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Communication Issues in 
Scalable Parallel Computing1
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1. Introduction

In this book chapter, we discuss some important communication issues to obtain a highly scalable com-

Abstract

In this book chapter, the authors discuss some important communication issues to obtain a highly scalable 
computing system. They consider the CGM (Coarse-Grained Multicomputer) model, a realistic comput-
ing model to obtain scalable parallel algorithms. The communication cost is modeled by the number 
of communication rounds and the objective is to design algorithms that require the minimum number 
of communication rounds. They discuss some important issues and make considerations of practical 
importance, based on our previous experience in the design and implementation of parallel algorithms. 
The first issue is the amount of data transmitted in a communication round. For a practical implemen-
tation to be successful they should attempt to minimize this amount, even when it is already within the 
limit allowed by the CGM model. The second issue concerns the trade-off between the number of com-
munication rounds which the CGM attempts to minimize and the overall communication time taken in 
the communication rounds. Sometimes a larger number of communication rounds may actually reduce 
the total amount of data transmitted in the communications rounds. These two issues have guided us to 
present efficient parallel algorithms for the string similarity problem, used as an illustration.
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puting system. Scalability is a desirable property of a system, a network, or a process, which indicates 
its ability to either handle growing amounts of work in a graceful manner, or to be readily enlarged. 
We consider the CGM (Coarse-Grained Multicomputer) model, a realistic computing model to obtain 
scalable parallel algorithms. A CGM algorithm that solves a problem of size n with p processors each 
with O(n/p) memory consists of an alternating sequence of computation rounds and communication 
rounds. In one communication round, we allow the exchange of O(n/p) data among the processors. The 
communication cost is modeled by the number of communication rounds and the objective is to design 
algorithms that require the minimum number of communication rounds. We discuss some important 
issues and make considerations of practical importance, based on our previous experience in the design 
and implementation of several parallel algorithms.

The first issue is the amount of data transmitted in a communication round. For a practical imple-
mentation to be successful we should attempt to minimize this amount, even when it is already within 
the maximum allowed by the CGM model which is O(n/p).

The second issue concerns the trade-off between the number of communication rounds which the 
CGM attempts to minimize and the overall communication time taken in the communication rounds. 
Under the CGM model we want to minimize the number of communication rounds so that we do not 
have to care about the particular interconnection network. In a practical implementation, we do have 
more information concerning the hardware utilized and the communication times in a particular inter-
connection network. Sometimes a larger number of communication rounds may actually reduce the 
total amount of data transmitted in the communications rounds. Although the goal of the CGM model 
is to minimize the number of communication rounds, ultimately the main objective is to minimize the 
overall running time that includes the computation and the communication times.

These two issues have guided us to present efficient parallel algorithms for the string similarity prob-
lem, used as an illustration. By using the wavefront-based algorithms we present in this book chapter to 
illustrate these two issues, we also address a third issue, the desirability of avoiding costly global com-
munication such as broadcast and all-to-all primitives. This is obtained by using wavefront or systolic 
parallel algorithms where each processor communicates with only a few other processors.

The string similarity problem is presented here as an illustration. This problem is interesting in its 
own right. Together with many other important string processing problems (Alves et al., 2006), string 
similarity is a fundamental problem in Computational Biology that appears in more complex problems 
(Setubal & Meidanis, 1997), such as the search of similarities between bio-sequences (Needleman & 
Wunsch, 1970; Sellers, 1980; Smith & Waterman, 1981). We show two wavefront parallel algorithms to 
solve the string similarity problem. We implement both the basic algorithm (Alves et al., 2002) and the 
improved algorithm (Alves et al., 2003) by taking into consideration the communication issues discussed 
in this book chapter and obtain very efficient and scalable solutions.

2. Parallel Computation Model

Valiant (1990) introduced a simple coarse grained parallel computing model, called Bulk Synchronous 
Parallel Model – BSP. It gives reasonable predictions on the performance of the algorithms when 
implemented on existing, mainly distributed memory, parallel machines. It is also one of the earliest 
models to consider communication costs and to abstract the characteristics of parallel machines with 
a few parameters. The main objective of BSP is to serve a bridging model between the hardware and 
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software necessities. This is one of the fundamental characteristics for the success of the von Neumann 
model. In the BSP model, parallel computation is modeled by a series of super-steps. In this model, 
p processors with local memory communicate through some interconnection network managed by a 
router with global synchronization. A BSP algorithm consists of a sequence of super-steps separated by 
synchronization barriers. In a super-step, each processor executes a set of independent operations using 
local data available in each processor at the start of the super-step, as well as communication consisting 
of send and receive of messages. An h-relation in a super-step corresponds to sending or receiving at 
most h messages in each processor. The response to a message sent in one super-step can only be used 
in the next super-step.

In this paper we use a similar model called the Coarse Grained Multicomputers – (denoted by BSP/
CGM), proposed by Dehne et al. (1993). A BSP/CGM consists of a set of p processors P1, P2,…,Pp 
with O(n/p) local memory per processor and each processor is connected through any interconnection 
network. The term coarse granularity comes from the fact that the problem size in each processor n/p 
is considerably larger than the number of processors, that is, n/p>>p. A BSP/CGM algorithm consists 
of alternating local computation and global communication rounds separated by a barrier synchroniza-
tion. The BSP/CGM model uses only two parameters: the input size n and the number of processors 
p. In a computing round, each processor runs a sequential algorithm to process its data locally. A com-
munication round consists of sending and receiving messages, in such a way that each processor sends 
at most O(n/p) data and receives at most O(n/p) data. We require that all information sent from a given 
processor to another processor in one communication round is packed into one long message, thereby 
minimizing the message overhead.

In the BSP/CGM model, the communication cost is modeled by the number of communication rounds 
which we wish to minimize. In a good BSP/CGM algorithm the number of communication rounds 
does not depend on the input size n. The ideal algorithm requires a constant number of communication 
rounds. If this is not possible, we attempt to get an algorithm for which this number is independent on 
n but depends on p. This is the case of the present chapter.

The BSP/CGM model has the advantage of producing results are close to the actual performance 
of commercially available parallel machines. Some algorithms for computational geometry and graph 
problems require a constant number or O(log p) communication rounds (e.g. see Dehne et al. (1993)). 
The BSP/CGM model is particularly suitable for current parallel machines in which the global comput-
ing speed is considerably greater than the global communication speed.

One way to explore the use of parallel computation can be through the use of clusters of workstations 
or Fast/Gigabit Ethernet connected Linux-based Beowulf machines, with Parallel Virtual Machine - 
PVM or Message Passing Interface - MPI libraries. The latency in such clusters or Beowulf machines 
of 1Gb/s is currently less than 10 μs and programming using these resources is today a major trend in 
parallel and distributed computing.

Though much effort has been expended to deal with the problems of interconnection of clusters or 
Beowulfs and the programming environment, there is still few works on methodologies to design and 
analyze algorithms for scalable parallel computing systems.
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3. The String Similarity Problem

In Molecular Biology, the search for tools that identify, store, compare and analyze very long bio-sequences 
is becoming a major research area in Computational Biology. In particular, sequence comparison is a 
fundamental problem that appears in more complex problems (Setubal & Meidanis, 1997), such as 
the search of similarities between bio-sequences (Needleman & Wunsch, 1970; Sellers, 1980; Smith 
& Waterman, 1981), as well as in the solution of several other problems such as approximate string 
matching, file comparison, and text searching with errors (Hall & Dowling, 1980; Hunt & Szymansky, 
1977; Wu & Manber, 1992).

One main motivation for biological sequence comparison, in particular proteins, comes from the 
fact that proteins that have similar tri-dimensional forms usually have the same functionality. The tri-
dimensional form is given by the sequence of symbols that constitute the protein. In this way, we can 
guess a functionality of a new protein by searching a known protein that is similar to it.

In this section we present the string similarity problem. One way to identify similarities between 
sequences is to align them, with the insertion of spaces in the two sequences, in such way that the two 
sequences become equal in length. We expect that the alignment of two sequences that are similar will 
show the parts where they match, and different parts where spaces are inserted. We are interested in the 
best alignment between two strings, and the score of such an alignment gives a measure of how much 
the strings are similar.

The similarity problem is defined as follows. Let A = a1a2…am and C = c1c2…cn be two strings over 
some alphabet.

To align the two strings, we insert spaces in the two sequences in such way that they become equal 
in length. See Figure 1 where each column consists of a symbol of A (or a space) and a symbol of C (or 
a space). An alignment between A and C is a matching of the symbols a AÎ  and c CÎ  in such way 
that if we draw lines between the corresponding matched symbols, these lines cannot cross each other. 
The alignment shows the similarities between the two strings. Figure 1 shows two simple alignment 
examples where we assign a score of 1 when the aligned symbols in a column match and 0 otherwise. 
The alignment on the right has a higher score (5) than that on the left (3).

A more general score assignment for a given alignment between strings is done as follows. Each 
column of the alignment receives a certain value depending on its contents and the total score for the 
alignment is the sum of the values assigned to its columns. Consider a column consisting of symbols 
r and s. If r = s (i.e. a match), it will receive a value p(r, s) > 0. If r ≠ s (a mismatch), the column will 

receive a value p r s( , ) < 0 . Finally, a column with a space in it receives a value −k, where k NÎ . We 
look for the alignment (optimal alignment) that gives the maximum score. This maximum score is called 
the similarity measure between the two strings to be denoted by sim(A,C) for strings A and C. There may 

Figure 1. String alignment examples
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be more than one alignment with maximum score (Setubal & Meidanis, 1997).
Dynamic programming is a technique used in the solution of many optimization and decision problems. 

It decomposes the problem into a sequence of optimization or decision steps that are interconnected and 
are solved one after another. The optimal solution of the problem is obtained by the decomposition of 
the problem in sub-problems, and computing the optimal solution for each sub-problem. By combining 
these solutions we obtain the optimal solution of the global problem.

Differently from the other optimization methods, such as linear programming and branch and bound, 
dynamic programming is not a general technique. Optimization problems should be translated into a 
more specific form before dynamic programming can be used. This translation can be very difficult. This 
constitutes a further difficulty in addition to the need of formulating the problem to be solved efficiently 
by the dynamic programming approach.

Consider two strings A and C, where |A| = m and |C| = n. We can solve the string similarity problem 
by computing all the similarities between arbitrary prefixes of the two strings starting with the shorter 
prefixes and use previously computed results to solve the problem for larger prefixes. There are m + 1 
possible prefixes of A and n + 1 prefixes of C. Thus, we can arrange our calculations in an (m + 1) × 
(n +1) matrix S where each S(r,s) represents the similarity between A[1..r] and C[1..s], that denote the 
prefixes a1a2…ar and c1c2…cs, respectively.

Observe that we can compute the values of S(r,s) by using the three previous values S(r – 1,s), S(r – 
1,s – 1) and S(r, s – 1), because there are only three ways to compute an alignment between A[1..r] and 
C[1..s]. We can align A[1..r] with C[1..s – 1] and match a space with C[s], or align A[1..r – 1] with C[1..s 
– 1] and match A[r] with B[s], or align A[1..r – 1] with C[1..s] and match a space with A[r]. (Figure 2)

Figure 2. Grid DAG G  for A= baabcbca and B = baabcabcab

Figure 3. The recursive definition of the similarity score
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The similarity score S of the alignment between strings A and C can be computed as in Figure 3.
An l1 × l2 grid DAG (Figure 2) is a directed acyclic graph whose vertices are the l1l2 points of an l1 × 

l2 grid, with edges from grid point G(i, j) to the grid points G(i, j + 1), G(i + 1, j) and G(i + 1, j + 1).
Let A and C be two strings with |A| = m and |C| = n symbols, respectively. We associate an (m + 1) 

× (n + 1) grid DAG G with the similarity problem in the natural way: the (m + 1)(n + 1) vertices of G 
are in one-to-one correspondence with the (m + 1)(n + 1) entries of the S-matrix, and the cost of an edge 
from vertex (t, l) to vertex (i, j) is equal to k if t = i and l = j – 1 or if t = i – 1 and l = j; and to p(i, j) if 
t = i – 1 and l = j – 1.

It is easy to see that the string similarity problem can be viewed as computing the minimum source-
sink path in a grid DAG. In Figure 2 the problem is to find the minimum path from (0,0) to (8,10).

A sequential algorithm to compute the similarity between two strings of lengths m and n uses a tech-
nique called dynamic programming. The complexity of this algorithm is O(mn). The construction of the 
optimal alignment can be done in sequential time O(m + n) (Setubal & Meidanis, 1997).

PRAM (Parallel Random Access Machine) algorithms for the dynamic programming problem have 
been obtained by Galil and Park (1991). PRAM algorithms for the string editing problem have been 
proposed by Apostolico et al. (1990). A more general study of parallel algorithms for dynamic program-
ming can be seen in (Gengler, 1996).

We present two algorithms that use the realistic BSP/CGM model. A characteristic and advantage 
of the wavefront or systolic algorithm is the modest communication requirement, with each processor 
communicating with few other processors. This makes it very suitable as a potential application for 
grid computing where we wish to avoid costly global communication operations such as broadcast and 
all-to-all operations.

4. The Basic Similarity Algorithm

The basic similarity algorithm is due to Alves et al. (2002). It is a BSP/CGM algorithm and attempts to 
minimize the number of communication rounds.

Consider two given strings A = a1a2…am and C = c1c2…cn. The basic similarity algorithm computes 
the similarity between A and C on a CGM/BSP with p processors and mn/p local memory in each pro-
cessor.

We divide C into p pieces, of size n/p, and each processor Pi, 1 ≤ i ≤ p, receives the string A and the 
i-th piece of C (c ci n p in p( ) / /, ...,- +1 1 ).

Each processor Pi computes the elements Si(r, s) of the submatrix Si, where 1 ≤ r ≤ m and 
( ) / /i n p s in p- + £ £1 1  using the three previous elements Si(r – 1,s), Si(r – 1, s – 1) and Si(r, s – 1), 
because, as mentioned before, there are only three ways of computing an alignment between A[1..r] and 
C[1..s]. We can align A[1..r] with C[1..(s – 1)] and match a space with C[s], or align A[1..(r – 1)] with 
C[1..(s – 1)] and match A[r] with B[s], or align A[1..(r – 1)] with C[1..s] and match a space with A[r].

To compute the submatrix Si, each processor Pi uses the best sequential algorithm locally. It is easy 
to see that processor Pi, i > 1, can only start computing the elements Si(r, s) after the processor Pi– 1 has 
computed part of the submatrix Si– 1 (r, s).

Denote by Ri
k, 1 ≤ i, k ≤ p, all the elements of the right boundary (rightmost column) of the k-th part 

of the submatrix Si. More precisely, Ri
k = {Si(r, in/p,(k – 1)m/p + 1 ≤ r ≤ km/p}.
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The idea of the algorithm is the following: After computing the k-th part of the submatrix Si, proces-
sor Pi sends to processor Pi+ 1 the elements of Ri

k . Using Ri
k, processor Pi+ 1 can compute the k-th part 

of the submatrix Si+ 1. After p – 1 rounds, processor Pp receives Rp-1
1 and computes the first part of the 

submatrix Sp. At round 2p – 2, processor Pp receives Rp-1
p and computes the p-th part of the submatrix 

Sp and finishes the computation.
Using this schedule (Figure 4), we can see that in the first round, only processor P1 works. In the 

second round, processors P1 and P2 work. It is easy to see that in round k, all processors Pi work, where 
1 ≤ i ≤ k.

We now present the basic string similarity algorithm.Basic Similarity Algorithm (see Figure 5).

Theorem 1.
The basic similarity algorithm uses 2p – 2 communication rounds with O(mn/p) sequential computing 

time in each processor.
Proof.

Processor P1 sends R1
k to processor P2 after computing the k-th block of m/p rows of the mn/p sub-

Figure 4. An O(p) communication rounds scheduling used in the basic algorithm

Figure 5. The basic similarity algorithm
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matrix S1. After p – 1 communication rounds, processor P1 finishes its work. Similarly, processor P2 
finishes its work after p communication rounds. Then, after p – 2 + i communication rounds, processor 
Pi finishes its work. Since we have p processors, after 2p – 2 communication rounds, all the p proces-
sors have finished their work.

Each processor uses a sequential algorithm to compute the similarity submatrix Si. Thus this algorithm 
takes O(mn/p) computing time.

Theorem 2.

At the end of the basic similarity algorithm, S(m, n) will store the score of the similarity between 
the strings A and C.

Proof.

By Theorem 1, after 2p – 2 communication rounds, processor Pp finishes its work. Since we are 
essentially computing the similarity sequentially in each processor and sending the boundaries to the 
right processor, the correctness of the algorithm comes naturally from the correctness of the sequential 
algorithm. Then, after 2p – 2 communication rounds, S(m, n) will store the similarity between the strings 
A and C.

4.1. Experimental Results of the Basic Algorithm

In this section we present the experimental results of the basic similarity algorithm. The following figures 
give running time curves.

We have implemented the O(p) rounds basic similarity algorithm on a Beowulf with 64 nodes. Each 
node has 256 MB of RAM memory and more 256 MB for swap. The nodes are connected through a 
100 MB interconnection network.

Figure 6. Table of running times of the basic algorithm for various string lengths
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The obtained times (Figures 6, 7 and 8) show that with small sequences, the communication time is 

Figure 7. Curves of the observed times for various string lengths

Figure 8. Curves of the observed times for various string lengths
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significant when compared to the computation time with more than 8 and 16 processors, respectively 
(512 × 512 and 512 × 1024). When we apply the algorithm to sequences greater than 8192, using one 
or two processors, the main memory is not enough to solve the problem. The utilization of swap gives 
us meaningless resulting times. This would not occur if the nodes have more main memory. Thus we 
have suppressed these times.

In general, the implementation of the CGM/BSP algorithm shows that the theoretical results are 
confirmed in the implementation.

The basic similarity algorithm requires O(p) communication rounds to compute the score of the 
similarity between two strings. We have worked with a fixed block size of m/p × n/p. Another good 
alternative is to work with adaptative choice of the optimal block size to further decrease the running 
time of the algorithm.

The alignment between the two strings can be obtained with O(p) communication rounds backtracking 
from the lower right corner of the grid graph in O(m + n) time (Setubal & Meidanis, 1997). For this, S(r, 
s) for all points of the grid graph must be stored during the computation (requiring O(mn) space).

5. The Improved Similarity Algorithm

Alves et al. (2003) extend and improve the basic similarity algorithm (Alves et al., 2002) for computing 
an alignment between two strings A and C, with A =|m| and C =|n|. On a distributed memory parallel 
computer of p processors each with O((m + n) / p) memory, the improved algorithm also requires O(p) 
communication rounds, more precisely (1 + 1 / α)p – 2 communication rounds where α is a parameter 
to be presented shortly, and O(mn / p) local computing time. As in the basic algorithm, the processors 
communicate in a wavefront or systolic manner, such that each processor communicates with few other 
processors. Actually each processor sends data to only two other processors.

The novelty of the improved similarity algorithm is based on a compromise between the workload 
of each processor and the number of communication rounds required, expressed by a parameter called 
α. The proposed algorithm is expressed in terms of this parameter that can be tuned to obtain the best 
overall parallel time in a given implementation. In addition to showing theoretic complexity we confirm 
the efficiency of the proposed algorithm through implementation. As will be seen shortly, very promising 
experimental results are obtained on a 64-node Beowulf machine.

We present a parameterized O(p) communication rounds parallel algorithm for computing the simi-
larity between two strings A and C, over some alphabet, with |A|= m and |C|= n. We use the CGM/BSP 

Figure 9. An O(p) communication rounds scheduling with α= 1



11

Communication Issues in Scalable Parallel Computing

model with p processors, where each processor has O(mn / p) local memory. As will be seen later, this 
can be reduced to O((m + n) / p).

Let us first give the main idea to compute the similarity matrix S by p processors. The string A is 
broadcasted to all processors, and the string C is divided into p pieces, of size n / p, and each processor 
Pi, 1 ≤ l ≤ p, receives the i-th piece of C (c ci n p in p( ) / /...- +1 1 ).

The scheduling scheme is illustrated in Figure 9. The notation Pi
k denotes the work of Processor Pi 

at round k. Thus initially P1 starts computing at round 0. Then P1 and P2 can work at round 1, P1, P2 and 
P3 at round 2, and so on. In other words, after computing the k-th part of the sub-matrix Si (denoted Si

k), 
processor Pi sends to processor Pi+ 1 the elements of the right boundary (rightmost column) of Si

k. These 
elements are denoted by Ri

k. Using Ri
k, processor Pi + 1  can compute the k -th part of the sub-matrix 

Si+ 1. After p – 1 rounds, processor Pp receives Rp-1
1 and computes the first part of the sub-matrix Sp. In 

round 2p – 2, processor Pp receives Rp-1
p and computes the p-th part of the sub-matrix Sp and finishes 

the computation.
It is easy to see that with this scheduling, processor Pp only initiates its work when processor P1 is 

Figure 10. An O(p) communication rounds scheduling with α = 1/2

Figure 11. The improved similarity algorithm
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finishing its computation, at round p – 1. Therefore, we have a very poor load balancing.
In the following we attempt to assign work to the processors as soon as possible. This can be done 

by decreasing the size of the messages that processor Pi sends to processors Pi+ 1. Instead of message 
size m / p we consider sizes α m / p and explore several sizes of α. In our work, we make the assumption 
that the sizes of the messages α m / p divides m. Therefore, Si

k (the similarity sub-matrix computed by 
processor Pi at round k) represents k α m / p + 1 to (k + 1) α m / p rows of Si that are computed at the 
k-th round.

We now present the improved similarity algorithm.
The improved algorithm works as follow: After computing Si

k, processor Pi sends Ri
k to processor 

Pi+ 1. Processor Pi+ 1 receives Ri
k from Pi and computes Si+1

k+1. After p – 2 rounds, processor Pp receives 
Rp-1

p-2 and computes Sp
p-1. If we use α < 1 all the processors will work simultaneously after the p – 2-th 

round. We explore several values for α trying to find a balance between the workload of the processors 
and the number of rounds of the algorithms. Figure 10 shows how the algorithm works when α = 1/2. 
In this case, processor Pp receives Rp-1

3p-3, computes Sp
3p-2 and finishes the computation.

Improved Similarity Algorithm (see Figure 11).

Using the schedule of Figure 10, we can see that in the first round, only processor P1 works. In the 
second round, processors P1 and P2 work. It is easy to see that at the k-th round, all processors Pi work, 
where 1 ≤ i ≤ k. Since the total number of rounds is increased with smaller values of α the processors 
start working earlier.

Theorem 3

The improved algorithm uses (1 + 1 / α)p – 2 communication rounds with mn / p sequential comput-
ing time in each processor.

Proof:

Processor P1 sends R1
k to processor P2 after computing the k-th block of α m / p rows of the mn / p 

sub-matrix S1. After p / α – 1 communication rounds, processor P1 finishes its work. Similarly, processor 

P2 finishes its work after p / a  communication rounds. Then, after p / α – 2 + i communication rounds, 
processor Pi finishes its work. Since we have p processors, after (1 + 1 / α)p – 2 communication rounds, 
all the p processors have finished their work.

Each processor uses a sequential algorithm to compute the similarity sub-matrix Si. Thus this algo-
rithm takes O(mn / p) computing time.

Theorem 4

At the end of the improved algorithm, S(m, n) will store the score of the similarity between the strings 
A and C.

Proof:
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Theorem 3 proves that after (1 + 1 / α)p – 2 communication rounds, processor Pp finishes its work. 
Since we are essentially computing the similarity sequentially in each processor and sending the bound-
aries to the right processor, the correctness of the algorithm comes naturally from the correctness of the 
sequential algorithm. Then, after (1 + 1 / α)p – 2 communication rounds, S(m, n) will store the similarity 
between the strings A and C.

5.1. Experimental Results of the Improved Similarity Algorithm

In this section we present the experimental results of the improved similarity algorithm. We have imple-
mented the improved similarity algorithm on a Beowulf with 64 nodes. Each node has 256 MB of RAM 

Figure 12. Table showing running times for various values of αwith m=8K and n=16K

Figure 13. Time curves vs. number of processors with m=8K and n=16K
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Figure 14. Time curves vs. values of α with m=8K and n=16K

Figure 15. Table showing running times for various values of α with m=4K and n=8K

Figure 16. Time curves versus number of processors with m=4K and n=8K
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memory in addition to 256 MB for swap. The nodes are connected through a 100 MB interconnection 
network.

Figures 12, 13 and 14 show the running times of the improved similarity algorithm for different values 
of α for string lengths of m=8K and n=16K. For a given experiment and hardware platform a parameter 
tuning phase is required to obtain the best value for α.

Figures 12, 13 and 14 show running times for string sizes m =8K and n =16K where K=1024. It can 
be seen that, for very small α, the communication time is significant when compared to the computa-
tion time. We have analyzed the behavior of α to estimate the optimal block size. The observed times 
show that when α m / p decreases from 16 to 8 (the number of rows of the sub-matrix Si(k)), we have an 
increase on the total time. The best times are obtained for α between 1/4 and 1/8.

Figures 15 and 16 show the running times of the improved similarity algorithm for different values 
of α for string lengths of m=4K and n=8K. Again, for a given experiment and hardware platform a pa-
rameter tuning phase is required to obtain the best value for α.

Figure 17. Curves of the observed times - quadratic space

Figure 18. Curves of the observed times - linear space
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5.2. Quadratic vs. Linear Space Implementation

We can further improve our results by exploring a linear space implementation, by storing a vector in-
stead of the entire matrix. In the usual quadratic space implementation, each processor uses O(mn / p) 
space, while in the linear space implementation each processor requires only O((m + n) / p) space. The 
results are impressive, as shown in Figures 17 and 18. With less demand on the swap of disk space, we 
get an almost 50% improvement. We have used α=1.

6. Conclusion

We have presented a basic and an improved parameterized BSP/CGM parallel algorithm to compute the 
score of the similarity between two strings. On a distributed memory parallel computer of p processors 
each with O((m + n) / p) memory, the proposed algorithm requires O(p) communication rounds and O(mn 
/ p) local computing time. The novelty of the improved similarity algorithm is based on a compromise 
between the workload of each processor and the number of communication rounds required, expressed 
by a new parameter called α. We have worked with a variable block size of α m / p × n / p and studied the 
behavior of the block size. We show how this parameter can be tuned to obtain the best overall parallel 
time in a given implementation. Very promising experimental results are shown.

Though we dedicated considerable space to present the two string similarity algorithms, these algo-
rithms serve the purpose of illustrating two main issues. The first issue is the amount of data transmitted 
in a communication round. For a practical implementation to be successful we should attempt to minimize 
this amount, even when it is already within the limit allowed by the CGM model. The second issue con-
cerns the trade-off between the number of communication rounds which the CGM attempts to minimize 
and the overall communication time taken in the communication rounds. Sometimes a larger number of 
communication rounds may actually reduce the total amount of data transmitted in the communications 
rounds. To this end the parameter α is introduced in the improved similarity algorithm. By adjusting 
the proper value of α, we can actually require more communication rounds while diminishing the total 
amount of data transmitted in the communication rounds, thus resulting in a more efficient solution.

As a final observation notice that a characteristic of the wavefront communication requirement is 
that each processor communicates with few other processors. This makes it very suitable as a potential 
application for grid computing.
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Key Terms and Definitions

Coarse-Grained Multicomputer: A simple and realistic parallel computing model, characterized 
by two parameters (input size n and number of processors p), in which local computation rounds al-
ternate with global communication rounds, with the goal of minimizing the number of communication 
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rounds. Granularity: A measure of the size of the components, or descriptions of components, that 
make up a system. In parallel computing, granularity refers to the amount of computation that can be 
performed by the processors before requiring a communication stepto exchange data. Scalability: A 
desirable property of a system, a network, or a process, which indicates its ability to either handle grow-
ing amounts of work in a graceful manner, or to be readily enlarged.

String Similarity Metrics: Textual based metrics resulting in a similarity or dissimilarity (distance) 
score between two pairs of text strings for approximate matching or comparison. Systolic Algorithm: 
An algorithm that has the characteristics of a systolic array.

Systolic Array: A pipelined network of processing elements called cells, used in parallel comput-
ing, where cells compute data and store it independently of each other and passes the computed data 
to neighbor cells. Wavefront Algorithm: An algorithm that has the characteristics of a systolic array, 
also known as systolic algorithm.
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