
Int. J. Grid and Utility Computing, Vol. 1, No. 2, 2009 169

Copyright © 2009 Inderscience Enterprises Ltd.

Cooperative caching for grid-enabled OLAP

F. Dehne*
School of Computer Science,
Carleton University, Ottawa, Canada
E-mail: frank@dehne.net
*Corresponding author

M. Lawrence
Department of Computer Science,
University of British Columbia,
Vancouver, Canada
E-mail: mklawren@cs.ubc.ca

A. Rau-Chaplin

Faculty of Computer Science,
Dalhousie University,
Halifax, NS Canada
E-mail: arc@cs.dal.ca

Abstract: In this paper, we propose a grid-based On-Line Analytical Processing (OLAP)
application which distributes query computation across an enterprise grid. Our application
follows a two-tiered process for answering queries based on sharing Cached OLAP data between
the users at the local grid site and using grid scheduling approaches to execute the remaining
parts of a query amongst a distributed set of OLAP Servers. A new technique for extraction and
aggregation of shared Cached OLAP data is proposed, along with an efficient, aggregate-aware
Cache controller. An experimental evaluation of the proposed query processing and cooperative
Caching methods shows a significant reduction in query times compared to previously proposed
methods.

Keywords: OLAP; grid; Caching.

Reference to this paper should be made as follows: Dehne, F., Lawrence, M. and Rau-Chaplin,
A. (2009) ‘Cooperative caching for grid-enabled OLAP’, Int. J. Grid and Utility Computing,
Vol. 1, No. 2, pp.169–181.

Biographical notes: F. Dehne is a Professor of computer science at Carleton University in
Ottawa, Canada. He is specialised in parallel algorithm design and applications of parallel
algorithms in large-scale data analysis and bioinformatics.

M. Lawrence is a PhD student at the University of British Columbia in Vancouver, Canada.

A. Rau-Chaplin is a Professor of computer science at Dalhousie University in Halifax, Canada.
He is currently on leave at Dalhousie and Heading the parallel computing group at Flagstone
Reinsurance, developing parallel computing methods for catastrophe risk modelling.

1 Introduction

The operation of modern distributed organisations, be they
commercial, scientific or health related, generates massive
quantities of data. Decision makers increasingly construct
large-scale data warehouses and utilise On-Line Analytical
Processing (OLAP) tools to glean from these rich data
resource nuggets of information which can be used to better
run their enterprises. A typical approach to OLAP-based data
warehouses is to construct a single centralised data repository
by copying all of the raw data from the sites where it is
generated to a central location, where it is integrated and then

to route all queries to that central location. As the amount of
data and number of sites and users grow, this approach
suffers from significant scalability problems.

More recently, distributed enterprises are adopting grid
computing as a means of tackling computing problems
requiring large amounts of computational power or reliable
access to large amounts of data. There has been growing
interest in distributed data warehouses in the context of grid-
based computing resources (Niemi et al., 2002; Niemi et al.,
2003; Dubitzky et al., 2004; Fiser et al., 2004;Lawrence and
Rau-Chaplin, 2006).

170 F. Dehne, M. Lawrence and A. Rau-Chaplin

In this paper, we build on the grid OLAP model presented
by Lawrence and Rau-Chaplin (2006) and propose new
cooperative Caching algorithms for grid-based data
warehouses. Our approach is to forgo the construction of a
centralised data warehouse in favour of maintaining
distributed data sources across a grid. In this context, queries
must be routed to the appropriate data resources. Note that
unlike transaction processing queries, OLAP queries tend to
involve large amounts of data aggregation and typically
return large results. Fortunately, these results can often be
used to help compute the answers to future queries as users
roll-up their analysis.

Our approach is to take advantage of the hierarchal
structure of a typical enterprise grid, blending new and
sophisticated Caching techniques and data grid scheduling
to efficiently execute queries in a distributed fashion. Our
aggregate-aware Cache control algorithms take advantage of
the hierarchal grid organisation and the collection of local
users’ Caches in order to reduce the amount of data
retrieved from remote sites (see Figure 1).

Figure 1 An example OLAP enabled grid with the entities at
each site and the connections between sites shown

This paper is the first to propose a cooperative Caching
strategy to speed up OLAP queries in the grid. (A
preliminary version of this paper appeared as Dehne et al.
(2007) and implementation issues were discussed in
Lawrence et al. (2007).) While cooperative Caching
schemes exist, e.g. for Web Services (Narravula et al., 2006)
and Peer-to-Peer (P2P) systems (Kalnis et al., 2002), ours is
the first that provides the ability to combine and aggregate
Cached data for future-related OLAP queries. We believe
that cooperative Caching for OLAP amongst the users at a
grid site is beneficial due to the likelihood that those users
are interested in analysing similar perspectives. We propose
an efficient localised Cache admittance scheme which uses
a decay and refresh mechanism for controlling admission to
and eviction from the Cache and a fast, aggregate-aware
goodness metric for incoming OLAP view fragments.

We have prototyped the key components of our grid-
based OLAP system in order to evaluate the effectiveness of
the Cache extraction and admission algorithms in
comparison with recent OLAP Caching proposals in the
literature. Our experiments show that a significant reduction

in query cost is achieved by sharing and aggregating locally
Cached data amongst users and that our Cache extraction
method significantly outperforms previously proposed
alternatives.

Our contributions can be summarised as follows:
1 a grid-based application taking advantage of the

resources across an enterprise in order to provide a
scalable OLAP solution

2 two-tiered query processing algorithms making use of
cooperative Caching on the local site and scheduling
queries for non-Cached data to be executed over
different servers

3 aggregate-aware Cache control mechanisms taking
advantage of this two-tiered organisation and the
collection of local user’s Caches in order to reduce the
amount of data retrieved from remote sites

4 a prototype implementation in order to demonstrate the
effectiveness of the Cache extraction and admission
algorithms in comparison with recent OLAP Caching
proposals in the literature.

The remainder of this paper is organised as follows: Section 2
describes OLAP and gives an overview of our grid-based
OLAP application, also discussing related work. Section 3
outlines the architecture of the OLAP-enabled grid. Sections
4 and 5 describe the details of the query processing algorithm
and Caching strategies, respectively. An experimental
evaluation is presented in Section 6.

2 Background and related work

A typical data warehouse stores its information according to
a StarSchema having a fact table with d feature attributes
(dimensions) and some number of measure attributes. In
addition to the fact table, there are dimension tables which
give further details about the dimensions. These details
often define a hierarchy on the values of a dimension.

A common type of query in OLAP data warehousing is
the range-aggregate query, performed using the SELECT and
GROUP BY clauses in the Standard Query Language (SQL).
Typically the user selects a subset of the feature attributes
from either the fact or dimension tables or both and at least
one measure attribute from the fact table with some aggregate
function applied to it. The selected dimensions are used for
grouping the results and aggregation of the measure
attribute(s) is applied over all records having identical values
for the selected dimensions.

For example, a user of a bicycle store data warehouse
may be interested to see how much each customer spent on
each purchase. Such information can be obtained by an
OLAP query selecting CUSTOMER, TIME and SUM
(AMT), grouping the results by CUSTOMER and TIME,
represented with the following SQL expression:

SELECT CUSTOMER, TIME, SUM (AMT)

FROM SALES

GROUP BY CUSTOMER, TIME

 Cooperative caching for grid-enabled OLAP 171

Aggregate queries in OLAP are categorised by the
dimensions they choose in the GROUP BY clause and the
aggregated table. In the case that a query contains selection
ranges on one or more of the dimensions, its results
represent a view fragment. If a data warehouse has d
dimensions, and the number of elements in dimension
i’s hierarchy is Hi (where non-hierarchal dimensions D have
the size 2 hierarchy D → ‘all’), then the total number of
views is

1
().d

ii
H

=∏

Harinarayan et al. (1996) introduced the data cube
lattice, expressing the relationship between views as a
partial order. Each view is a node and there is a path from a
view v to a view w in the lattice if queries on w can be
answered also using v. This occurs when w groups on a
subset of v’s dimensions, each at the same or lower levels of
their respective hierarchies. More precisely, a view v can be
represented as a tuple of d values (v1, v2…, vd), where vi
is the level of dimension i’s hierarchy that v groups on.
The partial order amongst views as defined by the lattice is

iff ii iw wν ν≺ ≺ , where i≺ is the partial order defined by
dimension i’s hierarchy. The complete data cube lattice for
the bicycle store data warehouse is shown in Figure 2.
A fragment of a view v (resulting from a query on v) can be
aggregated to produce fragments on descendants of v so
long as it contains the entire range of values for those
dimensions which are aggregated out.

Figure 2 An example data cube lattice and dimension
hierarchies for a bicycle store data warehouse

There has been recent related work on grid-based OLAP
applications (Niemi et al., 2002; Brezany et al., 2003; Niemi
et al., 2003), OLAP aware Caching (Kotidis and
Roussopoulos, 2001) distributed Caching in P2P and Web
Services settings (Kalnis et al., 2002; Narravula et al.,
2006). Brezany et al. (2003) describe a grid application for
performing data mining and OLAP tasks on heterogeneous
healthcare data sources. The focus here is primarily on the
application and data integration issues, rather than the
efficiency of the OLAP processing. Niemi et al. (2002) and
Niemi et al. (2003) focus on the challenging problem of
building an OLAP datacube in a grid environment.
Although query processing is briefly addressed, the

proposed approach is quite simplistic. It does not make use
of Cached results which we believe is the key to efficiency
in the grid OLAP setting, because of the high network
latency and relatively low bandwidth between widely
geographically dispersed grid entities.

OLAP data is unique from a Caching perspective in that
the results of some queries (fragments) can be used to
compute some or all of the results of queries on different
views of the lattice. Kotidis and Roussopoulos (2001) take
advantage of this by designing a Cache which can further
aggregate Cached fragments for producing a query result.
However, their approach is all or none, in that either the
entire query result is obtained by aggregating a single
Cached fragment or not at all. They do not consider
aggregating and combining multiple Cached fragments to
answer a query and they do not consider fragmenting a
query and answering part of it from Cache and part from the
back end. Deshpande and Naughton (2000) relaxed this by
partitioning each view into discrete chunks and apply
Caching and querying on a chunk-based level. However,
this requires special indexes and functionality at the back
end.

Distributed Caching approaches have been examined in
P2P and Web Services settings (Kalnis et al., 2002;
Narravula et al., 2006). Kalnis et al. (2002) consider
processing of OLAP queries in P2P networks. They use the
chunk-based Caching scheme of Deshpande and Naughton
(2000) and peers propagate requests for chunks amongst
each other and data warehouses. Narravula et al. (2006)
consider in-memory Caching of web objects in large-scale
data centres. Each node maintains an index of the other’s
Caches, which they use to cooperatively answer requests.

3 The OLAP-enabled grid

3.1 Entities

Our application, the OLAP-enabled grid, is based on the
observation that the structure of an enterprise grid is
typically hierarchal: there are a number of sites in the
organisation, each having a number of computational
entities. Each site is a location where the enterprise has
operations, and it is the case that transmission within a
site is much faster than transmission between two sites
(e.g. LAN vs. WAN transmission). The entities at a site are
attached computers (sequential or parallel) which are able to
participate in the OLAP process, for example a user or a
Database Server. An illustration showing the various entities
present in an example enterprise is given in Figure 1.

As can be seen in the figure, each entity has a role
according to the functionality it offers in the OLAP-enabled
grid. There are total of four different roles:

1 Database Server – A machine which manages an
operational database in the enterprise. The data
maintained by different Database Servers are
independent and follows a common warehouse schema.

172 F. Dehne, M. Lawrence and A. Rau-Chaplin

2 Computational/Storage Resource – A machine which
offers storage space and processing power to the grid.

3 Site Broker – Responsible for the organization and
coordination of resources within that site.

4 User Agent – The workstation of a user who is
interested in performing OLAP operations on the data
managed by the Database Servers. Each User Agent
has an amount of Cache space on disk for storing the
results of previously answered queries.

3.2 System architecture
An overview of the logical components of the proposed
system from the perspective of a user is shown in Figure 3.
The corresponding layers of the Open Grid Services
Architecture presented by Foster et al. (2001) are shown as
well. In this section, we give a brief introduction to the role
of each component in the system. The details of query
processing are described in the sections which follow.

Figure 3 Components of the proposed grid-based OLAP solution
and the corresponding Open Grid Services Architecture
layers as presented in Foster et al. (2001)

The user interacts with a Front End which displays query
results and translates requests into OLAP queries which are
answered by the Query Service. The Query Service uses the
Distributed Cache Index Service: a global index
implemented on the Site Broker of all Cached fragments on
the local site. Having such an index allows as much of the
query as possible to be answered by local data. We could
have also followed the approach of Narravula et al. (2006)
and put a Cache index on each User Agent. However, given
the possibility of a large number of User Agents and a high
degree of query fragmentation, this would likely result in a
very large number of messages between User Agents to
keep the Cache indexes up to date. We could have forgone
an index as in the P2P system of Kalnis et al. (2002), but
this does not guarantee that the maximum amount of local
data will be used.

The Query Service uses the Data Source Service to
obtain both Cached fragments as well as query results from
the back end, which in turn uses a Collective Cache Service
for the Cached fragments and various Grid OLAP Services
for obtaining the parts of the query which are not Cached.
There is one Grid OLAP Service corresponding to the data
of each Database Server in the grid. However, due to the
presence of other computational and storage resources on a

site, there may be multiple underlying OLAP Servers which
can answer an OLAP query on that data. In our
implementation, the OLAP Servers store the data in a
normalised multidimensional format using R-trees as
indices as described by Dehne et al. (2003); Chen et al.
(2004); Dehne et al. (2006). For a particular Database
Server, the Site Broker at its site implements the
corresponding Grid OLAP Service, whose job is to choose
which of the OLAP Servers will answer a given query.
Which Grid OLAP Services a particular sub-query goes to
depends on the selection ranges of that sub-query. The data
is partitioned across Grid OLAP Services horizontally by
dimension values and a sub-query is sent to each Grid
OLAP Service whose range of values intersects with that of
the sub-query.

As in the Collective Cache Service, the Data Source
Service immediately forwards results of sub-queries back
to the Query Service as soon as they are received. This is
to allow the Cache Admission Controller (described in
Section 5) to make Caching decisions on each fragment
while the Query Service is waiting for the remaining
fragments, rather than trying to do them all at once. When
all of the results of the sub-queries have been obtained by
the Query Service, the overall query result is constructed
and returned to the Front End for display to the user.

4 Query processing algorithms

This section describes the basic steps taken in order to
execute a user’s OLAP query on the grid. Referring to
Figure 3, this involves the description of the Query Service,
Distributed Cache Index Service, Collective Cache Service,
Data Source Service and Grid OLAP Service. Based on our
sharing of local Caches, a two-tiered process for answering
queries is proposed. The first tier uses the Caches on the
local site in a collaborative manner to answer as much of the
query as possible, and the second tier requests the missing
fragments from the OLAP Servers.

Similar to Deshpande and Naughton (2000), we take
advantage of the data cube lattice by further aggregating
Cached data at any level above the desired result. Unlike
Deshpande and Naughton (2000), we index arbitrarily sized
multidimensional fragments (rather than equally sized
chunks). Kotidis and Rous-sopoulos (1999) and Kotidis and
Rous-sopoulos (2001) also index fragments, but they argue
that it does not pay to combine multiple Cached results to
answer a query. In our cgmOLAP system, Dehne et al.
(2003), Chen et al. (2004), Dehne et al. (2006), we have
observed aggregation of multidimensional to be an I/O-
bound task whose time is directly proportional to the
number of records which must be read from disk, i.e. the
query’s size. Therefore, even if only half of a query can be
answered from Cache, then it should take half the time to
answer the remainder of the query at each of the OLAP
Servers compared to the time it would have taken to answer
the entire query. An additional feature of our strategy is
that, since the Cached data is distributed across local User
Agents, Cache requests are serviced in parallel.

 Cooperative caching for grid-enabled OLAP 173

We call the Cache Search algorithm of the Distributed
Cache Index component of the system the Fragment
Aggregation and Recombination (FAR) strategy, since it
can aggregate Cached fragments and will recombine several
fragments in an attempt to answer a query. To implement
FAR, the Distributed Cache Index uses the data cube lattice
with an associated R-tree for view which indexes the
Cached fragments at that view’s level of aggregation. When
given a query, the Distributed Cache Index searches the
R-tree of that query’s view and identifies all intersecting
view fragments. A set of sub-queries are computed and,
similar to Deshpande and Naughton (2000), a search is
made for Cached fragments further up the lattice which can
answer these. These sub-queries are not further broken
down, rather they are attempted to be answered as a whole.

Translating a query on a view v to a query on an
ancestor of v when there are no dimension hierarchies is
straightforward and described by Kotidis and Roussopoulos
(2001). We review the procedure here so that the extension
to dimension hierarchies is more clear. Consider a query
q = ((I1 h1), (I2, h2)… (Id, hd)). Ii is an interval reflecting the
query’s selection of values for dimension i and hi is the level
of dimension i’s hierarchy which is used. If hj =‘all’, then
the value for Ii is irrelevant.

If a query q = ((I1, h1), (I2, h2) … (Id, hd)) is to be
translated over a view v = (vh1, vh2… vhd), then for all i, it
is either the case that hi = vhi, or that hi = all and vhi = Di,
the ith dimension of the data warehouse. The translated
query is q' = ((I'1, h'1), (I'2, h'2),… (I'd, h'd)), such that I'i = Ii
for any i such that hi = vhi, otherwise I'i = (min (Di), max
(Di)), the entire range of Di. For example, referring to Figure
2, if q = (((), all), ((10, 20), CUSTOMER), ((), all)) is to be
translated over the (PRODUCT_ID, CUSTOMER, all)
view, then the result would be q' = (((min (PRODUCT_ID),
max (PRODUCT_ID), PRODUCT_ID), ((10, 20),
CUSTOMER), ((), all)). This is necessary because each tuple
in the (all, CUSTOMER, all) view represents the aggregation
over purchases made by a specific customer at any time
and of any product, hence the full range of each of the
aggregated dimensions must be included. In case that
there are dimension hierarchies, the requirement is not as
restrictive. To translate a query q = ((I1, h1), {I2, h2) …
(Id, hd)) over a view v = (vh1, vh2,…, vhd) there may be cases
where hi ≠ all and hi ≠ vhi, i.e. hi is at some intermediate
level of the hierarchy. In this case, we do not need a
selection of all the values on vhi, only the ones
corresponding to the range indicated in Ii. Consider, for
example, the query q = (((4, 4), CATEGORY), ((), all),
((), all)). In order to compute this query from the view
(PRODUCT_ID, all, all), only the IDs of those products
corresponding to category 4 are needed, not all of the
products. For performing a translation of this type, the Site
Broker needs global knowledge about how values of a
particular hierarchical level of a dimension map to values at
a higher level in the hierarchy.

In order to implement the FAR Cache search as
described above, we have designed an algorithm which
computes a set of sub-queries Q given a query q and a set of
intersecting view fragments F. Geometrically, this is the

difference between q and the union of all fragments in F.
An example is shown in Figure 4. Algorithm 1 gives an
iterative algorithm over the dimensions of the query which
subtracts a single fragment from a query and gives the set of
sub-queries. An algorithm using this to compute the desired
set Q given the set F is given in Algorithm 2. This algorithm
also determines which fragments in F are actually
necessary, since there may be fragments in f which are
completely contained in the union of other fragments in f.
The overall FAR Cache search algorithm is based on
breadth-first search and is given as Algorithm 3.

Figure 4 An example illustrating the problem of computing a set
of sub-queries given a query q and a set of intersecting
fragments. Subfigure (a) shows a query q and two
intersecting fragments f1 and f2. The desired output is a
set of non-intersecting queries Q which also do not
intersect with f1 and f2such that

1 2() () ()
i

iq Q
q f q f q q

∈
∪ ∩ ∪ ∩ =∪ Subfigures (b)

and (c) show different possible solutions for Q = {q1,
q2, q3, q4, q5}

As discussed in Section 3, each Grid OLAP Service on a
site corresponds to the data of a Database Server. Each
site’s Site Broker implements the Grid OLAP Service(s) for
that site by scheduling each query to be answered by one of
the available OLAP Servers. As in previous grid schedulers
(Orlando et al., 2002; Park and Kim, 2003), our scheduler
sends the query to be executed on that OLAP Server
which it estimates can quickly deliver its result to the user.
This depends on both the CPU and network interface load
on the various servers, their processing speed as well as
materialised indexes and views on the data.

We express the time to answer a query q on a particular
OLAP Server S as

t(q, S) = tc(q, S) + tn (q, S),

where tc is the computation time and tn is the network
transfer time back to the user who requested it. When a Site
Broker receives a query q for a particular Grid OLAP
Service, it polls each OLAP Server S for that Grid OLAP
Service, asking S to compute tc (q, S) and tn (q, S).

We use R-trees to index the data stored on each block
of external memory, which is ordered on disk according to a
multidimensional space-filling curve as in Dehne et al.
(2003), Chen et al. (2004), Dehne et al. (2006). The time to
answer a query is then proportional to the amount of data
which must be read from disk, which in turn depends on
the selection ranges of the query and the materialised view
which will be used to answer it. The computation time to
answer a query q on a server S can be expressed as a

174 F. Dehne, M. Lawrence and A. Rau-Chaplin

function of the amount of data d(q, S) to be read from disk
and the available bandwidth of S’s disk system as in

(,)(,) .
_ ()c

d q St q S
disk bandwidth S

=

The value of d(q, S) depends on the materialised view of S
which q will be answered on. The server S maintains a
reference a(v) to the smallest materialised ancestor of each
view v, and upon receiving a query q, it translates q over
a(view(q)). It can then use information about the distribution
of data in a(view(q)) to approximate the amount of data to
be read to answer q on a(view(q)) and estimates the time
this would take by checking the current load and available
bandwidth of its disk system.

The estimation of tn(q, S) is relatively straightforward.
If S is on a different site from the user, it depends on both
the available bandwidth of the link from S to the gateway of
the site and on the available bandwidth across the link to the
user’s site. Information of this nature can be obtained, for
example, by using the Network Weather Service (Wolski
et al., 1999). Here, tn(q, S) is the estimated size of the query
result divided by the minimum of these two values. If S is
on the same site as the user, then tn(q, S) is the estimated
size of the query result divided by the available bandwidth
from S to the user. The available bandwidth depends on
various factors including the load on S’s network interface
and on the load and speed of the links.

Once the Site Broker performing a Grid OLAP Service
has computed t(q, S) for each of the OLAP Servers S, it
schedules q to be computed on the one with minimum
t(q, S) and instructs it to send the query results directly back

 Cooperative caching for grid-enabled OLAP 175

to the user. A potential for improvement of the proposed
strategy would be combining and aggregating together
results from the various Grid OLAP Services on a site for
the same query. If there are N Grid OLAP Services on a site,
this could potentially reduce the amount of data to be
transferred by 1/N.

5 Cooperative Caching algorithms

In this section, the operation of the Cache Admission
Controller implemented on each User Agent is described.
Given the potentially large amount of work that goes into
computing fragments to answer a query, the key to an
efficient grid-based OLAP system is an effective Caching
scheme. The challenge in our case is how to assign a value
representing the ‘goodness’ of a particular Cached fragment,
since fragments which can be computed locally are
presumably not as valuable as fragments computed on
remote sites. The User Agents compute the goodness of
each fragment and make a local Caching decision upon
receiving it, notifying the Distributed Cache Index Service
on the Site Broker of changes to its Cache contents. The
disadvantage to this is that there will be many small
fragments in the Cache, possibly increasing the complexity
of the Distributed Cache Index Service and the number of
sub-queries it returns. However, the advantage is that since
there may be vast differences in the cost of obtaining the
various sub-fragments and in their benefit to queries on the
local site, better use of the Cache space can be made by only
Caching the most valuable sub-fragments, thereby also
reducing the overlap of fragments in the Cache.

When Cached data is aggregated, accurate Caching in
OLAP is a difficult problem. There are many ways in which
the goodness value of a fragment can be assigned,
depending on the trade-off they provide between accuracy
and speed. For example, fast and rough measures of
computing goodness of a fragment could be the cost to
retrieve it (Deshpande and Naughton, 2000). A slower and
more exact measure is the benefit per unit space goodness
(Kalnis and Papadias, 2001; Loukopoulos et al., 2001),
whose complexity is quadratic in the number of views in the
data cube lattice. There is also the added disadvantage in
our scenario that it requires the User Agent to have
knowledge about all of the fragments Cached by other User
Agents on its site.

Our goal is to devise a goodness measure in
combination with a Caching strategy which is efficient yet
still takes into account the benefit of further aggregating a
Cached fragment. The proposed Caching strategy maintains
a priority queue of fragments in increasing order of
goodness. Each time the Cache is accessed, the goodness of
all items in the Cache is decreased (either by subtracting or
dividing by a fixed amount), except for the one which is
accessed, which has its goodness reset back to the original
value and is repositioned in the priority queue. A fragment f
is admitted to the Cache if space can be made for it by

evicting a set of fragments whose total goodness is less than
that of f. Cache admission is described in Algorithm 4.

The purpose of this strategy, particularly with the
decaying/refreshing of goodness values over time is that it
adapts to the changing query demands of the users (e.g.
view v is queried less, while view w begins to be queried
more) but also accounts for the later Caching of descendants
of a fragment. For example, if a fragment f is frequently
aggregated in Cache for the purpose of computing
fragments on descendant views, its goodness will frequently
be refreshed to the original value and f will have a low
chance of being evicted from Cache. However, if some
fragments which are descendants of f become Cached and
used instead, then f will be accessed less often; its goodness
decaying until it is eventually evicted.

The goodness of a fragment should reflect the savings in
query cost it provides at all levels of aggregation. This
depends on both the quantity of savings and the relative
frequency with which it is expected to occur. The quantity
of savings in query cost that f provides is the relative
difference between the cost it took to get f and the cost of
answering future queries on f. Hence we define

savings(f) = cost(f) − query_cost(f) (1)

Since the User Agent which requested f is the one making
the Caching decision, it can accurately compute cost(f) by
recording the time taken to retrieve it. A User Agent will
likely store the records in f on a contiguous space on disk
without any specialised index, so query_cost(f) is modelled
as the time it takes to read f from disk (the size of f in bytes
divided by the disk bandwidth of the user storing it).

The benefit of aggregating f to other views needs to be
taken into account. For example, a small fragment of one of
the lower level views provides a large savings in query cost,
but to only a very small proportion of all possible queries.
By contrast, a large fragment of one of the higher level

176 F. Dehne, M. Lawrence and A. Rau-Chaplin

views provides a smaller savings in query cost, but can be
used to compute a much larger proportion of the possible
queries. We call the proportion of the data cube lattice that a
fragment f covers in the feature dimension space at all levels
of aggregation the volume of f. For example, if a fragment f
covers half of the multidimensional area of a view v, but
cannot be aggregated to produce fragments on any of v’s
descendants, then f’s volume is 1/(2 × num_views). To
describe how the volume of a fragment is computed, first
consider the simple case of a data cube lattice with no
dimension hierarchies. We use the same notation for
fragments as Kotidis and Roussopoulos (2001), which is the
same for that of a view (Section 2), except associated with
each dimension is an interval Ii, specifying the range of
values that the fragment contains for dimension i. A
fragment f = ((I1, h1), (I2, h2),…,(Id, hd)) can be aggregated
into a fragment on a view v = (a1, a2, …, ad) if, for each i
such that hi = Di and ai = all, we have Ii; = (min(Di),
max(Di)). Hence, if we let Global Dimensions, GD(f), be
the set of all I, such that hi = Di and Ii = (min(Di), max(Di)),
then f can be aggregated into fragments on a total of ()2 GD f
views. On each of these views, the fraction of
multidimensional space that f covers is given by the product
of the proportion of each dimension’s range selected
by f, i.e.

all:

max() min()
max() min()

i

i i

i h i i

I I
D D

≠

−
−∏

Hence, for the case with no dimension hierarchies, we have

all

()

:

max() min()2volume()
max() min()2

i

GD f
i i

d
i h i i

I I
f

D D
≠

−
=

−∏ (2)

of the total space of the data cube covered by a fragment f at
all levels of aggregation.

When there are dimension hierarchies the volume
calculation is slightly less straightforward, since it is not
necessary to have Ii = (min(Di), max(Di)) to aggregate along
a hierarchal dimension Di. For example, all products do not
need to be selected to produce the aggregate for a particular
subset of categories. Furthermore, the actual proportion of a
dimension’s range which is selected by a fragment is
slightly different at each level of the dimension’s hierarchy.
The complete volume calculation for the case with
dimension hierarchies requires enumerating all of the views
to which f can be aggregated and examining the
corresponding selection range on these levels. This
increases the complexity of the volume calculation from
linear in the no dimension hierarchies case, to exponential
when there are hierarchies.

We approximate the true volume for the case of
dimension hierarchies by using the selection range on a
hierarchal dimension to approximate the corresponding
selection range on all levels of the hierarchy. Hence, as in
the non-hierarchal case, we multiply the number of possible
aggregates of f by the product over all non-global
dimensions of the fraction of the range selected of that
dimension, approximating the proportion of each of the

views covered. To enumerate the number of possible views
which the fragment can be further aggregated on, we count
the number of levels l(hi) below the selected level hi of a
dimension Di, including hi itself. For non-hierarchal
dimensions Di, where either hi = Di or hi = all, we have l
(Di) = 2. The number of possible aggregates of f is then

() ()

() (() 1i i
i GD f i GD f

l h l h
∈ ∉

−∏ ∏

and the total volume of f is then

() ()

: all

() () 1 max() min()
volume()

_ max() min()i

i ii GD f i GD f i i
i h

i i

l h l h I I
f

num views D D
∈ ∉

≠

− −
= ×

−
∏ ∏

∏ (3)

The final goodness measure is

volume() savings()goodness()
size()
f ff

f
×

= (4)

Which gives a measure of the savings in query cost a
fragment provides, weighted by the volume representing the
probability with which these savings are expected to be
applied, scaled to the storage space of the fragment.

6 Experimental evaluation

In this section we describe a prototype implementation of
the proposed grid-enabled OLAP application and a careful
evaluation of the performance of its Caching strategies. We
focus on the tier1 query processing strategy and the FAR
Cache search strategy of Algorithm 3. FAR is compared to
the Cache search approach of Kotidis and Roussopoulos
(1999) and Kotidis and Roussopoulos (2001), which we will
refer to as Fragment Aggregation (FA). Their approach, like
ours will aggregate fragments at higher levels in the lattice
to produce a query result, however it differs in that a query
must be answered by exactly one such Cached fragment and
will not be broken further into sub-queries. Where as
Kotidis argues that it does not pay to do this, our
experiments aim to show that it can indeed be of substantial
benefit to the users on a grid site under reasonable
circumstances.

6.1 Implementation and experimental setup

We have fully implemented the Query Service, Distributed
Cache Index Service, Cache Admission Controller,
Collective Cache Service and Data Source Service. The
Cache Services, Grid OLAP Services and OLAP Servers are
simulated. The result is a working implementation of tier1
query processing and Caching on a single site, with the
other sites and data being simulated by single OLAP Server
entities. Our implementation is a parallel program written in
the Python scripting language using MPI bindings.
Although the choice of Python is inhibiting, given the
computationally intensive nature of manipulating fragments
and queries on a data cube lattice, it allowed the large
implementation to be completed reasonably quickly without
unduly affecting the explanatory power of the experiments.

 Cooperative caching for grid-enabled OLAP 177

A diagram illustrating the software architecture of our
implementation is shown in Figure 5. Each class is
represented as a white rectangle, with classes which are
programs being represented by a small grey rectangle.
Entities are drawn as large grey rectangles and files as white
rectangles with the corner cut-off. All of the classes to do
with manipulation of the data cube and its properties are
grouped into the Cube Manager. The Cube Manager acts on
a single data cube lattice and schema which is constructed
by the XSDParser as described below. The Cube Manager
provides information about View instances and their
organisation into a Lattice instance. The relevant
information about views for our implementation are their
size, dimensions, ranges of those dimensions and the
mapping between ranges for dimensions organised into a
hierarchy. Access to these properties and functions allows
for manipulation of Query and Fragment instances over the
lattice as required to perform the Cache search, indexing
and simulation of aggregation/grouping of OLAP data.

Figure 5 The software design of our implementation of the
proposed grid-based OLAP caching and query
strategies

The XSDParser creates the Ranges, Dimensions, Views,
Tables, HierarchyMaps, StarSchema and Lattice instances
by reading the XML Schema file. Once the document has
been parsed, the top-level view in the lattice is created by
initialising a view with all of the feature dimensions of the
fact table and creating all of the other views in a breadth-
first manner from there. The number of records in each view
is estimated using the technique of Shukla et al. (1996),
which is based on dimension cardinalities and the number of
records in the fact table.

Query and Fragment instances are defined by an
associated view and a sub-range of each dimension’s overall
range selected by the query or contained by the fragment.
Fragments additionally have a size in bytes, calculated
based on the estimated number of records in the fragment
and data type of each dimension. A Query Generator
program constructs streams of queries from various
distributions and stores them on disk. Each stream consists

of a list of pairs (qi, ti) sorted in increasing order of ti and
specifies that each query qi should be issued by the user at
time ti.

The top of Figure 5 depicts the implementation of the
entities in the grid. They communicate asynchronously, by
posting and checking for messages inside an event loop. This
allows users to serve Cache requests while waiting to receive
their own query result fragments. The AggregationSim class
is what simulates the actual answering of queries using views
or Cached fragments. Each OLAP Server is initialised with a
set of materialised views which will be used to answer
incoming queries and builds an index associating each view v
of the lattice to the smallest materialised parent parent(v) of
that view. Incoming queries defined over v are then answered
on parent(v) using the AggregationSim class to estimate
how many MBs must be read from disk based on the size
of the query when it is translated over parent(v). The
AggregationSim instance of a User Agent simulates the time
it takes to answer a query from a Cached fragment, which is
proportional to the size of the fragment and the disk
bandwidth of the user.

We abstract Cache contents by encapsulating fragments
in the Cache Object class, which associates the goodness
and size of a generic object to be Cached. The Cache class
maintains the admission and eviction of Cache Objects as
described in Algorithm 4, where a sorted list is used as the
implementation of a priority queue.

The SiteBroker class implements the Site Broker, having
a Cache Index instance which implements the FAR and FA
Cache search strategies. Rather than use an R-tree
implementation for indexing the fragments of a particular
aggregate, we take the approach used by Kotidis et al. in
their experimental evaluation and use a linked list of
fragments. In our experiments the number of fragments
stored in the Cache is small (less than 100 per view) and
so we do not expect there to be a large performance penalty
for this.

In our experiments, we use a test lattice having five
feature dimensions: product, store, employee, customer and
time, with the single measure dimension sales. The time
dimension has a five-level hierarchy, while the product and
customer dimensions have two- and three-level linear
hierarchies, respectively. The total number of rows in the
fact table is 10 million, resulting in a lattice with 288 views
totalling 35 GB in storage size.

Two different types of query distributions are used in
the experiments:

• Uniform: The queries are distributed uniformly
amongst the views in the lattice, as well as the start and
end of their selection ranges for each dimension. This is
a difficult query load for Caching as there is no
relationship between queries whatsoever.

• Hot regions: The hot region query distribution used
by Kalnis et al. (2002), Lawrence (2006) represents a
more realistic scenario where a subset of the aggregates
are of particularly high interest to the users. 80% of
the queries are (uniformly) distributed amongst a ‘hot

178 F. Dehne, M. Lawrence and A. Rau-Chaplin

region’ of 20% of the views (uniformly chosen) in
the lattice. The selection ranges on queries also follow
a hot region distribution, where each dimension’s
overall range is divided into 100 buckets, each having
a weight drawn from a hot region distribution. For each
dimension of each query, two buckets are selected with
probability proportional to their weights. The minimum
of the selection range is the beginning of the bucket
which occurs first, while the maximum of the selection
range is the end of the bucket which occurs last.
In order to deal with hierarchies, the weight of a
bucket at a level is defined as the sum of the weights
of all overlapping buckets at the level below.

A stream of n queries from either of these distributions is
generated by selecting a time frame in which the queries
will be posed, uniformly selecting n random times in this
time frame and generating the queries for each of the
selected times according to the given query distribution.

Each User is configured with a specified Cache size in
bytes, a disk bandwidth in MB/s, a query stream and
optionally a list of fragments with which to initially fill the
Cache. Each OLAP Server is configured with a disk
bandwidth in MB/s, a network bandwidth to the local site in
MB/s, a fragment of the fact table which specifies the
partition of the overall data maintained by that OLAP
Server and a list of materialised views at that OLAP Server.

Most of our tests use the Detailed Cost Savings Ratio
(DCSR) measure Kotidis and Roussopoulos (2001)

(() ())

()
nocache cacheq

q nocache

time q time q
DCSR

time q

−
=

∑
∑

which measures the reduction in overall query time
achieved by the Cache as a percentage of query time
without a Cache. In order to achieve this we implemented a
version of the system with no Caching components.

6.2 DCSR vs. Cache size
The first set of tests aims to determine the Cache search
strategies’ ability to make effective use of increasing Cache
space. The parameters for this experiment are summarised
in Table 1. We execute five independent runs using five
different hot region distributions. For each run, each user
has a set of fragments with which to initially warm the
Cache which are generated from the same hot region
distribution and the size of each user’s Cache is varied from
50 MB to 500 MB in increments of 50 MB, so that the Site
Broker indexes 500 MB of fragments at the minimum and
5000 MB of fragments at the maximum, or between 1.4%
and 14% of the size of the entire data cube lattice. The
DCSR of both FAR and FA as Cache size is increased as
shown in Figure 6.

The FAR strategy allows a significant query time
reduction of 50% to 60% for Caches between 50 and
250 MB in size. For larger Cache sizes the benefits of the
FAR approach begin to wane due to the increased cost of

the Cache search and number of separate requests which
must be made for each query, although it is still more
beneficial than the FA approach up to a Cache size of
350 MB per user. This is discussed in more detail below.

Figure 6 The DCSR measure of Cache effectiveness for the
FAR and FA Cache search strategies as Cache size per
user is increased

Table 1 A summary of the parameters used in the first
experiment measuring DCSR vs. Cache size

Parameter Value

Number of dimensions 5 (3 hierarchical)
Lattice size 35GB over 288 views
Duration of simulation 2 h
Number of users 10
Queries per user 10
Query distribution Hot region
User disk bandwidth 20 MB/s
Average query result size 3.34 MB
Cache size per user 50 to 500 MB
Number of OLAP Servers 5
OLAP Server disk
bandwidth

80 MB/s

OLAP Server materialized
views

14 randomly chosen

OLAP Server network
bandwidth

1 local (900 kb/s), 4 remote (100
kb/s)

Surprisingly, the FA approach makes little gain with the
additional Cache space, climbing from little under 27% at
100 MB to a peak at nearly 35% at 400 MB. Thus, either the
increase in Cache size does not mean substantially more
queries can be answered from a Cache, or the benefit in
answering a query from a Cache over answering it at the
OLAP Servers is not substantial. Figure 7, which shows
the percentage of all queries which are answered from local
Caches as the Cache size is increased, demonstrates that the
former may be the cause.

 Cooperative caching for grid-enabled OLAP 179

Figure 7 The percentage of queries which are answered from a
locally Cached fragment for the FA strategy as Cache
size per user is increased

The percentage of queries answered from Cache increases
from 3.8% to 17.8%, which is not a substantial increase as
compared to the increase in Cache space. Examining the
actual query times shows that for this configuration, queries
answered from local Caches using the FA approach take
roughly 5.5 s to complete on average, where as the queries
answered from the OLAP Servers take roughly 26.5 s on
average. This difference is not substantial enough for
the increase of queries answered from Cache to have a
significant impact on the cost savings for the FA approach.
For our strategy, the increase in Cache size does not only
allow a larger proportion of the queries to be answered from
Cache, but also allows the local query computation to be
executed more quickly since the distribution of Cache
requests over the local users allows it to be performed in
parallel.

In order to more precisely examine FAR’s failure for
large Caches we have further broken down average query
time into three components:

1 queue time: since the Site Broker might receive more
queries than it can produce fragmentation plans for in a
given time period, some queries may spend time
waiting in the communication queue of the Site Broker

2 search time: the time it takes from when the Site
Broker begins the FAR Cache search to when the
fragmentation plan is received by the user

3. backend time: the length of the time period from when
the user receives the fragmentation plan from the Site
Broker to when it has received all of the necessary
sub-fragments.

The average query time for the FAR approach broken down
into these three components as Cache size is increased is
shown in Figure 8. For the 50 MB Caches, the queuing time
of queries is insignificant, as the Site Broker is able to keep
up with the number of requests it receives.

There is a large reduction in time at the backend from
the 50 MB to the 100 MB Caches, coupled with only a
small increase in search time and a minor increase in

queuing time (about 1/2 s on average), causing the overall
query time to be lower. As the Caches increase in size from
100 MB however, the backend time decreases more
gradually than the increase in Cache search time and the
resulting increase in queue time, causing the overall query
time to grow. The backend time appears to increase as well,
but this is due to the larger number of requests which are
sent for sub-fragments of a query. There is a substantial
increase in query time from 350 to 400MB, where the
Cache search time makes a large jump of roughly 2.5 s
causing the Site Broker to be completely overwhelmed and
consequently fail to service its queue in a reasonable length
of time. The dip at 450MB is due to the Cache search time
being about 1 s faster than in the 400 MB case, causing a
nearly 3 s reduction in average queue time. A likely reason
for the reduction in Cache search time is due to the
difference in warmed Cache contents at the start of the
simulation. With ten users each having an additional 50 MB
of Cache space, the additional 500 MB of fragments in the
warmed Caches has an effect on the Cache search time.
While the Cache search time is usually expected to increase,
the nature of the fragments may be such that gaps are filled
in, causing a larger number of Cache searches to conclude
before the top of the lattice is reached.

Figure 8 The average query time of the FAR approach vs. Cache
size, broken down into queue time, search time and
backend time

6.3 Cache warming
The previous tests were performed with the Cache
pre-loaded with a set of fragments drawn from the same
distribution as the queries themselves. It is also important to
examine the behaviour of a system starting with a cold
Cache and how this changes over time as the Cache
warms up.

For the Cache warming phase, the same parameters are
used as in the previous experiment, except the Cache sizes
are fixed at 100 MB for each user and the simulation lasts
8 h during which time each user issues 40 queries. Ten
independent runs are performed and the cost savings for
each query is measured in the sequence. If qi,j,k is the ith
user’s jth query during the kth independent run, then for
each 1 ≤ j ≤ 40 we measure

180 F. Dehne, M. Lawrence and A. Rau-Chaplin

, , , ,,

, ,,

() ()

()
nocache i j k cache i j ki k

j
nocache i j ki k

time q time q
DCSR

time q

−
=

∑
∑

The results are shown in Figure 9. For the FAR strategy,
there is a general trend towards a higher cost savings for the
later queries in the sequence, suggesting that they benefit
from the Cached results from earlier queries.

Figure 9 The DCSR of the FAR and FA Cache search over a
sequence of 40 queries

The results are quite noisy for the reason that each point on
the plot is computed from the results of a set of 100 queries,
all of which are different from that of each other point on
the plot. In contrast, the previous tests only varied the Cache
sizes while the queries remained the same. There is a large
sample variance between the times of individual queries:
3404, 6240 and 6299 s on average for the FAR, FA and no
Cache strategies respectively, resulting in highly variable
cost savings. This plot does yield the conclusion that for the
FAR strategy there is a savings and that it does increase as
the Cache is filled, but we also observe that the quantity of
savings appears to depend more on the specifics of the
query than on the fullness of the Cache.

6.4 Uniform queries
The tests in Section 6.2 used a query distribution where the
users had a particular interest in a small subset of the views
in the lattice and in particular values of their dimensions.
This is a relatively favourable situation for Caching as there
is some relationship amongst the queries. A much less
favourable situation for Caching is when the queries are
completely independent.

The same set of tests as in Section 6.2 has been
performed, this time using queries from the uniform random
distribution. The DCSR as Cache size is increased is shown
in Figure 10.

Surprisingly, even though the queries are unrelated, a
substantial cost savings can still be achieved by the FAR
strategy. It also scales much better with increasing Cache
sizes in this case as compared to the hot region query
distribution. Further analysis shows that this is due to the
substantially smaller Cache search time, illustrated in the
plot of Figure 11.

Figure 10 The DCSR measure of Cache effectiveness for the
FAR and FA Cache search strategies as Cache size
per user is increased. Queries are drawn from a uniform
distribution.

Figure 11 The Cache search time for the FAR and FA strategies
for both hot region and uniform query distributions as
Cache size per user is increased

From the figure it can be seen that for the FAR strategy the
Cache search time for the uniform queries is roughly half
than that of the hot region queries, while for FA they are
roughly the same. The breakdown of query time into Cache
search, queue and backend time given in Figure 12 shows
that this results in substantially less queuing time at the Site
Broker as compared to Figure 8, allowing more benefit to be
extracted from the larger Caches.

The reason for the large decrease in Cache search cost as
compared to the hot region distribution is the smaller
number of Cached fragments per view of the lattice. With
the hot region distribution, there will tend to be a large
number of fragments Cached on the views in the hot region.
When a query on one of these views comes along, the large
number of overlapping fragments causes a large number of
sub-queries to be propagated up the lattice during the
search. This is why the Cache search is much more costly
for the hot region distribution, since it is linearly
proportional to the number of sub-queries propagated up to
higher levels of the lattice (the search is repeated for each of
these sub-queries).

 Cooperative caching for grid-enabled OLAP 181

Figure 12 The average query time of the FAR approach vs. Cache
size, broken down into queue time, search time and
backend time. Queries are drawn from a uniform
distribution

7 Conclusions

We have presented a cooperative Caching scheme for the
OLAP-enabled grid in which the user Caches are distributed
amongst the grid sites and cooperate in order to increase the
efficiency of OLAP query processing. We have proposed an
efficient localised Cache admittance scheme which uses a
decay and refresh mechanism for controlling admission to
and eviction from the Cache and a fast, aggregate-aware
goodness metric for incoming fragments. We have
experimentally evaluated our Caching scheme comparing it
against previous methods (e.g. which do not recombine
multiple fragments to answer a query) and found our
strategy to produce a higher saving in query time, even
when the queries are uniformly distributed. Given that our
prototype implementation performs well, the natural next
step is to explore the performance of our OLAP-enabled
grid in a full implementation within the context of a
standard grid toolkit such as Globus.

References

Brezany, P., Tjoa, A.M., Rusnak, M., Brezanyova, J. and Jan-ciak, I.
(2003) ‘Knowledge grid support for treatment of traumatic
brain injury victims’, Proceedings of ICCSA’03.

Chen, Y., Dehne, R., Eavis, T. and Rau-Chaplin, A. (2004) ‘Parallel
ROLAP data cube construction on shared-nothing
multiprocessors’, Distr. and Par. Databases, Vol. 15,
pp.219–236.

Dehne, E, Eavis, T. and Rau-Chaplin, A. (2003) ‘Parallel multi-
dimensional ROLAP indexing’, Proceedings of CCGrid’03,,
IEEE, pp.86–93.

Dehne, R, Eavis, T. and Rau-Chaplin, A. (2006) ‘The cgm-CUBE
project’, Distr. and Par. Databases, Vol. 19, No. l, pp.29–62.

Dehne, R., Lawrence, M. and Rau-Chaplin, A. (2007) ‘Cooperative
caching for grid based datawarehouses’, Proceedings of
IEEE/ACM Int. Symp. on Cluster Computing and the Grid
(CCGrid), IEEE Comp. Soc. Dig. Library, pp.31–38.

Deshpande, P. and Naughton, J.R (2000) ‘Aggregate aware caching
for multi-dimensional queries’, Proceedings of EDBT’00.

Dubitzky, W., McCourt, D., Galushka, M., Romberg, M. and
Schuller, B. (2004) ‘Grid-enabled data warehousing for
molecular engineering’, Par. Comp., Vol. 30, No. 9–10,
pp.1019–1035.

Fiser, B., Onan, U., Elsayed, I., Brezany, P. and Tjoa, A.M. (2004)
‘On-line analytical processing on large databases managed by
computational grids’, Proceedings of DEXA’04, Washington,
DC, USA. IEEE Comp. Soc, pp.556–560.

Foster, I., Kesselman, C. and Tuecke, S. (2001) ‘The anatomy of the
Grid: Enabling scalable virtual organizations’, J. of High
Performance Comp. Applications, Vol. 15, No. 3, pp.200–222.

Harinarayan, Y., Rajaraman, A. and Ullman, J.D. (1996)
‘Implementing data cubes efficiently’, Proceedings of
SIGMOD’96.

Kalnis, P., Ng, W.S., Ooi, B.C., Papadias, D. and Tan, K-L. (2002)
‘An adaptive peer-to-peer network for distributed caching of
olap results’, Proceedings of. SIGMOD’02.

Kalnis, P. and Papadias, D. (2001) ‘Proxy-server architectures for
olap’, Proceedings of SIGMOD’01, , New York, NY, USA,
ACM, pp.367–378.

Kotidis, Y. and Roussopoulos, N. (1999) ‘Dynamat: a dynamic view
management system for data warehouses’, Procedings of
SIG-MOD’99,, ACM, pp.371–382.

Kotidis, Y. and Roussopoulos, N. (2001) ‘A case for dynamic view
management’, ACM Trans. Database Syst., Vol. 26, No. 4,
pp.388–423.

Lawrence, M. (2006) ‘Multiobjective genetic algorithms for
materialized view selection in olap data warehouses’,
Proceedings of GECCO’06.

Lawrence, M., Dehne, R. and Rau-Chaplin, A. (2007)
‘Implementing OLAP query fragment aggregation and
recombination for the OLAP enabled grid’, Proceedings of
International Parallel and Distributed Processing Symposium
(IPDPS), High-Performance Grid Computing Workshop, IEEE
Comp. Soc. Dig. Library, pp.1–8.

Lawrence, M. and Rau-Chaplin, A. (2006). The OLAP-enabled grid:
model and query processing algorithms’, Proceedings of
HPCS’06.

Loukopoulos, T., Kalnis, P., Ahmad, I. and Papadias, D. (2001)
‘Active caching of on-line-analytical-processing queries in
www proxies’, Proceedings of ICPP’01, pp.419–426. IEEE.

Narravula, S., Jin, H-W., Vaidyanathan, K. and Panda, D.K. (2006)
‘Designing efficient cooperative caching schemes for multi-tier
data-centers over rdma-enabled networks’, Proceedings of
CCGrid’06, IEEE, Los Alamitos, CA, USA, pp.401–408..

Niemi, T., Niinimaki, M., Nummenmaa, J. and Thanisch, P. (2002)
‘Constructing an OLAP cube from distributed XML data’,
Proceedings of DOLAP’02.

Niemi, T., Niinimaki, M., Nummenmaa, J. and Thanisch, P. (2003)
‘Applying grid technologies to XML based OLAP cube
construction’, Proceedings of DMDW’03.

Orlando, S., Palmerini, P., Perego, R. and Silvestri, R. (2002)
‘Scheduling high performance data mining tasks on a data grid
environment’, Proceedings of Euro-Par’02.

Park, S. and Kim, J. (2003) ‘Chameleon: a resource scheduler in a
data grid environment’, Proceedings of CCGrid’03. IEEE.

Shukla, A., Deshpande, P., Naughton, J.R. and Ramasamy, K.
(1996) ‘Storage estimation for multidimensional aggregates in
the presence of hierarchies’, The VLDB Journal, pp. 522–531.

Wolski, R., Spring, N.T. and Hayes, J. (1999) ‘The network weather
service: a distributed resource performance forecasting service
for metacomputing’, Future Gener. Comput. Syst., Vol. 15,
No. 5–6 pp.757–768.

