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Abstract In this paper, we study the time-dependent shortest paths problem for
two types of time-dependent FIFO networks. First, we consider networks where the
availability of links, given by a set of disjoint time intervals for each link, changes
over time. Here, each interval is assigned a non-negative real value which represents
the travel time on the link during the corresponding interval. The resulting short-
est path problem is the time-dependent shortest path problem for availability inter-
vals (T D S P int), which asks to compute all shortest paths to any (or all) destination
node(s) d for all possible start times at a given source node s. Second, we study
time-dependent networks where the cost of using a link is given by a non-decreasing
piece-wise linear function of a real-valued argument. Here, each piece-wise linear
function represents the travel time on the link based on the time when the link is
used. The resulting shortest paths problem is the time-dependent shortest path prob-
lem for piece-wise linear functions (T D S P lin) which asks to compute, for a given
source node s and destination d , the shortest paths from s to d , for all possible starting
times.

We present an algorithm for the T D S P lin problem that runs in time O((Fd +
γ )(|E| + |V | log |V |)) where Fd is the output size (i.e., number of linear pieces
needed to represent the earliest arrival time function to d) and γ is the input size
(i.e., number of linear pieces needed to represent the local earliest arrival time
functions for all links in the network). We then solve the T D S P int problem in
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O(λ(|E| + |V | log |V |)) time by reducing it to an instance of the T D S P lin prob-
lem. Here, λ denotes the total number of availability intervals in the entire network.
Both methods improve significantly on the previously known algorithms.

Keywords Time-dependent networks · Earliest arrival time · Shortest paths · FIFO
property · Algorithms

1 Introduction

The shortest path problem for a network (directed graph G = (V ,E)) is a fundamen-
tal problem in graph theory with many applications related e.g. to road networks and
transportation. It is of both, theoretical and practical interest. Although well-studied
conventional static shortest path algorithms (see e.g. [7]) play a fundamental role
in applications with non-changing nature, many real-world applications and their un-
derlying networks are changing over time (e.g., applications in transportation science,
computer networks, robotics, and VLSI design). A more realistic approach for these
networks with dynamically changing characteristics is to take time into considera-
tion. For example, in a road network, the shortest path from a given source node to a
destination node during rush hour is not the same as during low traffic periods.

Depending on which characteristics of the underlying network are changing over
time, different models have been applied. For networks where the characteristics of a
link-traversal depends on the time when the link is traversed, the most utilized model
is the time-dependent network (see e.g., [2, 4, 5, 9, 12, 17, 18, 21]) which is also
used in this paper. The time-dependent network model includes a wide range of dy-
namic networks because link-traversal costs can be modeled with arbitrary functions.
In [19], it has been shown that the general shortest paths problem on time-dependent
networks is NP-Hard. However, there are variants of the problem that have poly-
nomial time solutions and are of interest in real-world applications (including road
networks which are the most common applications of the time-dependent shortest
paths problem). In this paper, we consider shortest paths problems for two types of
time-dependent networks which will be introduced in the next two subsections.

1.1 The T D S P int Problem

The first time-dependent shortest paths problem, T D S P int, is defined for a network
Gi(V,E), where the availability of links changes over time. Each link e = (u, v) ∈ E

is assigned a set Ie of disjoint time intervals, referred to as availability intervals, dur-
ing which the link is available. Availability intervals can model e.g. situations where
some roads or lanes of a road network are only available during certain times. Typi-
cal examples include no left-turns during rush hours, border crossings that are closed
during the night, and lanes restricted for buses during certain peak periods. During
times outside the set Ie of time intervals, the link e is not available and one has to
wait until the start of the next availability interval in Ie. For every availability interval
i = [lie, ri

e] ∈ Ie (lie, r
i
e ∈ R+ and lie ≤ ri

e) on e is defined a non-negative cost wi
e ∈ R+

which represents the time needed to traverse e during availability interval i. More
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precisely, starting from node u of e = (u, v) at time STu, lie ≤ STi ≤ ri
e , one arrives

at node v at time ATv = STu + wi
e. Let j = [lje , r

j
e ] ∈ Ie be the interval immediately

following i in ascending time order. Our model captures waiting at nodes in that for
STu, ri

e < STu < l
j
e , one can wait at u until the next interval is available. The start time

would then be STu = l
j
e , resulting in arrival time ATv = l

j
e + w

j
e . Note that for start-

ing times greater than the last interval on the link, e is not available and ATv = ∞.
Consider a path p = 〈v0, v1, . . . , vk, vk+1〉 in a network Gi(V,E). We say p is
valid if there exist starting times STv0, . . . , STvk

and arrival times ATv1, . . . ,ATvk+1

such that STvi
∈ I(vi ,vi+1), ATvi+1 = STvi

+ wi
(vi ,vi+1)

, and ATvi+1 ≤ STvi+1 for all
0 ≤ i ≤ k. Here, STvi

∈ Ivi ,vi+1 denotes that there exists an interval i ∈ I(vi ,vi+1) such
that STvi

∈ i. The arrival time of a valid path p at vk+1 for start time STv0 at v0 is
ATvk+1 . If path p is invalid, then ATvk+1 = ∞.

For the T D S P int problem our goal is to find, for all starting times at a given
source node s ∈ V , the earliest arrival time at all destination node d ∈ V , considering
all valid paths from s to d . A path p that returns the earliest arrival time at destination
node d for a given start time t at source node s is called the shortest path to d for start
time t at s. We use the terms earliest arrival time and shortest path interchangeably.
In this paper, we solve the T D S P int problem by reducing it to a special instance
of T D S P lin defined in the next subsection. Note that Gi is assumed to be a FIFO
network in that the FIFO property holds for every link of the network. This is the
usual assumption in the literature (see e.g. [10, 16, 17]). The FIFO property on links
implies that for every link (u, v), a later start time at u results in a later (or equal)
arrival time at v. In other words, for every link (u, v) the arrival time function to v

for different departure times from u is non-decreasing. Note that, we do not allow
unnecessary waiting at a node as it would result in a later arrival time (due to the
network’s FIFO property). Also note that, using the approach described in [18], any
non-FIFO network that allows unrestricted waiting on nodes can be converted to a
FIFO network with zero waiting on nodes.

1.2 The T D S P lin Problem

The second problem that we solve in this paper is the T D S P lin problem which is
a more general version of T D S P int. Here, we consider a time-dependent network
Gl(V,E) in which each link e = (u, v) ∈ E is assigned a piece-wise linear function
ae(t) denoting the arrival time at v for start time t at u. The notion of arrival time func-
tion is also extendable to a path in the network. Suppose p = 〈v1, v2, . . . , vk, vk+1〉
is a path of length k. Then, starting from v1 at time t one arrives at vk at time
a(vk,vk+1)(. . . (a(v2,v3)(a(v1,v2)(t)))) which we denote by ap(t). Piece-wise linear func-
tions can be used as an approximation of non-linear arrival time functions. They
model time-dependent networks where costs are changing linearly during specific
periods of time. An example is a road network where travel times on some links in-
crease linearly when snowfall piles up on the road. This can also model e.g. snow
melting periods and snow removal schedules. In T D S P lin, our goal is to find for all
possible start times t at source node s the earliest arrival time at a destination node d .
In other words, considering P to be the set of all possible paths from s to d , we
are interested in finding the minimum arrival time function Asd(t) = minp∈P (ap(t)).
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Note that we only consider cases where all arrival time functions are piece-wise lin-
ear real-valued functions. Additionally, the ae(t) functions are non-decreasing for all
e ∈ E so that the FIFO property holds.

The problem of finding the earliest arrival time (or shortest path) between two
points for a particular given starting time can be solved efficiently by applying
straight-forward modifications to well-known static shortest path methods. For exam-
ple, a simple modification to Dijkstra’s shortest path algorithm [11] using Fredman
and Tarjan’s implementation [13] finds the earliest arrival time for a given start time
in O(|E| logγmax + |V | log |V |) with the same approach as used in [4]. Here, γmax

is the maximum number of linear pieces on link arrival time functions, ae(t). How-
ever, solving the problem for all possible starting times appears to be harder even
when the ae(t) functions are piece-wise linear and the FIFO property holds, since the
shortest path to a destination node d from source node s depends on the start time
from s. A naive algorithm for solving the T D S P lin problem computes the earliest
arrival time function for every possible path from s to d and then calculates the lower
envelope. This algorithm would need exponential time in many cases because many
networks would have an exponential number of possible paths between s and d . In
fact, as stated in [19], the problem is NP-hard in its general form (arbitrary arrival
time functions).

1.3 Results for the T D S P lin Problem

In this paper, we present a novel approach for solving T D S P lin which improves on
the previous results. Our method is based on the observation that the label-setting
and label-correcting algorithms (discussed in Sect. 2.1) compute earliest arrival time
functions for all intermediate nodes of the network. We present new, non-trivial, com-
binatorial properties of arrival time functions. These new insights allow us to focus
on finding the earliest arrival time function for the destination node only, and only at
crucial time-points. This way, we can discard unnecessary computations. In contrast
to previous methods, our algorithms directly compute the earliest arrival time func-
tion for every destination node d by tracing time and finding the earliest arrival time
only at time instances that may change the earliest arrival time function for d .

Our new algorithm for solving the T D S P lin problem runs in time O((Fd +
γ )(|E| + |V | log |V |)), where Fd is the output size (number of linear pieces needed
to represent the earliest arrival time function) and γ is the input size (total number
of linear pieces in all link arrival time functions). Our method improves significantly
upon the previously known methods. Orda and Rom’s label-correcting method [18]
had an O(Fmax |V ||E|) time bound where Fmax is the maximum output size Fd for
all possible destination nodes d ∈ V , and Dean [10] had improved that with a label-
setting algorithm that has a running time of O(|E|F ∗ log |V |), where F ∗ is the total
number of pieces among all output functions. Dean [10] also conjectured that it is
possible to have super-polynomial output size for the earliest arrival time function on
some nodes of the network. Our method will have super-polynomial time only if the
output size is super-polynomial.
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1.4 Results for the T D S P int Problem

In order to solve the T D S P int problem, we convert every instance of T D S P int into
an instance of the T D S P lin where the slope of each linear piece is either 0 or 1. The
algorithm determines for every start time s the earliest possible arrival time at a given
destination d or all nodes of the network. Our approach solves the T D S P int problem
with O(λ(|E| + |V | log |V |)) time complexity where λ denotes the total number of
availability intervals in the entire network. When applied to the T D S P int problem,
Orda and Rom’s algorithm [18] requires time O(λ|V ||E|) and Dean’s algorithm [10]
requires time O(λ|E| log |V |). A crucial observation that supports our approach is the
fact that there cannot be more than O(λ) pieces in the earliest arrival time function for
d . This reduces the number of paths and time instances that need to be considered and
improves performance. The improved method uses structural properties of earliest
arrival functions which are of interest in their own right.

1.5 Possible Improvements for Special Cases

Our method makes extensive use of static shortest paths algorithms as a base to build
the earliest arrival functions to each node. We note that, our algorithm is independent
of the static shortest paths algorithm used. One may use more efficient static short-
est path algorithms for further improvement in special cases. For example, Thorup’s
linear time algorithm [22] could be used if link costs are positive integers. In case
that the underlying network is a planar network, Henzinger et al. [15] proposed a lin-
ear time algorithm for the static shortest paths problem that could be applied to our
algorithm. Heuristics like A∗ algorithms [14] could be applied as well.

1.6 Organization of the Paper

The remainder of this paper is organized as follows. Section 2 presents our new al-
gorithm for the T D S P lin problem and analyzes its running time and correctness.
Section 3 presents a new algorithm for the T D S P int problem that is based on our
T D S P lin solution. Section 4 concludes the paper.

2 The Shortest Paths Problem on a Time-Dependent Network with Piece-Wise
Linear Functions (T DSP lin)

In this section, we consider the shortest paths problem T D S P lin on a time-dependent
network in which link arrival time functions, ae(t) e ∈ E, are piece-wise linear real-
valued functions of a real argument. Additionally, we assume that ae(t) functions are
non-decreasing for all e ∈ E, so that the FIFO property holds which is the usual as-
sumption in literature (see e.g. [10, 16, 17]). We present and analyze a new algorithm
for T D S P lin after giving a summery of previous work.

2.1 Previous Algorithms and Results

The problem of finding the shortest paths in a time-dependent network (also referred
to as “earliest arrival time” and “minimum travel time” problem in some texts) was
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first proposed in 1966 by Cooke and Halsey [6]. They considered time to have discrete
values. Most current results are obtained for continuous time because it better models
real scenarios.

For the T D S P lin problem, the goal is to find the earliest arrival time from s to
d for all starting times t from s. The arrival time on each path is a function of the
start time from the source node and can be obtained by computing the composition
of the link arrival time functions along the path. Consequently, the solution of the
T D S P lin problem is the minimum of all arrival time functions on all paths from s

to d . This leads to a naive algorithm for the T D S P lin problem: compute the arrival
time functions of all paths from s to d and compute their lower envelope. For more
information on lower envelope algorithms see e.g. [20]. Although this gives the cor-
rect solution, such an algorithm is not efficient in that there could be an exponential
number of paths from s to d leading to exponential time complexity. In [16] a heuris-
tic algorithm has been presented to solve the T D S P lin problem. The algorithm uses
an approach similar to A∗ algorithms [14], but its worst case complexity is unknown.

In the following, we review exact algorithms for the T D S P lin problem. We
present two approaches known as label correcting and label setting in separate sec-
tions.

2.1.1 Label-Correcting Algorithms

A slightly modified version of the standard label-correcting algorithms for shortest
paths [3] (e.g., Bellman-Ford) solves the T D S P lin problem. Here, instead of com-
puting labels for a specific time, one can do this simultaneously for all values of t . In
this case, arrival time functions are used instead of scalar arrival times at each node.
Orda and Rom [18] proposed such an algorithm. For a FIFO network with piece-wise
linear functions, it has time complexity O(Fmax |V ||E|), where Fmax is the maximum
number of linear pieces needed to represent the earliest arrival time function between
s and any node in the network. Our algorithm is a significant improvement of this
method as well as the methods outlined in the following section.

2.1.2 Label-Setting Algorithms

In a label-setting algorithm the goal is to compute, in small pieces, actual correct val-
ues of output functions rather than iteratively revising these functions. This approach
is similar to Dijkstra’s algorithm for the static shortest path problem [11]. In contrast
to label-correcting algorithms, it is not possible to simply replace scalar label values
by functions to solve the problem because a minimum element (i.e., one function
which is minimum over the entire domain) may not exist. The main idea of these al-
gorithms is to determine the latest time φv , for each node v, so that the current earliest
arrival time function for any time less than φv gives the actual earliest arrival time at
the node. For FIFO networks with piece-wise linear arrival time functions, Dean [10]
suggested a label-setting algorithm that performs a single chronological scan through
time to establish output functions. The algorithm employs the same approach used
for solving parametric shortest path problems. In the worst-case, this algorithm has a
running time of O(|E|F ∗ log |V |), where F ∗ is the total number of pieces among all
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Fig. 1 An example network for which the algorithm by Ding et al. [12] requires α = k − 3 iterations
where k is the value of the arrival time function for (v3, v4) at time ts

output functions. As discussed in [10], this “slightly improves on the worst-case run-
ning time in the label-correcting algorithm in the amount of time required per linear
piece of the output”.

Recently, Ding et al. [12] presented a simpler label-setting algorithm for the
T D S P lin problem in FIFO networks with piece-wise linear functions. The algorithm
scans a sequence of time steps the size of which depends on the values of the arrival
time functions. Careful analysis of this algorithm shows that this approach yields
a solution with time complexity O(α(|E| + |V | log |V |)) which contains a factor α

that depends on the values of arrival time functions and can be arbitrarily large, in-
dependent of the input size or output size. An example of an instance where α is
independent on |E|, |V | and γ , and can be arbitrarily large is depicted in Fig. 1. In
the following, we briefly explain how the algorithm by Ding et al. [12] would process
the network shown in Fig. 1. For more details on the algorithm, refer to [12]. Con-
sider a network G(V,E,A) as shown in Fig. 1 with starting node vs = v1 ∈ V , and
destination node ve = v4 ∈ V where V and E are the node and edge sets, and A is
the set of piece-wise linear function on links. Observe the values k + 1 and k for the
arrival time functions of (v2,v4) and (v3,v4) at time ts , respectively. Note that, k can
be chosen arbitrarily large, without changing the input size or output size. Given a
total time interval T = [ts , te] = [0, T0], T0 > k, the problem is to find the earliest
arrival time function at ve for all starting times in T from vs . Let gi(t) be the ear-
liest arrival time function from vs to vi for all vi ∈ V . The algorithm in [12] finds
sub-intervals Ii = [ts , τi] such that for all t ∈ Ii , gi reflects the correct earliest ar-
rival time function. As the algorithm proceeds, the intervals are extended until they
cover T . The algorithm stops when ge(t) is defined for all t ∈ T or if ve is not reach-
able from vs . The main contribution of [12] is the way they extend the interval Ii on
each node. The algorithm maintains a priority queue which holds (τi, gi(t)), vi ∈ V

values sorted by ascending order of gi(τi). At every iteration, it dequeues the top ele-
ment of the queue in (τi, gi(t)) and assigns the next top element to (τl, gl(t)) without
dequeuing. These values are then used to compute the next earliest possible arrival
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Fig. 2 Illustration of the Ding et al. algorithm for the network shown in Fig. 1

time from vs to vi via any edge (vf , vi), namely E A T = min{af,l(τl), (vf , vl) ∈ E}
which is then used to extend τi . They show that τi can be extended to τ ′

i which is the
latest starting time t that satisfies gi(t) ≤ E A T . For any link (vi, vj ), the new value
g′

j (t) = ai,j (gi(t)), t ∈ [τi, τ
′
i ] is then compared with gj (t) and the minimum value

is stored. Figure 2 shows a few iterations of the Ding et al. algorithm for our sim-
ple network shown in Fig. 1. The first row, shows the starting state of the algorithm
where g1(t) = t and τi = 0 for i ∈ {1,2,3,4}. The current value of τi is indicated by
a black dot on the x-axis. The priority queue is shown on the right. All gi(τi) values
in the priority queue are ∞ except for g1(0) which is 0. In the first iteration (second
row in Fig. 1), (τ1, g1(t)) is removed from the priority queue and the next element
of the priority queue is used to obtain the new value of τ1. The next top element of
the priority queue has value gl(τl) = ∞ and there is no incoming edge to vs , indi-
cating that τ1 can be extended to te = T0. Then, the g2(t) and g3(t) functions will
be updated, as well as their corresponding values in the priority queue. In the next
iteration, (τ2, g2(t)) is removed form the priority queue which has value g2(τ2) = 4
and the next element is gl(τl) = 5. For all incoming links to v2, the smallest arrival
time for starting time 5 is E A T = 6. Hence, we can extend τ2 to 5 and update g3 and
g4 for interval [0,5]. We also update the priority queue with new values of gi(τi) for
i ∈ {3,4}. In the third iteration, (τ3, g3(t)) is removed from the priority queue and the
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next element would be gl(τl) = 6. For all incoming links to v3, the smallest arrival
time for starting time 6 is E A T = 7. Hence, we can extend τ3 to 5 and update g4
for interval [0,5]. We also update the priority queue to reflect the updated value of
g4(τ4). We observe that in all subsequent iterations, the elements removed from the
priority queue toggle between g2(τ ) and g3(τ ) and increase only by value 1 in each
iteration until they reach value of k. Hence, the algorithm of Ding et al. [12], applied
to the network shown in Fig. 1, requires α = k − 3 iteration. We recall that k + 1 and
k are the values for the arrival time functions of (v2, v4) and (v3, v4) at time ts = 0,
respectively. Hence, α = k − 3 can be chosen arbitrarily large without changing the
network size, input size or output size.

2.2 Structural Properties

Our new algorithm makes extensive use of certain structural properties of the problem
discussed in this section.

2.2.1 Structural Properties of the Earliest Arrival Time Function

The earliest arrival time function from s to d , Asd(t), is a piece-wise linear function
since all input arrival time functions are assumed to be piece-wise linear functions and
the function operators used to compute Asd(t) (function inverse, linear combination,
function compound, min, max) do not change linearity of the result.

We are interested in the points on the curve Asd(t) that connect its different linear
pieces, and will refer to them as breakpoints. We differentiate between two types of
breakpoints. First, a breakpoint may represent the intersection between two pieces
of arrival time functions on different paths. Second, a breakpoint may represent a
breakpoint on one of the arrival time functions for a path from s to d . We refer
to the first type as X-point and to the second type as V-point. Figure 3 depicts an
arrangement of arrival time functions for four paths and identifies X and V-points.

Every V-point corresponds to a breakpoint on the arrival time function, ap(t),
for some path p from s to d . Each breakpoint on the ap(t) function is the result

Fig. 3 An illustration of X and
V-points. Curves
ap1 (t), . . . , ap4 (t) are arrival
time function for four paths
p1, . . . , p4, and Asd (t) is the
final arrival time function from s

to d
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of a breakpoint between two linear pieces of arrival time functions on a link of p

introduced because of a compound operation for computing ap(t). In the following
lemma, we will show that every breakpoint of a link arrival time function can create
at most one V-point on Asd(t).

Lemma 1 Suppose P is the set of all paths that go through link e = (v,w) ∈ E and
ae(t) is the arrival time function for e and has γe breakpoints. Then, all arrival time
functions ap(t),p ∈ P , create, in total, at most γe V-points on Asd(t).

Proof Consider the following representation of the piece-wise linear function ae(t):

ae(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1t + β1, 0 ≤ t ≤ T 1,

α2t + β2, T 1 < t ≤ T 2,
...

...

αγe t + βγe , T γe−1 < t ≤ T γe ,

∞, T γe < t.

For every breakpoint T i, i = 1 . . . γe, consider path pi to be the concatenation of a
path with the latest starting time (LST) from s which arrives at v at time T i , link
(u,w), and a path with earliest arrival time (EAT) to d which starts from w at time
αiT i + βi . Because of the definition of pi , for any path p ∈ P other than pi , T i will
create a breakpoint either at (LST ,EAT ) or to the left and above this point. Since
(LST ,EAT ) is on api (t) and the FIFO property holds, any points that are to the
left and above (LST ,EAT ) are not on Asd(t). Hence, other paths cannot create new
breakpoints on Asd(t). This proves that all arrival time functions ap(t),p ∈ P , create
in total at most γe V-points on Asd(t). �

Let γ = ∑
e∈E γe be the total number of breakpoints on link arrival time functions

in the entire network. Since every V-point arises from a breakpoint on some link
arrival time function, Lemma 1 implies that there cannot be more than O(γ ) V-points
on Asd(t).

2.2.2 Possibly Super-Polynomial Output Size

In [10], the author conjectured that in a FIFO network with piece-wise linear link
arrival time functions, the earliest arrival time function Asd(t) from a source node s to
a destination node d may have more than a polynomial number of linear pieces. This
means that there possibly exist network structures that result in super-polynomial
complexity for earliest arrival time functions to some nodes of the network.

The super-polynomial structure could appear as a subnetwork of the actual input
network, resulting in earliest arrival time functions with possibly super-polynomial
number of pieces (breakpoints) for destination nodes whose shortest path from s

passes through the super-polynomial structures. However, the earliest arrival time
function from s to d could still be of linear size since the earliest arrival time path
may not intersect the super-polynomial structure at all. In this case, Fmax would be
of super-polynomial size and Fd would be of linear size.
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2.3 A New Algorithm for Instances with Polynomial Size Output

Our new algorithm is based on the idea that instead of building all earliest arrival
time functions to all nodes in the network, we calculate only the earliest arrival time
function to destination node d . An outline of our method is given in Algorithm 1. In
the remainder, we discuss our method in more detail.

The main idea is to find all starting times for which the earliest arrival time func-
tion from s to d , Asd(t), changes from one linear piece to another as well as linear
functions on the left and right of these breakpoints. In Sect. 2.2, we introduced two
types of breakpoints in Asd(t): V-points and X-points. We also showed that at most
O(γ ) V-points exist on Asd(t), where γ is the total number of pieces in all input
arrival time functions. All V-points that can potentially be on Asd(t) could be cap-
tured by computing, for every breakpoint at time T on the arrival time function ae(t)

of each link e = (v,w), the latest departure time (LDT ) at s to arrive at v at time
T and the earliest arrival time (EAT ) at d for departure time ae(T ) at w. Point
(LDT,EAT ) is a potential V-point on Asd(t). Note that the earliest arrival time at a
destination node could be obtained by running a modified version of Dijkstra’s static
shortest path algorithm for a given start time at the source node. Similarly, a modified
version of reverse Dijkstra’s static shortest path algorithm could be used to obtain the
latest departure time at the source node corresponding to a given arrival time at the
destination node. Regarding the reversibility of the T D S P lin problem see [8].

In order to make sure that (LST ,EAT ) is on the final solution, we calculate the
earliest arrival time to d starting from s at time LST . If the result arrival time is the
same as EAT , then (LST ,EAT ) is indeed a V-point on Asd(t). In this case, we also
compute the linear pieces to the left and right of each V-point. These are pieces with
the earliest arrival time and the smallest (greatest) slope on the right (left) vicinity of
each V-point. Figure 4 shows a sample Asd(t) function after all V-points have been
detected. Lines 2 through 11 of Algorithm 1 state the pseudo-code to find all V-points
along with their left and right linear functions. Note that, given a time t0, the adjacent
linear pieces with smallest (greatest) slope can be computed while computing the
earliest arrival time to d for starting time t0. This is accomplished by keeping the
product of slopes for each node in the shortest path tree as a secondary key when
Dijkstra’s algorithm finds two or more entries of the heap that have the same arrival
time value. In this case, selecting the entry with smallest (greatest) slope leads to the

Fig. 4 A sample Asd(t)

function with all V-points and
their adjacent linear functions
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Fig. 5 (a) Overlapping pieces. (b) Intersection point on Asd (t). (c) Intersection point hidden by another
linear piece

adjacent linear pieces with smallest (greatest) slope. To show the correctness of this
approach consider any two paths from s to d starting at time t0 with equal arrival
times but different slopes on their arrival time functions. The first time where they
have equal arrival time values is either at d or at some earlier node d ′. In the latter
case, they will share the same path from d ′ to d . In either case, selecting the smallest
(greatest) product of slope values from the heap, among equal arrival time values,
maintains the smallest (greatest) slope.

Thus far we have determined all V-points and the slope of Asd(t) in their vicinity.
We build the remaining part of Asd(t) by adding all X-points and missing pieces
between every pair of consecutive V-points on Asd(t). Due to the linearity of the
input arrival functions, the X-points between two consecutive V-points are in concave
position (seen from below). Consider two consecutive V-points, Vl and Vr , found in
the previous step together with the linear pieces in their vicinity. Two cases arise
for the linear pieces to the right of Vl and to the left of Vr . They either overlap,
or they intersect in some point I = (xI , yI ). If they overlap, the piece connecting
the two V-points is part of the solution (Fig. 5(a)). In case of an intersection, two
cases are possible. First, if calculating the earliest arrival time for starting time xI

at s returns the same arrival time yI at d as for the intersection point, the pieces
vl to I and I to vr are part of the solution (Fig. 5(b)). Second, if calculating the
earliest arrival time for starting time xI at s returns a value less than yI at d , there
exists a new linear piece that hides the intersection point I = (xI , yI ) (Fig. 5(c)). The
linear pieces to the right of Vl and to the left of Vr intersect the new piece, and we
recurse for new intersections. See Theorem 1 for further details. Lines 12 through 35
of Algorithm 1 are the pseudo-code for finding X-points and adding pieces to solution
function Asd(t).

Theorem 1 Given a source node s and destination node d , the T D S P lin algorithm
(Algorithm 1) outlined above correctly determines Asd(t) for all t ∈ [0,∞).

Proof The algorithm first finds all V-points on Asd(t) along with linear pieces to
the left and right of each V-point. From the proof of Lemma 1, if follows that no
V-points other than those considered by Algorithm 1 can be on Asd(t). The algo-
rithm picks every two consecutive V-points to compute all X-points between them.
Let vl = (xl, yl) and vr = (xr , yr ) be two consecutive V-points on Asd(t). Suppose
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begin
Asd (t) ← NULL

for every link e = (v,w) ∈ E do
for i = 0 to λe do

LST ← ReverseDijkstra∗(v, s, T i
e ) /* Returns the latest departure time at

s corresponding to arrival time T i
e at v. T i

e is the time of ith

breakpoint on ae(t). */

EAT ← Dijkstra∗(w,d, ae(T
i
e )) /* Returns the earliest arrival time at d

for departure time ae(T
i
e ) at w. */

T MP ← Dijkstra∗(s, d,LST )

if EAT = T MP then
fl ← Lef tFunction(s, d,LST ) /* Returns the linear function on Asd (t)

which is on the right of V-point at time LST . */
fr ← RightFunction(s, d,LST ) /* Returns the linear function on
Asd (t) which is on the left of V-point at time LST . */
InsertT oList (L, {LST ,EAT,fl , fr }) /* Adds the information of V-point
at time LST to list L. */

end
end

end
Sort (L) /* Sorts list L by the ascending order of LST values. */
{LST1,EAT1,LF1,RF1} ← RemoveI tem(L) /* Returns and removes the first
element of L. Extracts the information for the left V-point. */
while NotEmpty(L) do

{LST2,EAT2,LF2,RF2} ← RemoveI tem(L) /* Returns and removes the first
element of L. Extracts the information for the right V-point */
if Overlap(RF1,LF2) then

/* If the function on the right of left V-point has the same
slope as the one on the left of right V-point. */
AddLinearP iece(Asd (t),RF1,LST1,LST2)

else
/* If the function on the right of left V-point has different
slope from the one on the left of right V-point. */
(PX1,PY1) ← (LST1,EAT1)

(PX2,PY2) ← IntersectionPoint (RF1,LF2) /* Finds the intersection point
of the function on the right of left V-point and the one on the
left of right V-point. */
Push(S, (PX2,PY2,RF1,LF2)) /* Inserts the information of the
intersection point to stack S. */
while NotEmpty(S) do

(PX2,PY2, fl , fr ) ← Pop(S) /* Returns and removes an element from
the top of stack S. */
T MP ← Dijkstra∗(s, d,PX2)

if T MP = PY2 then
AddLinearP iece(Asd (t), fl ,PX1,PX2) /* Adds linear function fl
to Asd (t) from time PX1 to PX2. */
PX1 ← PX2

else
fm ← Lef tFunction(s, d,PX2)

(IX1, IY1) ← IntersectionPoint (fl , fm)

(IX2, IY2) ← IntersectionPoint (fm,fr )

Push(S, (IX2, IY2, fm,fr ))

Push(S, (IX1, IY1, fl , fm))

end
end
AddLinearP iece(Asd (t), fr ,PX2,LST2) ; /* Adds the linear piece between
the last intersection point and right V-point. */

end
{LST1,EAT1,LF1,RF1} ← {LST2,EAT2,LF2,RF2}

end
if EAT1 
= ∞ then AddLinearP iece(Asd (t),RF1,LST1,∞)

return (Asd (t))
end

Algorithm 1: T D S P lin(G,V,E, s, d)



Algorithmica (2012) 62:416–435 429

that RF and LF are the linear pieces to the right of vl and to the left of vr , re-
spectively. Either RF and LF overlap or they intersect. If they overlap, the lin-
ear piece on RF (or LF ) from xl to xr is part of the solution function since no
other V-points are possible between vl and vr . On the other hand, if the two func-
tions intersect in some point I = (xI , yI ) and the intersection is on Asd(t), then
the linear piece on RF from xl to xI is on Asd(t) since no other V-points are pos-
sible between vl and vr . If I is not on Asd(t), then there must be another linear
piece preventing it from being on the solution. The algorithm determines such a
piece with maximum slope. The extension of the linear piece must intersect both
RF and LF since otherwise there must be another V-point between vl and vr . Let
Il and Ir be the two intersection points. The algorithm now recursively performs
what has been done for I , first for Il and for then Ir . Starting from vl , it adds lin-
ear pieces to the solution function once Il is found to be on Asd(t). Then, it moves
to the next intersection. As a last step, the algorithm adds to the solution function
the last piece on LF between the last intersection and xr . Since every X-point is
verified to be on Asd(t) and no more V-points are possible between two consecu-
tive V-points, the algorithm finds all X-points. Since V-points and X-points are the
only breakpoints on Asd(t), algorithm T D S P lin correctly finds all linear pieces of
Asd(t). �

Theorem 2 The time complexity of algorithm T D S P lin (Algorithm 1) is O((Fd +
γ )(|E| + |V | log |V |)).

Proof The algorithm first executes a slightly modified version of both standard and
reverse Dijkstra’s shortest path algorithm for each breakpoint in every link arrival
time function in order to find all possible V-points. It then executes another mod-
ified version of Dijkstra’s algorithm to find the greatest and smallest slope pieces
close to each V-point. For every link (v,w) and starting time at v we compute
the arrival time at w in O(1) time using an amortized analysis. This follows from
the fact that breakpoints are sorted in time and we can therefore execute Dijk-
stra’s shortest path algorithm incrementally. For a given starting time at s, the ear-
liest arrival time at d is computed in the same time as Dijkstra’s algorithm, that
is O(|E| + |V | log |V |). Consequently, the time-complexity for computing all V-
points is O(γ (|E| + |V | log |V |)) where γ is the total number of linear pieces in
all link arrival time functions. Then, for computing all X-points, the algorithm ex-
ecutes a modified Dijkstra’s algorithm as many time as we find intersection points.
At each intersection point found, we determine the linear piece with greatest slope
that hides the intersection point. This guarantees that every time we run a modi-
fied Dijkstra’s algorithm at an intersection point we obtain a new linear piece that
is part of the solution Asd(t). As a result, we will execute the modified Dijkstra’s
algorithm at most as many times as there are X-points on Asd(t). With Fd de-
fined as the number of linear pieces on Asd(t), computing all X-points requires time
O(Fd(|E| + |V | log |V |)). Hence, the total time complexity of Algorithm T D S P lin

is O(Fd + γ )(|E| + |V | log |V |)). �
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3 The Shortest Paths Problem on Time-Dependent Networks with Availability
Intervals (T DSP int)

3.1 A Reduction from T D S P int to T D S P lin

In the following, we discuss how every instance of a time-dependent network with
availability intervals for the T D S P int problem can be converted into an equivalent
time-dependent network with piece-wise linear functions by replacing intervals and
weights with arrival time functions for every link in the network.

Let wm
e and [lme , rm

e ] be the mth weight and interval on link e = (i, j) ∈ E in a
time-dependent network with intervals (see Fig. 6(a)). By definition of the T D S P int
problem, for all departure times t from i between lme and rm

e , the arrival time is
ae(t) = t + wm

e . Additionally, for all times t not in any intervals for that link, the ear-
liest departure time is the smallest available time greater than t , say lse . In this case,
the earliest arrival time at j is ae(t) = lse +ws

e . Finally, for all times t greater than the
closing time of the last interval of the link, ([lMe

e , r
Me
e ]), the link is not available and

the earliest arrival time is ∞. Figure 6(b), (c) depicts the result of this conversion and
piece-wise linear function ae(t) for a link e = (i, j).

Note that the resulting time-dependent network is indeed a FIFO network since
arrival time functions are non-decreasing. Additionally, for each link e, ae(t) is a
continuous piece-wise linear function. Consequently, in the following we focus on
algorithms that solve the T D S P lin problem applied to the time-dependent network
obtained by our conversion process.

3.2 Structural Properties

3.2.1 O or 1 Slopes on the Output Function

It follows from our conversion process discussed in Sect. 3.1 that all link arrival time
functions are piece-wise linear functions with FIFO property. Moreover, all slopes
are either 0 or 1 since for any point in time, either a link is available for use or it is
unavailable. As described earlier, on a path p from a source node s to destination d ,
the earliest arrival time for all times t , denoted by ap(t), is obtained by a sequential
composition of the link arrival time functions for all links of the path. Similarly, the
earliest arrival time function from s to d for all times t , denoted by Asd(t), is the
minimum of the arrival time functions on all paths from s to d . Both operations,
composition and minimum, do not change the slopes to any values other than 0 or 1.
Consequently, all linear pieces on both ap(t) and Asd(t) have slope either 0 or 1.

Fig. 6 (a) A link in the
time-dependent network with
intervals. (b) A converted link in
the new time-dependent network
with piece-wise linear functions.
(c) The arrival time function on
the converted link
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Fig. 7 An example showing
V-points and X-points

3.2.2 O(κ) Output Size

As discussed in Sect. 2.3, it follows from Lemma 1 that there are at most κ V-points
on the solution function Asd(t) of the T D S P int problem. Here, κ denotes the input
size which is the total number of linear pieces in all link arrival time functions.

Lemma 2 There are at most O(κ) X-points on the solution function Asd(t).

Proof An X-point is the intersection of slope 0 and slope 1 linear pieces. For two
consecutive V-points on Asd(t) it follows from the fact that all slopes are 0 and 1
there cannot be more than one X-point between these two consecutive V-points. By
Lemma 1, there are O(κ) V-points on Asd(t). Hence, there are at most O(κ) X-points
on Asd(t). �

Figure 7 shows V-points and X-points on an arrangement of four path arrival time
functions.

Theorem 3 There are at most O(κ) breakpoints on the solution function of the
T D S P int problem, Asd(t).

Proof The result follows from Lemma 1 and Lemma 2. �

Figure 8 shows a time-dependent network with availability intervals. There are
θ(|E|) breakpoints on Asd(t) for the case of O(1) intervals on each link. Note that
the example could be generalized to cases of multiple intervals (translates to κe linear
pieces on ae(t) in the time-dependent network) if we build the ith interval on a link
by adding some constant value to the (i − 1)st interval so that they do not overlap.
This will result in a network with θ(κ) = θ(λ) breakpoints on Asd(t), where λ is the
total number of intervals in the network.
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Fig. 8 An example of a network with O(E) pieces on the EAT function to d

3.3 Solving the T D S P lin Instances Created for Solving T D S P int Problems

3.3.1 Applying Lower Envelope Algorithms

Suppose P is the set of all possible paths from s to d , and ap(t) is the arrival time
function of path p ∈ P . Then, the earliest arrival time function from s to d for all
times t , Asd(t) = minp∈P (ap(t)) is the lower envelope of all possible earliest arrival
time functions. A naive algorithm for solving the T D S P int problem could be to use
well-studied lower envelope algorithms (see e.g. [1, 20]). Unfortunately, the number
of such paths and therefore the number of arrival time functions could be exponential
which makes this approach inefficient.

3.3.2 Applying Label-Correcting Algorithms

For general time-dependent networks for which the FIFO property holds and have
piece-wise linear functions, Orda and Rom [18] proposed an algorithm that has a
time bound of O(Fmax |V ||E|), where Fmax is the maximum number of pieces in
a given output function Asi(t) for source node s to any node i. As shown, in the
T D S P int problem there are at most O(λ) pieces in the output function for each node
which results in a total running time of O(λ|E||V |).
3.3.3 Applying Label-Setting Algorithms

For time-dependent networks with FIFO property and piece-wise linear arrival time
function on links, Dean [10] suggested a label-setting algorithm. This algorithm has
a running time of O(|E|F ∗ log |V |) where F ∗ is the total number of pieces among
all output functions. When applied to the T D S P int problem, this approach results in
a running time of O(λ|E| log |V |).
3.3.4 Applying our Improved T D S P lin Algorithm to Instances Created for Solving

T D S P int Problems

In Sect. 2, we presented a new algorithm that solves the T D S P lin problem in
time O((Fd + λ)(|E| + |V | log |V |)) where Fd is the output size (number of lin-
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ear pieces on the earliest arrival time function to d). For instances created for solving
T D S P intproblems, the output size is O(λ). Hence, the time complexity would be
O(λ(|E| + |V | log |V |)). Note that T D S P lin considers only one destination node
whereas T D S P int requires shortest paths from s to all nodes in the network. Algo-
rithm 2 computes, for a given source node s, the earliest arrival time functions to all
nodes in the network within the same time-complexity O(λ(|E| + |V | log |V |)).

begin
for i = 1 to |V | do A[i] ← NULL

for every link e = (v,w) ∈ E do
for i = 0 to κe do

LST ← ReverseDijkstra∗(v, s, T i
e )

EAT ← DijkstraAllDestinations∗(v, T i
e )

T MP ← DijkstraAllDestinations∗(s,LST )

fl ← Lef tFunction(s,LST )

fr ← RightFunction(s,LST )

for i = 1 to |V | do
if EAT [i] = T MP [i] then

InsertT oList (L[i], {LST,EAT [i], fl [i], fr [i]})
end

end
end

end
for i = 1 to |V | do Sort (L[i])
for i = 1 to |V | do

{LST1,EAT1,LF1,RF1} ← RemoveI tem(L[i])
while NotEmpty(L[i]) do

{LST2,EAT2,LF2,RF2} ← RemoveI tem(L[i])
if Overlap(RF1,LF2) then

AddLinearP iece(A[i](t),RF1,LST1,LST2)

else
(IX, IY ) ← IntersectionPoint (RF1,LF2)

AddLinearP iece(A[i](t),RF1,LST1, IX)

AddLinearP iece(A[i](t),LF2, IX,LST2)

end
{LST1,EAT1,LF1,RF1} ← {LST2,EAT2,LF2,RF2}

end
if EAT1 
= ∞ then AddLinearP iece(A[i](t),RF1,LST1,∞)

end
return (A)

end
Algorithm 2: T D S P int(G,V,E, s)

Function A[i](t) represents the earliest arrival time function from s to every node
i of the network. In Line 2 of Algorithm 2, this function has been initialized to ∞
for every node of the network. We will gradually build these functions by adding
linear pieces to them. For all nodes i, Lines 3 through 12 find all V-points on A[i](t)
and add them to list L[i] for later use. Here, ReverseDijkstra(v, s, T i

e ) is the same
as in Algorithm 1. It returns the latest possible starting time from s to arrive at v at
time T i

e . Similarly, DijkstraAllDestinations(v, T i
e ) is a slightly modified version of

the static shortest path algorithm from v to every node i starting at breakpoint time
T i

e . It returns the earliest possible arrival time at all nodes if one starts from v at time
T i

e . Note that the result of this function is an array holding the earliest arrival time
to node i in its ith position. For every node i, functions LeftFunction(s,LST ) and
RightFunction(s,LST ) return the linear function on the left and on the right of the
V-point that occurs at time LST . Line 11 checks whether a V-point is on the solution
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function or not, and adds it to the list accordingly. The algorithm builds A[i](t) for
each node i by adding linear pieces between every two consecutive V-points. We first
sort the list of V-points for each node (Line 13). Then, in Lines 14 through 25, the
algorithm adds one or two linear pieces depending on whether linear pieces between
two consecutive V-points overlap or intersect, respectively.

As a further extension, consider the all pair version of T D S P int where shortest
paths are calculated between all pairs of nodes. We observe that the reverse shortest
path algorithm reports at each breakpoint not only the latest start time from source
node s, but also from all nodes in the network. As a result, we can compute the
earliest arrival time function from all source nodes to all destinations using a slight
modification of Algorithm 2. Thus, all |V |2 earliest arrival time functions for the all
pairs version of T D S P int can be computed in time O(λ|V |2).

4 Conclusion

In this paper, we presented new algorithms for shortest path problems on two types
of time-dependent networks with FIFO property: networks where edges have time-
dependent availability intervals (T D S P int), and networks where edges have piece-
wise linear arrival time functions (T D S P lin). We solved the T D S P int problem by
reducing to a special case of the second problem, T D S P lin for which we presented
a novel solution based on new, non-trivial, combinatorial properties of arrival time
functions. These new insights allow us to focus on finding the earliest arrival time
function for the destination node only, and only at crucial time-points. This way, we
can discard unnecessary computations. In contrast to previous methods, our algo-
rithms directly compute the earliest arrival time function for every destination node
d by tracing time and finding the earliest arrival time only at time instances that may
change the earliest arrival time function for d . The algorithms presented in this pa-
per improve significantly upon the previously known methods for the T D S P int and
T D S P lin problems.

Both of our methods make extensive use of static shortest paths algorithms. One
may use more efficient static shortest path algorithms for further improvement in
special cases. For example, in planar networks, applying linear time shortest path al-
gorithms will further improve our results. In many practical networks, heuristics such
as A∗ could also be applied to improve the practical performance of our methods.
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