associated proteins/complexes is then
extracted from the cell lysate. The fused protein and the associated complexes
are then purified via a two-step affinity purification procedure. Proteins that
remain associated with the target protein can then be analyzed and identified
through SDS-PAGE [24] followed by mass spectrometry analysis [22], thereby
identifying the PPI partner proteins of the original protein of interest.

An important advantage of TAP-tagging is its ability to identify a wide var-
iety of protein complexes and to test the activity of monomeric or multimeric
protein complexes that exist in vivo. Compared to Y2H, TAP-tagging obtains
interaction information from a more natural environment since the physi-
ological conditions are more realistic than those created by Y2H, including
factors like post-translational modifications and pH requirements. However,
the TAP tag may interfere with the formation of some protein complexes (as
shown by [23]) by low expression of fusion proteins [25], which can affect
the ability of a protein to interact with other proteins or may cause a mutant
phenotype [26]. These problems may be minimized by using other comple-
mentary techniques that can increase the reproducibility of any large-scale
approaches.

The large quantity of experimental PPI data being generated on a con-
tinual basis necessitates the construction of computer-readable biological
databases in order to organize and effectively disseminate this data. A num-
ber of such databases exist (Table 1) and are growing at exponential rates.
The biomolecular interaction network database (BIND), for example, is built
on an extensible specification system that permits detailed description of
the manner in which the PPI data was derived experimentally, often includ-
ing links directly to the supporting evidence from the literature [27]. The
database of interacting proteins (DIP) is another database of experimentally
determined protein-protein binary interactions [28]. DIP serves as an access
point to a number of other related databases such as LiveDIP, which pro-
vides information on the functional aspects of protein complexes as well as
links out to other databases such as the database of ligand-receptor part-
ners (DLRP). The general repository of interaction datasets (BioGRID) is
a database that contains protein and genetic interactions among proteins
from 13 species [29]. Interactions are regularly added through exhaustive
curation of the primary literature. Interaction data is extracted from other
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Table 1 Databases of experimental protein—protein interactions

Database URL Organism Refs.
BIND http://bond.unleashedinformatics.com/ Any [27]
DIP http://dip.doe-mbi.ucla.edu Any [28]
BioGRID http://www.thebiogrid.org/ Any [29]
MIPS http://mips.gsf.de Yeast [30]
MINT http://cbm.bio.uniroma2.it/mint Any [31]

databases including BIND and MIPS (Munich information center for protein
sequences) [30], as well as directly from large-scale experiments [31]. The
molecular interaction database (MINT) is another database of experimen-
tally derived PPI data extracted from the literature, with the added feature of
providing the weight of evidence for each interaction [31].

3
Computational Prediction of PPIs

Computational methods provide a complementary approach to detecting
PPIs. Indeed, the wide availability of experimental data has spurned the de-
velopment of numerous computational methods over the past few years. In
general, all computational approaches to PPI prediction attempt to lever-
age knowledge of experimentally determined previously known interactions
in order to predict new PPIs. These methods enable one to discover novel
putative interactions and often provide information for designing new experi-
ments for specific protein sets.

These approaches can be classified into five general categories: methods
based on genomic information, evolutionary relationships, three dimensional
protein structure, protein domains, and primary protein structure. Specific
approaches that fall within these categories are listed in Table 2 and are dis-
cussed below. Figure 1A-E presents the idea behind the five categories of
methods.

3.1
Genomic Methods

Genomic methods for interaction prediction take advantage of the availability
of information obtained by complete genome sequencing. Completely se-
quenced genomes provide knowledge of which genes are present and how
they are organized (gene order). The conservation of gene order across
species yields information about the evolution of the genome, and hints at
which genes may be functionally correlated. Most computational methods
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Table2 Computational methods for the prediction of protein-protein interactions

Method
Whole genome
Evolutionary

relationship

3D protein structure

Domain

Primary protein
structure

Description

Conservation of gene order across genomes [32]
Comparison of protein pairs in one genome to its fused single
protein product homolog in another genome [33, 34]

Correlated evolution of functionally related proteins [35]
Tree kernel-based computational system to assess similarities be-
tween phylogenetic profiles [36, 37]

Assess fit of two interacting partners on a predetermined complex
of known 3D structure; Web-based version InterPreTS [38, 39]
Multimeric threading algorithm MULTIPROSPECTOR to recog-
nize partners in protein interactions [40]

CAPRI is a community-wide experiment focusing on the perform-
ance of protein-protein docking procedures [41]

PRISM: protein interactions by structural matching [42]

Combination of similarity between sequence patches involved in
interactions and between domains of interacting partners [43]
Maximum likelihood estimation method to determine probability
of interactions between evolutionarily conserved protein domains
in the Pfam protein domain database [44]

Prediction of interaction probability of proteins; ranking system
for probability of interactions between multiple protein pairs [45,
46]

Database of potentially interacting domain (PID) pairs using a DIP
database and InterPro; PID matrix score as a reliability index for
accurate analysis of interaction networks [47]

Protein interactions mediated through specific short polypeptide
sequences [48]

Automatic recognition of correlated patterns of sequences and
substructure by support vector machine; also uses associated
physiochemical parameters [49]

Combination of sequence information, experimental data analysis
and subsequence paring to generate a “signature product” that is
implemented with support vector machine [50]

Kernel methods for predicting protein-protein interactions [51]
PIPE: protein-protein interaction prediction engine that uses pri-
mary protein structure data from MIPS and DIP databases [52]

that use genomic information do not rely solely on the sequence similar-
ity between homologous genes (or their products) [53, 54], but rather assess
functional links between pairs or clusters of co-located genes.

Evidence for the evolutionary conservation of gene order can be ob-
tained by systematic comparison of completely sequenced genomes. Dan-
dekhar et al. [32] compared nine bacterial and archaeal genomes and applied
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Fig.1 The five categories of computation PPI methods: A Genes of proteins that are close
in different genomes are predicted to interact. Proteins 1 and 2 are predicted to inter-
act since the physical locations of their genes are in close proximity to each other in the
genomes A, B and D. Two proteins are also predicted to interact if they combine (fuse)
to form one protein in another organism. B Protein pairs with similar phylogenetic pro-
files in different genomes are predicted to interact. Proteins 1 and 4 are predicted to
interact since they share the same phylogenetic profile. C Using the protein structures,
docking methods will predict the best compatibility of their interacting regions. Pro-
teins 1 and 2 are predicted to interact since they have the best fit. D If two proteins A and
B known to interact share a pair of conserved domains and two other proteins C and D
also share those same conserved domains, C and D are predicted to interact. E Using
the primary protein structure and a database containing some other information (such
as known interactions), it is possible to train an algorithm to predict protein-protein
interactions
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a method based on co-localization to determine conserved gene pairs even
within relatively low conservation of gene-order. They found that proteins
encoded by conserved gene pairs also appeared to interact physically. Phys-
ical interactions between encoded proteins have been demonstrated for at
least 75% of the conserved gene pairs. A further 20% of the conserved pairs
were predicted to encode proteins that interact physically [32]. While promis-
ing, the approach fails to identify interactions between products of distantly
located genes. Moreover, false predictions are generated because the proxim-
ity constraint is not sufficient to determine physical interaction. Finally, this
approach may not be applicable to eukaryotes, because the co-regulation of
genes is not imposed at the genome structure level [33].

The co-localization of genes encoding interacting or functionally related
gene products can be taken a step further. Pairs of interacting or function-
ally related proteins sometimes have homologs in another genome in which
they are fused into a single protein [55]. For example, the Gyr A and Gyr B
subunits of Escherichia coli DNA gyrase are fused as a single protein in yeast
topoisomerase II [33]. Thus, the sequence similarities between Gyr A and
Gyr B and different segments of the topoisomerase II might be used to predict
that Gyr A and Gyr B may interact in E. coli [33]. Marcotte et al. developed
a computational method to search for such fusion events within multiple
genomes. In their study, they uncovered 45502 such putative PPIs in yeast.
Some proteins that were found to be linked to several other proteins also
appeared to interact functionally in pathways. Many of these putative in-
teractions were also confirmed experimentally, as documented in the DIP
database.

Similarly, Enright et al. identified 215 genes involved in 64 unique fu-
sion events across E. coli, Haemophilus infuenzae and Methanococcus jan-
naschii [34]. This gene-fusion analysis approach has since been incorporated
into a computational algorithm for the prediction of PPIs and protein func-
tion [55].

3.2
Evolutionary Relationship

Evolutionary relationships between two proteins can also be used to infer
a physical and functional relationship. The phylogenetic profile of a protein
describes the presence of homologs across a series of organisms. Proteins
that exhibit similar profiles may be functionally linked. For instance, proteins
that make up multimeric structural complexes or that participate in a given
biochemical pathway typically exhibit similar phylogenetic profiles. Pellegrini
et al. applied phylogenetic profiling to predict the function of previously un-
characterized proteins [35]. The comparison of profiles is further enhanced
by including evolutionary information. Vert showed that the accuracy of
function prediction using a support vector machine (SVM) is improved with
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the use of evolutionarily enhanced phylogenetic profiles [36]. A comparative
genome phylogenetic analysis approach has also lead to prediction of hun-
dreds of pairs of interactions in E. coli, and thousands in yeast [37].

3.3
Protein Structure

As the number of experimentally solved protein structures continues to in-
crease, three-dimensional (3D) structure information has become increas-
ingly applied to the prediction of physical binding [40, 56]. By considering
homologous proteins, it has been shown that close homologs (>30% sequence
identity) physically interact in the same or similar way [56]. Aloy and Rus-
sell describe such a 3D-based method to model putative interactions [56]. The
method assesses the fit of two potential interacting partners on a complex
of known 3D structure and infers molecular details of how the interaction
is likely to occur. In general, it has been shown that residues located at the
interface tend to be structurally conserved [38]. Residues that make atomic
contacts in a crystallographic complex are analyzed. An interaction is con-
served as long as the contacting resides is also conserved. Homologs of both
interacting proteins are then examined to see whether these interactions
are preserved. All possible pairs between two protein families can then be
modeled and the most likely interactions determined. The method also pro-
vides a means of assessing the compatibility of a proposed PPI within such
a complex, as well as for ranking interacting pairs in studies that involve
protein families that show different interaction specificities. The method can
be used to model a complex based on the known structure of a similar
template complex, and to correctly predict interactions within several sys-
tems [56]. Aloy et al. successfully demonstrated how 3D structures can be
used to query entire interaction networks so as to validate and infer the mo-
lecular details of interactions that have been predicted using other methods.
InterPreTS (interaction prediction through tertiary structure) is a web-based
version of the above method [39]. Homologs of a test pair of protein se-
quence are identified from the database of interacting domains (DBID) of
known 3D complex structures. The sequences are then scored for how well
they preserve sites of contacts at the interaction interface [39]. InterPreTS
allows one to visualize the molecular details of any predicted interaction.
Combining domain structural similarities and conserved sequence patches
among interacting proteins has also led to improved methods for interaction
prediction [43].

Lu et al. report a multimeric threading approach to identifying interaction
partners and to assign quaternary structures of proteins found in the yeast
DIP database [40]. This multimeric threading algorithm, MULTIPROSPEC-
TOR, is able to recognize partners involved in protein interactions and cor-
rectly predict a significant number of interacting yeast proteins pairs that
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have already been identified in the DIP database. The method correctly rec-
ognized and assigned 36 of 40 homodimers, 15 of 15 heterodimers, and 65 of
69 monomers that were scanned against a protein library of 2478 structures
obtained from the protein data bank (PDB) [57].

The reported prediction accuracy of current methods often varies substan-
tially, and recent efforts have been made to address this issue. CAPRI (critical
assessment of predicted interactions) is a community-wide experiment that
aims to fairly evaluate the state of the art in protein-protein docking pro-
cedures by making predictions on a set of interacting proteins for which the
solution has not yet been published [41]. Models are compared to high qual-
ity crystallographic interaction data by independent CAPRI assessors. During
the course of these experiments, it was found that models exhibiting a high
degree of native intermolecular contacts were generally good indicators of
true PPIs.

PRISM (protein interactions by structural matching) searches a dataset
of protein structures for potential interaction partners by comparing pro-
tein structure pairs with a dataset of interfaces [42]. This interface dataset is
a structurally and evolutionarily representative subset of biological and crys-
tal interactions present in the PDB. The algorithm calculates the similarity
between interfaces by first obtaining structural surface alignments. This mea-
sures structural similarity of a target structure to a binding site. If the surfaces
of two target proteins contain similar regions to complementary partner
chains, it may be inferred that those target proteins interact through similar
regions. The PRISM web server allows users to explore protein interfaces as
well as predictions of PPIs. One can search a variety of stored interfaces cate-
gorized by functional clusters or structural similarity. For example, users can
search for proteins involved in cell metabolism, while restricting the results
to interfaces of certain sizes. PRISM’s interactive visualization tool shows the
3D model along with the desired features. One can also submit protein struc-
tures (in PDB format) for interaction prediction. Note that this method is only
applicable to proteins with known structure.

34
Domain-Based

There are a number of computational techniques that are based solely on
the conservation of protein domains. For example, a method developed by
Deng et al., employs maximum likelihood estimation to infer interacting do-
mains that are consistent with the observed PPIs [44]. Using evolutionarily
conserved domains defined in the Pfam (protein families) protein domain
database [58], the probabilities of interactions between every pair of domains
are estimated. These inferred domain-domain interactions are subsequently
used to predict interactions between proteins. Han et al. provide a similar
computational tool that not only predicts the PPIs, but also provides the inter-



S. Pitre et al.

action probability of input proteins and ranks the possibilities of interaction
between multiple protein pairs [45, 46].

Another prediction algorithm called PreSPI (prediction system for pro-
tein interaction), based on conserved domain-domain interactions, was also
described by Han et al. [45]. Here a domain combination-based PPI prob-
abilistic framework is used to interpret PPIs as the result of interactions of
multiple domain pairs or of groups. This tool is able to predict the inter-
action probability of proteins and also provides an interaction possibility
ranking method for multiple protein pairs that can be used to determine
which protein pairs are most likely to interact with each other in multiple pro-
tein pairs. A high sensitivity of 77% and specificity 95% were obtained for the
test groups containing common domains when tested using an interacting set
of protein pairs found in the yeast DIP database. Correlations were observed
between the interacting probability and the accuracy of the prediction, mak-
ing the output probability a useful indicator of prediction confidence. This
method was also somewhat successful when tested on an artificially made
random pairing of proteins used as a negative test set of non-interacting pro-
tein pairs. This method is particularly advantageous because it also allows for
mass prediction of whole protein interactions, which in turn makes it possible
to construct entire protein interaction networks.

Finally, Kim et al. developed a database for potentially interacting domain
pairs (PID) refined from the DIP database of interacting proteins by making
use of InterPro, an integrated database of protein families, domains, and func-
tional sites. A statistical scoring system, “PID matrix score” was developed as
a reliability index for accurate functional analysis of interaction networks and
a measure of the interaction probability between domains. This method com-
bines various kinds of information such as sequences, interacting regions,
and domains of both interacting partners [47]. In order to evaluate the pre-
dictive power of the PID matrix, cross-validation was performed with subsets
of DIP data (positive datasets) and randomly generated protein pairs from
TrEMBL/SwissProt database (negative datasets). The prediction system re-
sulted in approximately 50% sensitivity and more than 98% specificity [47].
The result also showed that mapping of the genome-wide interaction network
can be achieved by using the PID matrix.

35
Primary Protein Structure

Primary protein structure approaches are predicated on the hypothesis that
PPIs may be mediated through a specific number of short polypeptide se-
quences. These sequences do not span whole domains but are found repeat-
edly within the proteins of the cell. SVM-based learning methods have shown
that the primary sequence of an amino acid chain can effectively identify
PPIs [49, 50].
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An approach by Spriznak et al. integrates the predictions obtained from
different computational approaches together with experimental data, so as to
provide functional assignments [48]. It was reported that characteristic pairs
of sequence-signatures can be learned from a database of experimentally de-
termined interacting proteins, where one protein contains the first sequence-
signature and its interacting partner contains the other sequence-signature.
The sequence-signatures that appear together in interacting protein pairs are
termed correlated sequence-signatures. This analysis is applied to a database
of experimentally identified interacting protein pairs in yeast, from which dis-
tinct over-represented sequence-signature pairs were identified. Although not
every protein with the one signature is expected to interact with every pro-
tein with the other signature, this approach can be used to direct and narrow
down experimental interaction screens [48].

Another approach is based on the ability of an SVM learning system to
automatically recognize correlated patterns of sequence and substructure in
the interacting pairs of proteins found in the DIP database. These patterns
typically comprise a small number of functional residues in each protein.
This computational tool, developed by Bock and Gough, is based on primary
structure information as well as associated physicochemical properties such
as charge, hydrophobicity, and surface tension. Reported prediction accuracy
was 80%, but the test set size was very small (five previously characterized
interactions) [49].

Martin et al. describe an algorithm for PPI prediction [50] that follows the
approach of Bock and Gough by combining sequence information and ex-
perimental data analysis, while extending the concept of sequence-signatures
from Sprinzak et al. by using subsequence pairing. Information from ex-
perimental data, sequence analysis, and local descriptions of protein pairs,
which are more representative of the actual biology of PPI, are combined to
generate a novel and even more general descriptor called a signature prod-
uct. The signature product is then implemented within a SVM classifier as
a kernel function [50]. This method was applied to publicly available yeast
datasets among others. The yeast and H. pylori datasets used to verify the
predictive ability of the method yielded accuracies of 70-80% using tenfold
cross-validation. The human and mouse datasets were also used to demon-
strate that the method is capable of cross-species prediction. This method is
advantageous over that of Bock and Gough because it uses only experimental
and sequence information, and does not require physio-chemical informa-
tion. In addition, this approach, unlike that of Sprinzak et al., does not require
prior knowledge of domains.

Ben-Hur and Noble [51] also make use of SVMs to predict PPIs, but intro-
duce a novel pair-wise kernel that measures the similarity between two pairs
of proteins. SVMs and kernel methods have the ability to integrate differ-
ent types of information through the kernel function. Here, kernels make use
of a combination of data including protein sequence, homologous interac-
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tions, and GO annotations. Ben-Hur and Noble explore a number of different
kernel functions using yeast PPI data from the BIND database. At a false pos-
itive rate of approximately 1%, the sensitivity was 80%. Future directions may
include data incorporation from gene expression studies and transcription
factor binding data that have been useful in predicting PPIs.

A recent paper by Shen et al. [59] presents another method based on
a SVM with a kernel function using only sequence information to predict PPI
in human. The authors report an average prediction accuracy of 83.90%.

Finally, a method developed in our own laboratory called PIPE (protein-
protein interaction prediction engine) is able to predict with high confidence
PPIs for any target pair of yeast proteins given only knowledge of their pri-
mary structure data [52]. Like other PPI prediction methods, PIPE relies
on previously acquired experimentally derived PPI data and extrapolates
this information to predict novel PPIs. This engine compiled the dataset of
15118 PPI pairs of S. cerevisiae from the DIP [28] and MIPS [30] databases.
PIPE predicts the probability of interaction between two proteins by meas-
uring how often pairs of subsequences in two query proteins A and B are
observed to co-occur in pairs of protein sequences known to interact (see
Fig. 2). PIPE showed an overall accuracy of 75%, a success rate that is on par
with other commonly used biochemical techniques. PIPE analysis also has
other applications in that it can be used to study the internal architecture of
yeast protein complexes [52].

To validate the predictive accuracy obtained from PIPE, previously pub-
lished positive and negative validation datasets were tested. Over a positive
database of 100 known protein pairs PIPE displayed a sensitivity of 61% and
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Fig.2 Design of PIPE algorithm [52]: Step 1: The interaction list (dataset of 15118 known
interactions) is used to create an interaction graph G. Step 2: The first sequence is frag-
ment using a sliding window and used to find all sequences in the database similar to it.
For all sequences found, its neighbors in G are added to a neighbors list R. Step 3: The
second sequences is also fragmented and is then used to scan the list R. For every match
a score of 1 is incremented in the result matrix M. Step 4: Once Step 3 is done we graph
the result matrix M, which will show visually the peaks representing possible interaction
sites
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a false negative rate of 39% [52] in predicting yeast PPIs. On the other hand,
comparing the data obtained from PIPE with the negative validation dataset
helped to verify the false positives rate for PPI. It was found that PIPE falsely
detected only 11% non-interacting proteins pairs as interacting pairs. This
indicates an 11% false positives rate and 89% specificity rate [52] for the
detection of PPI in yeast. Overall, PIPE has the accuracy of 75% [52] and
has lower false positive and negative rates than TAP-tagging and Y2H analy-
sis [60].

PIPE also has the ability to identify interacting sites within the sequence of
the interacting protein pairs. For example, PIPE also identified previously re-
ported interaction sites between the first 75 amino acid residues of YCR084C
and the N terminal region of YBR112C. Figure 3 illustrates that PIPE identi-
fied that amino acid region 350-410 of protein YNL243W may interact with
the amino acid region 100-250 of protein YBL007C, with a score of 40.

PIPE has been employed to identify and validate a novel PPI between
YGL227W and YMR135C. Although yeast gene deletion studies indicated that
both YGL227W and YMR135C may be involved in the catabolism of fructose-
1,6-bisphosphatase (FBPase) [61], little else is known about them. Following
a PIPE prediction that these two proteins may interact, dual TAP-tagging ex-
periments performed in our laboratory identified both of these proteins in
co-purification complexes. Moreover, the YGL227W TAP-tagged protein was
co-purified with six other proteins in what we termed the vid30 complex.
While TAP-tagging does not determine the internal architecture of this com-
plex, PIPE was able to analyze systematically each of the 21 possible PPIs to
predict the internal architecture of the vid30 complex. PIPE found that four
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Fig.3 Possible interaction sites between YNL243W and YBL007C [52]. The highest scor-
ing (dark) regions represent the theoretical sites of interaction between the two proteins
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proteins formed the core of the complex, whereas three other proteins only
interact with YGL227W and YIL017C, but not with each other.

Since the original release [52], we have strived to improve the perform-
ance and accuracy of PIPE in order to scan the entire yeast genome. In our
most recent work (to be published), we have improved the speed of PIPE
over 16 000-fold and increased specificity (~99.9%) at the expense of a lower
sensitivity (~15%). These improvements, together with the use of a high per-
formance cluster computer, allowed us to do an all-to-all examination of the
entire yeast genome (6304 proteins, 19867056 possible pairs) in order to
detect novel PPIs. Our improved method detected a total of 29589 interac-
tions, of which 14438 have not been previously reported in any large-scale
database.

4
Validation of Experimentally Determined Interactomes

Reports show that the intersections between various interaction maps ob-
tained using different methods are very small. A comparison study carried
out by Aloy and Russell in 2002, showed a low level of overlap among
two-hybrid, affinity purification, mass spectrometry, and bioinformatics
methods [6,17]. One such measure for the validation of computational
methods is the “interaction generality” measure (IG1) [62]. IG1 is the num-
ber of proteins involved in a given interaction or the number of proteins that
directly interact with the target protein pair. This measure is based on the
assumption that interactions observed in a complicated interaction network
are likely to be true positives, while interacting proteins that appear to have
many other interacting partners that have no further interactions are likely
to be false positives. Interactions with low generalities were more likely to be
reproducible in other independent assays and these protein pairs are likely
to be co-expressed and are therefore physically related. In [62], Saito et al.
were able to refine the existing networks as determined by Uetz et al. [9]
and Ito et al. [10]. The authors also developed a new “interaction generality”
measure (IG2) that considered the topological properties of the protein inter-
action network beyond the target pair of proteins. IG2 was found to assess the
reliability of putative PPIs with higher accuracy [62].

Another measure used to determine the reliability of an interaction be-
tween two proteins is the correlation of their mRNA expression levels. This
is then used to determine an expression profile reliability index (EPR), which
monitors the fraction of interacting proteins [63]. A paralogous verification
method (PVM) was also developed in which paralogous interacting proteins
are searched in the DIP database and counted. The reliability of their interac-
tion is then determined on the basis of this count [63].
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5
Strengths, Weaknesses, and Challenges of Computational PPl Predictions

Researchers have embraced the use of computational methods in the elucida-
tion of PPIs. Computational PPI prediction methods are an invaluable source
of information that complement labor-intensive experimental approaches
such as Y2H and TAP-tagging. However, the high-throughput nature of bioin-
formatics tools should require that computational predictions be deemed
reliable only after proper scrutiny. Appropriate measures to evaluate the sig-
nificance of the interactions should be developed to minimize the number
of results that give false positives and negatives. While it is often difficult to
differentiate between novel interactions and false positives, additional contex-
tual clues including function, expression, and localization should be brought
into consideration. As computational methods are based directly or indirectly
on experimentally obtained data, the inaccuracies in the original data will
likely be propagated into the predictions.

Several other factors contribute to the challenges that face computational
PPI predictions. False positives are prevalent in most computational methods,
but we can easily find an explanation. The model organism used for testing in
many methods, yeast, contains roughly 6300 proteins [64], which yields ap-
proximately ~19 million possible pairs. Even with a false positive rate as low
as 1%, we would anticipate 190000 falsely predicted interactions. It has been
estimated that, in actuality, there are anywhere between 10000 and 30000
interactions in yeast [64-70]. Recent large-scale studies contain datasets of
a size closer to the bottom end of that range (7123 in Krogan et al. [71]). We
can therefore see that the positive interactions are vastly outnumbered by the
number of negative interactions. Even if we assume there are 30000 possible
interactions there is still more than a 600:1 ratio of negative to positive inter-
actions (~0.158%). Therefore it is extremely difficult to recognize the true
positive predictions among the overwhelming background of false positive
predictions.

The lack of reliable a gold standard makes the assessment of prediction ac-
curacy by the various tools somewhat arbitrary. The establishment of a gold
standard is essential to measure progress in the field and will also serve as
training material for the next generation of prediction methodologies. Strong
gold standard datasets need to be constructed from multiple lines of evidence,
including structure where possible, and made freely available.

Recent developments in computational interaction prediction have opened
the door to predicting entire interactomes for a variety of organisms. For
the most sophisticated approaches, this objective is very computationally
expensive and time-consuming. However, algorithmic optimizations and con-
tinued improvements in hardware performance will help overcome these
challenges.
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6
Future Work

It is expected that the number of computational tools for predicting novel
PPIs will continue to grow for at least another decade. The increasing predic-
tion accuracy of such tools makes them even more useful for the validation
and analysis of diverse interactomes. The growing availability of high quality
system biology data may provide the basis for even higher prediction accu-
racy for such methods. For example, regardless of the hypotheses from which
computational tools are originated, the increasing availability of 3D struc-
tures of proteins and protein complexes should provide a highly improved
starting dataset, which in turn can increase the accuracy of future tools to
predict novel PPIs.

One possible direction for development of future tools is to include mul-
tiple categories of characteristics/approaches to predict an interaction. In
fact, some recently published tools make use of a combination of character-
istics to make their predictions [72,73]. Other investigations may focus on
the elimination of false positives associated with computational tools. The
presence of false positives in almost all computational methods has pro-
vided a challenge for computational biologists. This might be overcome by
using vigorous filters that may consider other information about the tar-
get interaction. Evidence for the development of such tools can already be
seen in the literature, where for example GO ontology has been used as
a filter [74].

7
Conclusions

In spite of the number of challenges that are faced in the use of computational
methods, one can only expect that they will have even wider applications in
the genome-wide analysis of interactomes. The most obvious result of this
will be the enlargement of protein databases. It is also expected that the ef-
ficiency of these methods will improve. At present, there is an emergence of
a more integrated strategy in which genomic, proteomic, and other forms of
data are incorporated into the process of generating protein interaction maps.
It appears that these strategies will also be able to take other cellular processes
such as post-translational protein modification and protein degradation into
consideration.

It is impossible to deny the invaluable insight into the organization of
living organisms that has been provided by even the simplest of protein inter-
action models. As these models become more sophisticated, computational
methods will become of even more importance.
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