
July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

Parallel Processing Letters
Vol. 22, No. 3 (2012) 1250008 (14 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0129626412500089

DETERMINISTIC SAMPLE SORT FOR GPUS∗

FRANK DEHNE

School of Computer Science, Carleton University

Ottawa, Canada, www.dehne.net, frank@dehne.net

and

HAMIDREZA ZABOLI

School of Computer Science, Carleton University

Ottawa, Canada, hzaboli@connect.carleton.ca

Received February 2011
Revised August 2011, December 2011

Published 10 July 2012
Communicated by S. Sahni

ABSTRACT

We demonstrate that parallel deterministic sample sort for many-core GPUs (GPU
Bucket Sort) is not only considerably faster than the best comparison-based sorting

algorithm for GPUs (Thrust Merge [Satish et.al., Proc. IPDPS 2009]) but also as
fast as randomized sample sort for GPUs (GPU Sample Sort [Leischner et.al., Proc.
IPDPS 2010]). However, deterministic sample sort has the advantage that bucket sizes
are guaranteed and therefore its running time does not have the input data dependent
fluctuations that can occur for randomized sample sort.

Keywords: Parallel Algorithms, GPU, Sorting.

1. Introduction

Modern graphics processors (GPU s) have evolved into highly parallel and fully pro-

grammable architectures. Current many-core GPUs can contain hundreds of pro-

cessor cores on one chip and can have an astounding performance. However, GPUs

are known to be hard to program and current general purpose (i.e. non-graphics)

GPU applications concentrate typically on problems that can be solved using fixed

and/or regular data access patterns such as image processing, linear algebra, physics

simulation, signal processing and scientific computing (see e.g. [8]). The design of

∗Research partially supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and the IBM Center for Advanced Studies Canada.

1250008-1

http://dx.doi.org/10.1142/S0129626412500089

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

F. Dehne & H. Zaboli

efficient GPU methods for discrete and combinatorial problems with data depen-

dent memory access patterns is still in its infancy. In fact, there is currently still a

debate even on the best sorting method for GPUs (e.g. [13, 11]). The comparison-

based Thrust Merge method [13] by Nadathur Satish, Mark Harris and Michael

Garland of nVIDIA Corporation was considered the best sorting method for GPUs

until Nikolaj Leischner, Vitaly Osipov and Peter Sanders [11] recently published a

randomized sample sort method for GPUs (referred to as GPU Sample Sort in

the remainder) that significantly outperforms Thrust Merge. However, a disad-

vantage of the randomized sample sort method is that its performance can vary for

different input data distributions because the data is partitioned into buckets that

are created via randomly selected data items. In this paper, we demonstrate that

deterministic sample sort for GPUs, referred to as GPU Bucket Sort, has the

same performance as the randomized sample sort method (GPU Sample Sort)

in [11].

Our experimental performance comparison shows that for uniform data distri-

bution, which is the best case for randomized GPU Sample Sort, deterministic

GPU Bucket Sort is exactly as fast as GPU Sample Sort. However, in con-

trast to GPU Sample Sort, the performance of the deterministic GPU Bucket

Sort method remains the same for any input data distribution because buckets

are created deterministically and bucket sizes are guaranteed.

The main contribution of this paper is not a particularly novel algorithmic

technique. In fact, the sorting problem has been studied for so long that most

recently published sorting techniques for new parallel architectures are combina-

tions/adaptations of previously studied algorithmic technique. This is the case

for Thrust Merge [13], GPU Sample Sort[11] and the GPU Bucket Sort

method studied in this paper. The contribution of this paper is to show that a

combination of known deterministic sample sort techniques, adapted to GPU com-

puting, improves on GPU Sample Sort[11].

The remainder of this paper is organized as follows. Section 2 reviews some

features of GPUs that are important in this context. Section 3 reviews previous work

on GPU based sorting. Section 4 outlines GPU Bucket Sort and discusses some

details of our CUDA [1] implementation. In Section 5, we present an experimental

performance comparison between our GPU Bucket Sort implementation, the

randomized GPU Sample Sort implementation in [11], and the Thrust Merge

implementation in [13].

2. Review: GPU Architectures

As in [13] and [11], we will focus on nVIDIA’s unified graphics and computing

platform for GPUs [12] and associated CUDA programming model [1]. However, the

discussion applies more generaly to GPUs that support the OpenCL standard [3]. A

GPU consists of an array of streaming processors called Streaming Multiprocessors

(SM s). Each SM contains several processor cores and a small size low latency local

1250008-2

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

Deterministic Sample Sort for GPUs

shared memory that is shared by its processor cores. All SMs are connected to a

global DRAM memory through an interconnection network. The global memory

is arranged in independent memory partitions and the interconnection network

routes the read/write memory requests from the processor cores to the respective

global memory partitions, and the results back to the cores. Each global memory

partition has its own queue for memory requests and arbitrates among the incoming

read/write requests, seeking to maximize DRAM transfer efficiency by grouping

read/write accesses to neighboring memory locations (referred to as coalesced global

memory access). Memory latency to global DRAM memory is optimized when

parallel read/write operations can be grouped into a minimum number of sub-

arrays of contiguous memory locations.

It is important to note that data accesses from processor cores to their SM’s local

shared memory are at least an order of magnitude faster than accesses to global

memory. This is our main motivation for using a sample sort based approach. An

important property of sample sort is that the number of times the data has to be

accessed in global memory is a small fixed constant. At the same time, deterministic

sample sort provides a partitioning into independent parallel workloads and also

gives guarantees for the sizes of those workloads. For GPUs, this implies that we

are able to utilize the local shared memories efficiently and that the number of data

transfers between gloabl memory and the local shared memories is a small fixed

constant.

Another critical issue for the performance of CUDA implementations is condi-

tional branching. CUDA programs typically execute very large numbers of threads.

In fact, a large number of threads is required for hiding latencies of global mem-

ory accesses. The GPU has a hardware thread scheduler that is built to manage

tens of thousands and even millions of concurrent threads. All threads are divided

into blocks, and each block is executed by an SM. An SM executes a thread block

by breaking it into groups called warps and executing them in parallel. The cores

within an SM share various hardware components, including the instruction de-

coder. Therefore, the threads of a warp are executed in SIMT (single instruction,

multiple threads) mode, which is a slightly more flexible version of the standard

SIMD (single instruction, multiple data) mode. The main problem arises when the

threads encounter a conditional branch such as an IF-THEN-ELSE statement. De-

pending on their data, some threads may want to execute the code associated with

the “true” condition and some threads may want to execute the code associated

with the “false” condition. Since the shared instruction decoder can only handle

one branch at a time, different threads can not execute different branches concur-

rently. They have to be executed in sequence, leading to performance degradation.

Recent GPUs provide a small improvement through an instruction cache at each

SM that is shared by its cores. This allows for a “small” deviation between the

instructions carried out by the different cores. For example, if an IF-THEN-ELSE

statement is short enough so that both conditional branches fit into the instruc-

tion cache then both branches can be executed fully in parallel. However, a poorly

1250008-3

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

F. Dehne & H. Zaboli

designed algorithm with too many and/or large conditional branches can result in

serial execution and very low performance.

3. Previous Work on GPU Sorting

Sorting algorithms for GPUs started to appear a few years ago and have been highly

competitive. Early results include GPUTeraSort [7] based on bitonic merge, and

Adaptive Bitonic Sort [9] based on a method by Bilardi et.al. [4]. Hybrid Sort [16]

used a combination of bucket sort and merge sort, and D. Cederman et.al. [5] pro-

posed a quick sort based method for GPUs. Both methods [16, 5] suffer from load

balancing problems. Until recently, the comparison-based Thrust Merge method

[13] by Nadathur Satish, Mark Harris and Michael Garland of nVIDIA Corporation

was considered the best sorting method for GPUs. Thrust Merge uses a combi-

nation of odd-even merge and two-way merge, and overcomes the load balancing

problems mentioned above. Satish et.al. [13] also presented an even faster GPU

radix sort method for the special case of integer sorting. Yet, a recent paper by

Nikolaj Leischner, Vitaly Osipov and Peter Sanders [11] presented a randomized

sample sort method for GPUs (GPU Sample Sort) that significantly outperforms

Thrust Merge [13]. However, as also discussed in Section 1, the fact that GPU

Sample Sort is a randomized method implies that its performance can vary with

the distribution of the input data because buckets are created through randomly

selected data items. For example, the performance analysis presented in [11] mea-

sures the runtime of GPU Sample Sort for several input data distributions to

document the performance variations observed for different input distributions.

During the preparation of this paper, a new publication [10] introduced an in-

place GPU sort based on an optimized version of bitonic sort. Bitonic sort is simpler

(smaller constant time factors) but requires O(n log2 n) work. As observed in [10],

their bitonic sort based method outperforms sample sort based methods for small

data sets but their own experiments (Figure 8 in [10]) also show that for increasing

data size this advantage is lost, with a break even point at approx. 64 Million data

items.

4. GPU Bucket Sort: Deterministic Sample Sort for GPUs

In this section we outline GPU Bucket Sort, a deterministic sample sort algo-

rithm for GPUs, and discuss our CUDA implementation of GPU Bucket Sort.

An overview of GPU Bucket Sort is shown in Algorithm 1. It consists of a local

sort (Step 1), a selection of samples that define balanced buckets (Steps 3-5), mov-

ing all data into those buckets (Steps 6-8), and a final sort of each bucket (Step 9).

In our implementation of GPU Bucket Sort we introduced several adaptations

to the structure of GPUs, in particular the two level memory hierarchy, the large

difference in memory access times between those two levels, and the small size of

the local shared memories. We experimented with several bucket sizes and number

of samples in order to best fit them to the GPU memory structure. For sorting the

1250008-4

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

Deterministic Sample Sort for GPUs

Input : An array A with n data items stored in global memory.

Output : Array A sorted.

(1) Split the array A into m sublists A1, ..., Am containing n
m items each where n

m

is the shared memory size at each SM.

(2) Local Sort : Sort each sublist Ai (i=1,..., m) locally on one SM, using the SM’s

shared memory as a cache.

(3) Local Sampling: Select s equidistant samples from each sorted sublist Ai

(i=1,..., m) for a total of sm samples.

(4) Sorting All Samples : Sort all sm samples in global memory, using all available

SMs in parallel.

(5) Global Sampling: Select s equidistant samples from the sorted list of sm sam-

ples. We will refer to these s samples as global samples.

(6) Sample Indexing: For each sorted sublist Ai (i=1,..., m) determine the loca-

tion of each of the s global samples in Ai. This operation is done for each Ai

locally on one SM, using the SM’s shared memory, and will create for each Ai

a partitioning into s buckets Ai1,..., Ais of size ai1,..., ais.

(7) Prefix Sum: Through a parallel prefix sum operation on a11,..., am1, a12,...,

am2, ..., a1s,..., ams calculate for each bucket Aij(1 ≤ i ≤ m, 1 ≤ j ≤ s,) its

starting location lij in the final sorted sequence.

(8) Data Relocation: Move all sm buckets Aij(1≤ i ≤ m, 1≤ j ≤ s) to location

lij . The newly created array consists of s sublists B1, ..., Bs where Bj = A1j ∪

A2j ∪ ... ∪Amj for 1≤ j ≤ s.

(9) Sublist Sort : Sort all sublists Bj , 1≤ j ≤ s, using all SMs.

Algorithm 1: GPU Bucket Sort (Deterministic Sample Sort For GPUs)

selected sample and the bottom level sorts of the individual buckets, we experi-

mented with several existing GPU sorting methods such as bitonic sort, adaptive

bitonic sort [9] based on [4], and parallel quick sort.

The following discussion of our implementation of GPU Bucket Sort will

focus on GPU performance issues related to shared memory usage, coalesced global

memory accesses, and avoidance of conditional branching. Consider an input array

A with n data items in global memory and a typical local shared memory size of
n
m data items.

In Steps 1 and 2 of Algorithm 1, we split the array A into m sublists of n
m

data items each and then locally sort each of those m sublists. More precisely, we

create m thread blocks of 512 threads each, where each thread block sorts one

sublist using one SM. Each thread block first loads a sublist into the SM’s local

shared memory using a coalesced parallel read from global memory. Note that,

each of the 512 threads is responsible for n
m/512 data items. The thread block

then sorts a sublist of n
m data items in the SM’s local shared memory. We tested

different implementations for the local shared memory sort within an SM, including

1250008-5

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

F. Dehne & H. Zaboli

quicksort, bitonic sort, and adaptive bitonic sort [4]. In our experiments, bitonic

sort was consistently the fastest method, despite the fact that it requires O(n log2 n)

work. The reason is that, for Step 2 of Algorithm 1, we always sort a small fixed

number of data items, independent of n (about 2K for the GTX 2XX/Tesla series

and 6K for the Fermi). For such a small number of items, the simplicity of bitonic

sort, it’s small constants in the running time, and it’s perfect match for SIMD style

parallelism outweigh the disadvantage of additional work.

In Step 3 of Algorithm 1, we select s equidistant samples from each sorted

sublist. (The implementation of Step 3 is built directly into the final phase of

Step 2 when the sorted sublists are written back into global memory.) Note that,

the sample size s is a free parameter that needs to be tuned. With increasing s, the

sizes of buckets created in Step 8 decrease and the time for sorting those buckets

(Step 9) decreases as well. However, the time for managing the buckets (Steps 3-7)

grows with increasing s. This trade-off will be studied in Section 5 where we show

that s = 64 provides the best performance. In Step 4, we sort all sm selected

samples in global memory, using all available SMs in parallel. Here, we compared

GPU bitonic sort [7], adaptive bitonic sort [9] based on [4], andGPU Sample Sort

[11]. Our experiments indicate that for up to 16 M data items, simple bitonic sort is

still faster than even GPU Sample Sort [11] due to its simplicity, small constants,

and complete avoidance of conditional branching. Hence, Step 4 was implemented

via bitonic sort. In Step 5, we again select s equidistant global samples from the

sorted list of sm samples. Here, each thread block/SM loads the s global samples

into its local shared memory where they will remain for the next step.

In Step 6, we determine for each sorted sublist Ai (i=1, ..., m) of n
m data items

the location of each of the s global samples in Ai. For each Ai, this operation is

done locally by one thread block on one SM, using the SM’s shared memory, and

will create for each Ai a partitioning into s buckets Ai1,..., Ais of size ai1,..., ais.

Here, we apply a parallel binary search algorithm to locate the global samples in

Ai. More precisely, we first take the s
2
-th global sample element and use one thread

to perform a binary search in Ai, resulting in a location ls/2 in Ai. Then we use two

threads to perform two binary searches in parallel, one for the s
4
-th global sample

element in the part of Ai to the left of location ls/2, and one for the 3s
4
-th global

sample element in the part of Ai to the right of location ls/2. This process is iterated

log s times until all s global samples are located in Ai. With this, each Ai is split

into s buckets Ai1,..., Ais of size ai1,..., ais. Note that, we do not simply perform

all s binary searches fully in parallel in order to avoid memory contention within

the local shared memory [1].

Step 7 uses a prefix sum calculation to obtain for all buckets their starting

location in the final sorted sequence. The operation is illustrated in Figure 1 and

can be implemented with coalesced memory accesses in global memory. Each row

in Figure 1 shows the ai1,..., ais calculated for each sublist. The prefix sum is

implemented via a parallel column sum (using all SMs), followed by a prefix sum

1250008-6

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

Deterministic Sample Sort for GPUs

Fig. 1. Illustration Of Step 7 In Algorithm 1

on the columns sums (on one SM in local shared memory), and a final update of

the partial sums in each column (using all SMs).

In Step 8, the sm buckets are moved to their correct location in the final sorted

sequence. This operation is perfectly suited for a GPU and requires one parallel

coalesced data read followed by one parallel coalesced data write operation. The

newly created array consists of s sublists B1, ..., Bs where each Bj = A1j ∪ A2j ∪

... ∪ Amj has at most 2n
s data items [15]. In Step 9, we sort each Bj using the

same bitonic sort implementation as in Step 4. We observed that for our choice ofs

(see Section 5 below), each Bj contains at most 4M data items. For such small

data sets, simple bitonic sort is again the fastest sorting algorithm for each Bj due

to bitonic sort’s simplicity, small constants, and complete avoidance of conditional

branching.

5. Experimental Results and Discussion

For our experimental evaluation, we executed Algorithm 1 on five different GPUs

(nVIDIA Tesla, GTX 285/2GB, GTX 285/1GB, GTX 260, and Fermi GTX 480)

for various data sets of different sizes, and compared our results with those reported

in [13] and [11] which are the current best GPU sorting methods and outperform

previous methods such as e.g. [16]. Unfortunately, we were unable to compare our

work with [14] because the authors did not supply us with their code and their

published performance data is for a different GPU (GTX 280) that we did not

have available, uses 32-BIT keys (instead of 64-BIT keys used in [13], [11] and our

paper), and reported their performance only on small data sets up to 64 million

data items.

Figure 2 shows some important performance characteristics of the five different

GPUs. Figure 4 shows a comparison of the runtimes of our GPU Bucket Sort

implementation on the Tesla C1060, GTX 260, GTX 285 (with 2 GB memory)

and Fermi GTX 480 for varying number of data items. Each data point shows the

average of 100 experiments. The observed variance was less than 1 ms for all data

1250008-7

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

F. Dehne & H. Zaboli

Fig. 2. Performance Characteristics For nVIDIA Tesla C1060, GTX 285 with 2 GB memory,
GTX 285 with 1 GB memory, GTX 260 and Fermi GTX 480. (Source: [2])

 370

 380

 390

 400

 410

 420

 430

 440

 450

 16 32 64 128

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 G

T
X

 2
85

Sample Size (s) Selected In Algorithm 1

Deterministic Sample Sort (n=32M)

 800

 820

 840

 860

 880

 900

 16 32 64 128

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 G

T
X

 2
85

Sample Size (s) Selected In Algorithm 1

Deterministic Sample Sort (n=64M)

 1650

 1700

 1750

 1800

 1850

 1900

 16 32 64 128

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 G

T
X

 2
85

Sample Size (s) Selected In Algorithm 1

Deterministic Sample Sort (n=128M)

Fig. 3. Runtime Of Algorithm 1 As A Function Of Selected Sample Size s For Fixed n = 32M ,
n = 64M , and n = 128M .

points since GPU Bucket Sort is deterministic and any fluctuation observed was

due to noise on the GPU (e.g. operating system related traffic). All three curves

show a growth rate very close to linear which is encouraging for a problem that

requires O(n log n) work. Not surprisingly, GPU Bucket Sort performs best on

the Fermi. Interestingly, it performs better on the GTX 285 than both Tesla and

GTX 260, and it even performs better on the GTX 260 than on the Tesla C1060.

Note that the memory bandwidth for the GTX 260 is higher than for the Tesla

C1060. This indicates thatGPU Bucket Sort is memory bandwidth bound which

is expected for sorting methods since the sorting problem requires only very little

1250008-8

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

Deterministic Sample Sort for GPUs

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 8 16 32 64 128

R
un

tim
e

(m
s)

Number of Data Items (Million)

nVIDIA Tesla C1060
nVIDIA GTX 260
nVIDIA GTX 285

nVIDIA Fermi GTX 480

Fig. 4. Performance Of Deterministic Sample Sort For GPUs (GPU Bucket Sort). Total run-
time for varying number of data items on different GPUs: nVIDIA Tesla C1060, GTX 260 and
GTX 285.

computation but a large amount of data movement. For individual steps of GPU

Bucket Sort, the order can sometimes be reversed. For example, we observed

that Step 2 of Algorithm 1 (local sort) runs faster on the Tesla C1060 than on

the GTX 260 since this step is executed locally on each SM. Because this step is

compute-bound, its performance is largely determined by the number of SMs and

the performance of the SM’s cores. Step 3 is compute-bound because it is taking

samples locally and sorting them. Step 4 needs to sort data in global memory and

is therefore memory bandwidth bound. Steps 5, 6, and 7 are all compute-bound

steps because they do not need significant data movements to/from global memory.

Steps 8 and 9 are memory bandwidth bound because these steps include high loads

of data movement and sorting in global memory. In summary, the entire algorithm

is memory bandwidth bound because the steps that are taking most of the time

are memory bandwidth bound while compute bound steps contribute only a small

fraction of the total time.

Note that the GTX 285 and Fermi GTX 480 remained the fastest machines, even

for all individual steps. We note that GPU Bucket Sort can sort up to n = 64M

data items within the 896 MB memory available on the GTX 260 (see Figure 4).

On the GTX 285 with 2 GB memory and Tesla C1060 our GPU Bucket Sort

implementation can sort up to n = 256M and n = 512M data items, respectively

(see Figures 6&7). On the Fermi GTX 480 with 1.5GB memory it is able to sort

up to n = 128M data items.

Figure 5 shows in detail the time required for the individual steps of Algorithm 1

when executed on a GTX 285 and Fermi GTX 480. We observe that sublist sort

(Step 9) and local sort (Step 2) represent the largest portion of the total runtime of

GPU Bucket Sort. This is very encouraging in that the “overhead” involved to

manage the deterministic sampling and generate buckets of guaranteed size (Steps

3-7) is small. We also observe that the data relocation operation (Step 8) is very

efficient and a good example of the GPU’s great performance for data parallel access

1250008-9

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

F. Dehne & H. Zaboli

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 8 16 32 64 128

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 G

T
X

 2
85

Number of Data Items (Million)

Total Time
Sublist Sort

Local Sort
Data Relocation

Global Sampling & Sample Indexing
Sorting All Samples

Prefix Sums
Local Sampling

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 8 16 32 64 128

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 F

er
m

i G
T

X
 4

80

Number of Data Items (Million)

Total Time
Sublist Sort

Local Sort
Data Relocation

Global Sampling & Sample Indexing
Sorting All Samples

Prefix Sums
Local Sampling

(b)

Fig. 5. Performance Of Deterministic Sample Sort For GPUs (GPU Bucket Sort). Total run-
time and runtime for individual steps of Algorithm 1 for varying number of data items. (a) For
nVIDIA GTX 285 and and (b) for nVIDIA Fermi GTX 480.

when memory accesses can be coalesced (see Section 2). Note that, the sample size

s in Algorithm 1 is a free parameter that needs to be tuned. With increasing s, the

sizes of sublists Bj created in Step 8 of Algorithm 1 decrease and the time for Step

9 decreases as well. However, the time for Steps 3-7 grows with increasing s. This

trade-off is illustrated in Figure 3 which shows the total runtime for Algorithm 1

as a function of s for fixed n = 32M, 64M, 128M . As shown in Figure 3, the total

runtime is smallest for s = 64, which is the parameter value chosen for our GPU

Bucket Sort code.

Figures 6 and 7 show a comparison between GPU Bucket Sort and the cur-

rent best GPU sorting methods, randomized GPU Sample Sort [11] and Thrust

Merge [13]. Figure 6 shows the runtimes for all three methods on a GTX 285 and

Figure 7 shows the runtimes of all three methods on a Tesla C1060. Note that,

[13] and [11] did not report runtimes for the GTX 260 and Fermi GTX 480. For

GPU Bucket Sort, all runtimes are the averages of 100 experiments, with less

1250008-10

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

Deterministic Sample Sort for GPUs

 0

 200

 400

 600

 800

 1000

 1 4 8 16 32 64

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 G

T
X

 2
85

Number of Data Items (Million)

Thrust Merge Sort
Randomized Sample Sort, uniform data distr.

Deterministic Sample Sort

(a) Number of Data Items Up To 64,000,000.

 0

 1000

 2000

 3000

 4000

 5000

 8 32 64 128 256

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 G

T
X

 2
85

Number of Data Items (Million)

Thrust Merge Sort
Randomized Sample Sort, uniform data distr.

Deterministic Sample Sort

(b) Number of Data Items Up To 256,000,000.

Fig. 6. Comparison between Deterministic Sample Sort (GPU Bucket Sort), Randomized Sam-
ple Sort (GPU Sample Sort) [11] and Thrust Merge [13]. Total runtime for varying number of
data items on an nVIDIA GTX 285. ([13] and [11] provided data only for up to 16M and 32M
data items, respectively.)

than 1 ms observed variance. For randomized GPU Sample Sort and Thrust

Merge, the runtimes shown are the ones reported in [11] and [13]. For Thrust

Merge, performance data is only available for up to n = 16M data items. For

larger values of n, the current Thrust Merge code shows memory errors [6]. As

reported in [11], the current randomized GPU Sample Sort code can sort up to

32M data items on a GTX 285 with 1 GB memory and up to 128M data items

on a Tesla C1060. Our GPU Bucket Sort implementation appears to be more

memory efficient. GPU Bucket Sort can sort up to n = 256M data items on a

GTX 285 with 2GB memory and up to n = 512M data items on a Tesla C1060.

Therefore, Figures 6a and 7a show the performance comparison with higher resolu-

tion for up to n = 64M and n = 128M , respectively, while Figures 6b and 7b show

the performance comparison for the entire range up to n = 256M and n = 512M ,

respectively.

1250008-11

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

F. Dehne & H. Zaboli

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 4 8 16 32 64 128

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 T

es
la

 C
10

60

Number of Data Items (Million)

Thrust Merge Sort
Randomized Sample Sort, uniform data distr.

Deterministic Sample Sort

(a) Number of Data Items Up To 128,000,000.

 0

 2000

 4000

 6000

 8000

 10000

 8 32 64 128 256 512

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 T

es
la

 C
10

60

Number of Data Items (Million)

Thrust Merge Sort
Randomized Sample Sort, uniform data distr.

Deterministic Sample Sort

(b) Number of Data Items Up To 512,000,000.

Fig. 7. Comparison between Deterministic Sample Sort (GPU Bucket Sort), Randomized Sam-
ple Sort (GPU Sample Sort) [11] and Thrust Merge [13]. Total runtime for varying number of
data items on an nVIDIA Tesla C1060.([13] and [11] provided data only for up to 16M and 128M
data items, respectively.)

We observe in Figures 6a and 7a that, as reported in [11], randomized GPU

Sample Sort [11] significantly outperforms Thrust Merge [13]. Most impor-

tantly, we observe that randomized sample sort (GPU Sample Sort) [11] and de-

terministic sample sort (GPU Bucket Sort) show nearly identical performance

on both, the GTX 285 and Tesla C1060. Note that, the experiments in [11] used

a GTX 285 with 1 GB memory whereas we used a GTX 285 with 2 GB memory.

As shown in Figure 2, the GTX 285 with 1 GB has a slightly better memory clock

rate and memory bandwidth than the GTX 285 with 2 GB which implies that the

performance of deterministic sample sort (GPU Bucket Sort) on a GTX 285

is actually a few percent better than the performance of randomized sample sort

(GPU Sample Sort).

The data sets used for the performance comparison in Figures 6 and 7 were

uniformly distributed, random data items. The data distribution does not impact

1250008-12

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

Deterministic Sample Sort for GPUs

 0

 1000

 2000

 3000

 4000

 5000

 32 64 128 256

R
un

tim
e

(m
s)

 o
n

nV
ID

IA
 G

T
X

 2
85

Number of Data Items (Million)

Gaussian
Zip

Uniform

Fig. 8. Performance of Deterministic Sample Sort (GPU Bucket Sort) for Different Input Data
Distributions.

the performance of deterministic sample sort (GPU Bucket Sort) but has an

impact on the performance of randomized sample sort (GPU Sample Sort). In

fact, the uniform data distribution used for Figures 6 and 7 is a best case scenario for

randomized sample sort where all bucket sizes are nearly identical. Figure 8 shows

that our deterministic sample sort (GPU Bucket Sort) is stable under different

types of data distribution. We tested three types of data distribution: Uniform,

Gaussian, and Zipf. As seen in the figure, different input data distributions have

little influence on the time performance of our algorithm.

Figures 6b and 7b show the performance of GPU Bucket Sort for up to

n = 256M and n = 512M , respectively. For both architectures, GTX 285 and

Tesla C1060, we observe a very close to linear growth rate in the runtime of GPU

Bucket Sort for the entire range of data sizes. This is very encouraging for

a problem that requires O(n log n) work. In comparison with randomized GPU

Sample Sort, the linear curves in Figures 6b and 7b show that our GPU Bucket

Sort implementation maintains a fixed sorting rate (number of sorted data items

per time unit) for the entire range of data sizes, whereas it is shown in [11] that

the sorting rate for randomized GPU Sample Sort fluctuates and often starts to

decrease for larger values of n.

6. Conclusions

In this paper, we presented a deterministic sample sort algorithm for GPUs, called

GPU Bucket Sort. Our experimental evaluation indicates that GPU Bucket

Sort is considerably faster than Thrust Merge [13], the best comparison-based

sorting algorithm for GPUs, and it is exactly as fast as randomized sample sort

for GPUs (GPU Sample Sort)[11] when the input data sets used are uniformly

distributed, which is a best case scenario for randomized sample sort. However, as

observed in [11], the performance of randomized GPU Sample Sort fluctuates

with the input data distribution whereas GPU Bucket Sort does not show such

1250008-13

July 3, 2012 11:55 WSPC/INSTRUCTION FILE S0129626412500089

F. Dehne & H. Zaboli

fluctuations. GPU Bucket Sort showed a fixed sorting rate (number of sorted

data items per time unit) for the entire range of data sizes tested (up to n = 512M

data items), whereas it is shown in [11] that the sorting rate for randomized GPU

Sample Sort fluctuates and often starts to decrease for larger values of n. In

addition, our GPU Bucket Sort implementation appears to be more memory

efficient because GPU Bucket Sort is able to sort considerably larger data sets

within the same memory limits of the GPUs.

References

[1] NVIDIA CUDA Programming Guide. nVIDIA Corporation, www.nvidia.com.
[2] NVIDIA GPU Technical Specifications. nVIDIA Corporation, www.nvidia.com.
[3] The OpenCL Specification 1.0. Khronos OpenCL Working Group, 2009.
[4] G. Bilardi and A. Nicolau. Adaptive bitonic sorting. An optimal parallel algorithm

for shared-memory machines. SIAM J Comput, 18(2):216–228, 1989.
[5] D. Cederman and P. Tsigas. A practical quicksort algorithm for graphics processors.

In Proc. European Symposium on Algorithms (ESA), volume 5193 of LNCS, pages
246–258, 2008.

[6] M. Garland. Private communication. nVIDIA Corporation, 2010.
[7] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: high perfor-

mance graphics co-processor sorting for large database management. In Proc. Inter-
national Conference on Management of Data (SIGMOD), pages 325 – 336, 2006.

[8] GPGPU.ORG. General-purpose computation on graphics hardware.
[9] A. Greb and G. Zachmann. GPU-ABiSort: Optimal parallel sorting on stream ar-

chitectures. In Proc. Int’l Parallel and Distributed Processing Symposium (IPDPS),
2006.

[10] H.Peters, O.Schulz-Hildebrandt, and N.Luttenberger. Fast in-place, comparison-
based sorting with cuda: a study with bitonic sort. J.Concurrency and Computation:
Practice and Experience, 23:681–693, 2011.

[11] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. In Proc. Int’l Parallel
and Distributed Processing Symposium (IPDPS), pages 1–10, 2010.

[12] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro, 28(2):39–55, 2008.

[13] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for many-
core GPUs. In Proc. Int’l Parallel and Distributed Processing Symposium (IPDPS),
2009.

[14] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.
Lee, Daehyun Kim, and Pradeep Dubey. Fast sort on cpus and gpus: a case for
bandwidth oblivious simd sort. In Proc. International Conference on Management of
Data (SIGMOD), 2010.

[15] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. J. Par. and Dist. Comp.,
14:362–372, 1992.

[16] E. Sintorn and U. Assarsson. Fast parallel GPU-sorting using a hybrid algorithm.
J. of Parallel and Distributed Computing, 68(10):1381–1388, 2008.

1250008-14

