
Information Processing Letters 108 (2008) 293–297
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Using spine decompositions to efficiently solve the length-constrained
heaviest path problem for trees ✩

Bishnu Bhattacharyya, Frank Dehne ∗

School of Computer Science, Carleton University, Ottawa, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2007
Received in revised form 1 March 2008
Accepted 31 May 2008
Available online 11 June 2008
Communicated by S.E. Hambrusch

Keywords:
Algorithms
Analysis of algorithms
Data structures

The length-constrained heaviest path (LCHP) in a weighted tree T , where each edge is
assigned a weight and a length, is the path P in T with maximum total path weight and
total path length bounded by a given value B . This paper presents an O (n log n) time LCHP
algorithm which utilizes a data structure constructed from the spine decomposition of the
input tree. This is an improvement over the existing algorithm by Wu et al. (1999), which
runs in O (n log2 n) time. Our method also improves on a previous O (n log n) time algorithm
by Kim (2005) for the special case of finding a longest nonnegative path in a constant
degree tree in that we can handle trees of arbitrary degree within the same time bounds.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Consider an undirected tree T = (V , E), and define
functions w(e) and l(e) to be the weight and length of
each edge e ∈ E , respectively. For any path path(u, v)

between vertices u and v , we define the path weight
w(path(u, v)) = ∑

e∈path(u,v) w(e) and path length l(path(u,

v)) = ∑
e∈path(u,v) l(e). The length-constrained heaviest path

for T is then defined as follows [6]:

Definition 1. Given a tree T = (V , E) with edge weights
w(e) and edge lengths l(e), and a real number B , then the
length-constrained heaviest path (LCHP) for T is the path P
such that

w(P) = max
u,v∈V

{
w

(
path(u, v)

) | l
(
path(u, v)

)
� B

}

and hw(T , w, l, B) denotes the weight of the length-con-
strained heaviest path for T .

✩ Research partially supported by the Natural Sciences and Engineering
Research Council of Canada.

* Corresponding author.
E-mail addresses: bbhattac@connect.carleton.ca (B. Bhattacharyya),

frank@dehne.net (F. Dehne).
URL: http://www.dehne.net (F. Dehne).
0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.05.023
LCHP can be used to solve network design problems
on tree networks, where the edge weights represent band-
width and the lengths represent link costs. A special case
of LCHP, called the longest nonnegative path (LNP), has nu-
merous applications in computational molecular biology
and bioinformatics [1].

Definition 2. Given a tree T = (V , E) with edge weights
w(e) = 1 for all e ∈ E and (arbitrary) edge lengths l(e),
then the longest nonnegative path (LNP) for T is the path
P such that

w(P) = max
u,v∈V

{
w

(
path(u, v)

) | l
(
path(u, v)

)
� 0

}
.

LNP is a special case of LCHP. Note that Definition 1
allows arbitrary values for B , w(e) and l(e). They can be
any real number, and path weight can also be minimized
or B can be used as a lower bound instead of an upper
bound by using negative numbers.

In [6], Wu et al. presented a recursive algorithm that
solves LCHP in time O (n log2 n). An O (n log n)-time algo-
rithm for LNP on trees of constant degree was presented
in [4].

In this paper, we improve on both of the above re-
sults. We present an O (n log n) time algorithm that solves
LCHP on an arbitrary undirected tree. Our method is based

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:bbhattac@connect.carleton.ca
mailto:frank@dehne.net
http://www.dehne.net
http://dx.doi.org/10.1016/j.ipl.2008.05.023

294 B. Bhattacharyya, F. Dehne / Information Processing Letters 108 (2008) 293–297
on a recursive decomposition of the input tree T called
the spine decomposition [2] and improves on the currently
known O (n log2 n) time complexity for LCHP [6]. As a
corollary, our method can also solve LNP for arbitrary trees
in time O (n log n) which improves on the result in [4]
where this time complexity could only be achieved for
trees with constant degree.

2. Spine decomposition of trees

2.1. Tree decompositions

Definition 3. A general decomposition of a tree T , denoted
D(T), is a collection of subtrees of T such that

1. T ∈ D(T).
2. For all T1, T2 ∈ D(T) either T1 and T2 are disjoint, or

one is strictly contained in the other.

The depth of a decomposition is the maximum cardinal-
ity of H ⊆ D(T) such that

H = {T1, T2, . . . , Tk | T1 ⊂ T2 ⊂ · · · ⊂ Tk}.

It is important to define the depth of a tree decompo-
sition, since it directly influences the running time of our
algorithm. A common tree decomposition that is used is
the centroid decomposition [3].

Definition 4. A centroid of a tree T is a vertex x whose
removal results in a set of subtrees T1, . . . , Tk such that for
all 1 � i � k, |Ti | � |T |/2 (where |T | denotes the number of
vertices in T).

Any tree T has at least one centroid. Let T (v) denote
the set of subtrees formed by removing vertex v from T .
A centroid decomposition CD(T) is formed by starting with
{T }, finding its centroid x, and adding T (x) to the set
of components. This procedure is applied on each tree in
CD(T) until the components added are single vertices. The
depth of CD(T) is O (log n) [3]. Note that a centroid decom-
position can be represented by a (rooted) tree where each
node corresponds to a subtree of T . The depth of this tree
is equal to the depth of CD(T). We mention this decompo-
sition tree because it is utilized in the algorithm presented
in Section 3.

A major flaw of centroid decompositions is that cen-
troids in successive subtrees are unrelated; if Ti ⊂ T j , we
can infer no knowledge about the centroid of Ti by know-
ing the centroid of T j . Thus, if we are to evaluate an ex-
pression at each node of the decomposition tree, it must
be recomputed every time.

2.2. Spine decomposition

A spine decomposition (denoted SD(T)) [2] is a special
case of a general tree decomposition that consists of a col-
lection of spines, or paths from the root of a tree to a leaf.

First, without loss of generality assume that T is a
rooted binary tree. If T has no root, we can arbitrarily as-
sign one. If T is not binary, we can transform it into a
binary tree by adding O (n) nodes and zero-length, zero-
weight edges [5].

Lemma 1. Suppose (T , w, l, B) is an instance of LCHP, where T
is an arbitrary tree. Let T ′ denote the rooted binary transforma-
tion of T , and define functions w ′, l′ as follows:

w ′(u, v) =
{

w(u, v) if (u, v) is an edge in T ,

0 otherwise,

l′(u, v) =
{

l(u, v) if (u, v) is an edge in T ,

0 otherwise.

Then, hw(T , w, l, B) = hw(T ′, w ′, l′, B).

Proof. Since all edges in T ′ \ T have zero weight and zero
length, for every path in T there exists a correspond-
ing path in T ′ with identical weight and length, and vice
versa. (For a path p′ in T ′ , select the corresponding path
in T obtained by removing all edges in T ′ \ T from p′ .
For a path p in T , select the corresponding path in T ′
with the same end points as p.) Hence, hw(T , w, l, B) =
hw(T ′, w ′, l′, B). �

For the remainder of this section, we assume that T is
a rooted binary tree with n nodes and root rT . T (v) is the
subtree of T rooted at v . The number of descended leaves
from v , denoted Nl(v), is the number of leaf nodes in T
that have v as an ancestor.

Definition 5. The spine decomposition SD(T) for a rooted
binary tree T with root rT is a tree decomposition con-
sisting of a collection of spine subtrees defined as follows:
First, the spine π(rT , l) is chosen where π(rT , l) is a path
{v0 = rT , v1, . . . , vk = l} in T such that l is a leaf and for all
i = 0, . . . ,k − 1 the node vi+1 is the child node of vi with
the largest number of descended leaves in T . Next, recur-
sively compute the spine decompositions for every subtree
T (ui) rooted at a node ui adjacent to π(rT , l). In addition,
construct for each spine a binary search tree whose leaves
are the vertices of the spine.

Note that, in some trees, a spine can be of length
O (n). Consider an algorithm that processes SD(T) bottom-
up. Gathering information from that many subtrees in
one level of the recursion is inefficient. This is addressed
by building a binary search tree (BST) on top of every
spine. The leaves of the BST are nodes on the spine. To
build the BST with root x on spine π = {v0, . . . , vk}, de-
note λ(vi) = Nl(T (ui)), where ui is the child of vi that
is not in π . If ui does not exist, λ(vi) = 1. Compute m
such that |∑m

(i=0) λ(vi) − ∑k
(i=m+1) λ(vi)| is minimized,

and then recursively compute the BSTs for node x1 with
spine {v0, . . . , vm} and node x2 with spine {vm+1, . . . , vk}.
Minimizing this difference balances the search tree by
weight. x1 and x2 are then assigned as the left and right
child of x, respectively. Consequently, a spine node with
many descended leaves will be closer to the root of the bi-
nary search tree. The spine decomposition of the tree T in
Fig. 1 is shown in Fig. 2. It is important to note that SD(T)

includes every vertex and edge in T .

B. Bhattacharyya, F. Dehne / Information Processing Letters 108 (2008) 293–297 295
Fig. 1. Tree T .

Fig. 2. The spine decomposition SD(T) of the tree T in Fig. 1. Black ver-
tices and solid lines represent nodes and edges of T . White vertices and
dashed vertices represent the binary search trees. From this diagram, we
see that all nodes and edges in T are also in SD(T).

SD(T) can be computed in O (n) time. The resulting
decomposition tree is of height O (log n) and has O (n) ver-
tices [2]. Note that the height of this tree is independent
of the height of T . We denote sSD as the root of the search
tree of the first spine in SD(T). sSD is the root of the de-
composition tree of T .

3. The algorithm

Our algorithm is presented in three parts. For improved
readability, we present only the computation of the weight
of the heaviest path. However, it is a simple modification
to also compute the path itself.

Initially, LCHPsolve (Algorithm 1) pre-processes T by
converting it to a rooted binary tree T ′ and computing the
spine decomposition SD(T ′). In other words, it computes
the transformation illustrated in Figs. 1 and 2. It then ini-
tiates the recursion by calling recurseLCHP (Algorithm 2).
However, before we describe recurseLCHP, we need some
notation:

• If v is a node of a binary search tree, left(v) is the left
child of v . right(v) is defined analogously.
Algorithm 1. LCHPsolve

1: Input: Tree T , weight function w , length function l, threshold B
2: Output: soln ← hw(T , w, l, B)

3: if T is not a rooted binary tree then
4: Convert T to a rooted binary tree T ′ . Create w ′ and l′ accordingly
5: end if

6: Construct SD(T ′)
7: Output recurseLCHP(SD(T ′), sSD, w ′, l′, B).soln

Algorithm 2. recurseLCHP

1: Input: Spine decomposition SD(T), node x in SD(T), weight func-
tion w , length function l, threshold B

2: Output: soln ← hw(T , w, l, B), X ← length-sorted array of paths in T
ending at leftmost(x), Y ← length-sorted array of paths in T ending
at rightmost(x)

3: XT := []
4: Y T := []
5: if x is a leaf of T then
6: Return (−∞, XT , Y T)

7: else if x is a spine node then
8: if deg(x) = 2 then
9: Return (−∞, XT , Y T)

10: else
11: y := The child of x that is in the spine below x in SD(T)

12: z := sSD of the spine decomposition of the subtree of T
rooted at y

13: S := recurseLCHP(SD(T), z, w, l, B)

14: Append edge (x, y) to all paths in S.X and adjust
path weight/length accordingly

15: Insert path P = ((x, y)) into S.X
16: lsoln := maxi∈S.X {S.X[i].weight|S.X[i].length � B}
17: Return (max{lsoln, S.soln}, S.X, S.X)

18: end if

19: else if x is a node on a binary search tree then
20: Return BSTnodes(SD(T), x, w, l, B)

21: end if

• If v is a node of a binary search tree, leftmost(v) de-
fines the spine node found by repeatedly traversing
the left edge from v . rightmost(v) is defined analo-
gously. If v is a spine node, leftmost(v) =
rightmost(v) = v . In Fig. 2, leftmost(sSD) = root and
rightmost(sSD) = d. We adopt the convention that left-
most always points towards the head of the spine.

• When discussing recurseLCHP (Algorithm 2) and BST-
node (Algorithm 3), we may refer to rooted binary tree
T ′ as T . The notation can be simplified since both of
these algorithms are oblivious as to whether T was
pre-processed or not.

We now outline Algorithms 2 and 3. recurseLCHP solves
LCHP for the subtree of the decomposition tree of SD(T) that
is denoted by a node x in the tree.

When processing SD(T), there are three cases to con-
sider. The first case is when the current node x being pro-
cessed is a leaf of T . In Fig. 2, these correspond to vertices
a,b, c,d, e, f , and g . The second case is where x is not a
leaf, yet is still a spine vertex. This corresponds to the re-
maining black vertices in Fig. 2. The final case is when x is
a search node of SD(T), or a white node in Fig. 2.

296 B. Bhattacharyya, F. Dehne / Information Processing Letters 108 (2008) 293–297
Algorithm 3. BSTnode

1: Input: Spine decomposition SD(T), binary search tree node x, weight
function w , length function l, threshold B

2: Output: soln ← hw(T , w, l, B), X ← length-sorted array of paths in T
ending at leftmost(x), Y ← length-sorted array of paths in T ending
at rightmost(x)

3: P := []
4: XT , Y T := []
5: L := recurseLCHP(SD(T), left(x), w, l, B)

6: R := recurseLCHP(SD(T), right(x), w, l, B)

7: Let lt and rt denote the left and right children of x, respectively
8: e := edge(rightmost(lt), leftmost(rt))
9: Append edge e to all paths in R.X , and merge L.Y and R.X into list P

10: Insert the path consisting of the single edge e into P such that
the list remains in sorted order

11: lsoln := max{L.soln, R.soln}
12: Let n denote the number of elements in P
13: lsoln := {lsoln max1�i�n{P [i].weight|P [i].length � B}}
14: for all i such that 1 � i � n do
15: best[i] := P [α] such that P [α].weight = max1� j�i{P [j].weight}
16: otherbest[i] := P [β] such that P [β].weight = max1� j�i{P [j].

weight} and path P [β] and P [α] do not share any edges.
If no such α exists, otherbest[β] := −∞

17: end for
18: j := n
19: for i = 1 to n do
20: while P [i].length + P [j].length > B do
21: j := j − 1
22: end while
23: if j < 1 then
24: break
25: end if
26: if P [i] and best[j] share one or more edges (and thus cannot be

concatenated) then
27: lsoln := max{lsoln, P [i].weight + best[j].weight}
28: else
29: lsoln := max{lsoln, P [i].weight + otherbest[j].weight}
30: end if
31: end for
32: Append path(leftmost(x), leftmost(rt)) to all paths in R.X , and merge

R.X and L.X into XT .
33: Append path(rightmost(lt), rightmost(rt)) to all paths in L.Y , and

merge L.Y and R.Y into Y T

34: Return (lsoln, XT , Y T)

In addition to solving LCHP, recurseLCHP also returns
two length-sorted lists of paths in the subtree. One list is
of all paths that terminate at leftmost(x), the other is of all
paths that terminate at rightmost(x). These paths are de-
noted X and Y , respectively. In the first case, where x is a
leaf of T , these lists are empty and the solution to LCHP is
−∞ (recurseLCHP, line 6).

In the second case, where x is a (non-leaf) spine node,
the situation is more complex. If deg(x) = 2 we can treat
x as if it is a leaf of T . Otherwise, we must first recurse
on the subtree of SD(T) rooted at node y, the child of x
that is not in the current spine. We take the list of paths
returned and append edge(x, y) to all of them, adjusting
path weight/length accordingly (the list remains sorted)
(recurseLCHP, lines 13–15). If any of these new paths are
a better solution to LCHP than the one returned by the
recursive call, we record that (recurseLCHP, line 16). Note
that in these cases the left list and the right list will be
identical.
Fig. 3. An example of LCHP. The edges are labeled with (weight, length)

pairs, and the solution computed at y is illustrated. The root of the origi-
nal tree is a, and the root of the top search tree of the spine decomposi-
tion is y.

The most complicated case is the third one, when x is a
node in a binary search tree above a spine. This is handled
by BSTnode (Algorithm 3).

Definition 6. If v is a node in a binary search tree in SD(T),
the subtree of T that is formed by taking the spine seg-
ment from leftmost(v) to rightmost(v) and all spines that
hang off it is the subtree of T that is covered by v , de-
noted T v . In Fig. 2, R covers the spine segment from L
to d, as well as leaf nodes a,b, and c.

This is the only case where x is not a node in
the original tree T . We solve LCHP for the subtree Tx

of T . After computing LCHP for left(x) and right(x) (de-
noted L and R , respectively), we look for the maxi-
mum length-constrained path in Tx passing through edge
e = (rightmost(left(x)), leftmost(right(x))). We first append
e to all the paths in the list R.X and merge with L.Y .
This results in a list of paths terminating at vertex w =
rightmost(left(x)).

To compute the best path containing e, we first check
the current best solution against all paths in Tx terminat-
ing at w (BSTnode, line 13). We then check all paths that
contain e using the method of [7]. For each path P that
terminates at vertex w we first compute the path of max-
imum weight Q such that w(Q) � w(P) for both the left
and right subtree of Tx descended from w (BSTnode, lines
14–17). Thus, the path starting at some vertex v and pass-
ing through e can be quickly calculated by first finding the
vertex u such that path(u, v) is the path of greatest length
passing through u, v , and w (BSTnode, line 20). We then
replace the segment path(u, v) with the heaviest path of
lesser or equal length in the appropriate subtree (BSTnode,
lines 23–26). This path is guaranteed to be the heaviest
path passing through w and v obeying the length con-
straint.

Once the solution for the Tx has been computed,
we construct a length-sorted list of paths terminating at
leftmost(x) and rightmost(x) and pass the solution upwards
(BSTnode, lines 27–29).

B. Bhattacharyya, F. Dehne / Information Processing Letters 108 (2008) 293–297 297
Before analyzing correctness and running-time, we
present an example of LCHPsolve that illustrates our al-
gorithm in Fig. 3. The root of the original tree is a, and the
root of the top search tree of the spine decomposition is y.
The edges are labeled with (weight, length) pairs and the
threshold B is set to 0. The left path and right path lists
for all spine nodes are identical, so when processing them
we do not distinguish between them (this is because if v
is a spine node leftmost(v) = rightmost(v) = v). LCHPsolve
terminates on nodes e, f , g,h, and d. In these cases, the
shortest path is −∞ and the lists of paths are empty. For
node b, edge (b, g) is merged with the solution for node g .
Since (b, g) has length 1, the length-constrained heaviest
path still has weight −∞, but the list of paths terminating
at b is now {gb}. For node c, edge (c,h) is merged with
the solution for h. Since it has length 0, the solution for c
is 1, and the list of paths is {hc}.

The next node to be computed is w . This requires us to
merge the solutions of e and f . The path appended to the
path list for f is f e. This results in a solution of weight 1,
and the list of paths is { f e} (at both the left and right
node).

Now a can be computed. Edge (e,a) is appended to
the solution for w . This yields the paths { f ea, ea}. Note
that this list is length-sorted. The solution to LCHP at a re-
mains 1.

We now have computed the solution for all the spine
nodes, and can start on the search nodes of the top search
tree (rooted at y). We begin with node x. The path list
at a is { f ea, ea} and path list at b is {gb}. Appending
edge (a,b) to the solution for b and merging results in
the length-sorted path list {ba, gba, f ea, ea} (for the left)
and {ab, f eab, eab, gb} (for the right). Scanning these lists,
we see that the solution to LCHP is formed by concate-
nating f ea with gba, resulting in a path of weight 6 and
length −1. Similarly, at node z, list {hc} at c is merged
with the empty list at d via edge (c,d). This results in a
solution of 3 (hcd) and a length-sorted path list of {dc,hc}
(left) and {cd,hcd} (right).

In Fig. 3, sSD = y, so the solution for y is the solu-
tion for the entire tree. The right list for node x and left
list for node z are merged via path bc. The resulting list
is {dcb,ab,hcb, f eab, eab, gb}. Scanning this list results in
path f eabcd, of weight 9 and length −7, as our solution to
LCHP for the entire tree rooted at a.

Theorem 1. Algorithm LCHP runs in time O (n log n), where n is
the number of vertices in T .

Proof. T can be transformed into a binary tree with O (n)

nodes and edges in O (n) time [5], and the spine de-
composition (of size O (n)) can be constructed in O (n)

time [2]. Therefore, TLCHP(n) = O (n) + TrecurseLCHP(n). For
TrecurseLCHP(n), we will consider cost per node processed.

Consider vertex x in T . Trivially, when x is processed at
a leaf node of SD(T), the cost is O (1). At a spine node of
degree 3, an edge is appended to the path from the root
to x, and then it is checked against the current solution to
LCHP (recurseLCHP, lines 11–17). This also costs O (1) time.

At a BST node, x is merged into a combined list, and
then checked against the current solution. Depending on
which subtree x is in, the path from x to the root may
be extended, but in either case the cost remains the same.
While computing best and otherbest for 1 � i � n, we can
remember and update the best path found so far, so x is
checked a constant number of times (BSTnode, lines 14–
16). In the nested loops, x is visited exactly twice (when
it is indexed by i and j) (BSTnode, lines 19–20). Therefore,
the total cost for x is again O (1).

Since the depth of a spine decomposition is O (log n)

[2], x appears in O (log n) subtrees of SD(T). Therefore,
with n vertices, the analysis yields TLCHP(n) = O (n) +
TrecurseLCHP(n) = O (n) + O (n log n) = O (n log n). �
Theorem 2. Algorithm LCHP correctly computes hw(T , w, l, B).

Proof. It suffices to show that every path in T is checked
by the algorithm. Consider an arbitrary path P = {u, . . . , v}
in T . Let Q = {w, . . . , z} be the segment of P on the high-
est spine in SD(T). Denote this spine S . For instance, in
Fig. 3, if P = gbch, Q = bc, and S = abcd. Let y be the low-
est common ancestor of w and z in the binary search tree
over S . P is checked by LCHP when y is processed. �
Corollary 1. Algorithm LCHP also solves the LNP problem for
trees of arbitrary degree in time O (n log n).

Proof. LNP is a special case of LCHP. �
4. Conclusion

In this paper, we presented an O (n log n) time al-
gorithm for solving the length-constrained heaviest path
(LCHP) problem for arbitrary trees. An interesting exten-
sion, for future research, would be to consider the dynamic
version of this problem where we edit T (e.g., add/delete
a leaf, prune/regraft a subtree) and then efficiently update
the LCHP or LNP for T . This could be of particular interest
for Bioinformatics applications where such tree edits occur
frequently.

References

[1] L. Allison, Longest biased interval and longest nonnegative sum inter-
val, Bioinformatics 9 (2003) 1294–1295.

[2] R. Benkoczi, B. Bhattacharya, M. Chrobak, L. Larmore, W. Rydder,
Faster algorithms for k-median problems in trees, in: 28th Interna-
tional Symposium on Mathematical Foundations of Computer Science
vol. 2747, 2003, pp. 218–227.

[3] R. Cole, U. Vishkin, The accelerated centroid decomposition technique
for optimal parallel tree evaluation in logarithmic time, Algorithmica 3
(1988) 329–346.

[4] S. Kim, Finding a longest nonnegative path in a constant degree tree,
Information Processing Letters 93 (2005) 275–279.

[5] A. Tamir, An O (pn2) algorithm for the p-median and related problems
on tree graphs, Operations Research Letters 19 (1996) 59–64.

[6] B.Y. Wu, K.-M. Chao, C.Y. Tang, An efficient algorithm for the length-
constrained heaviest path problem on a tree, Information Processing
Letters 69 (1999) 63–67.

[7] B.Y. Wu, C.Y. Tang, An O (n) algorithm for finding an optimal position
with relative distances in an evolutionary tree, Information Processing
Letters 63 (1997) 263–269.

	Using spine decompositions to efficiently solve the length-constrained heaviest path problem for trees
	Introduction
	Spine decomposition of trees
	Tree decompositions
	Spine decomposition

	The algorithm
	Conclusion
	References

