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ABSTRACT

On-line Analytical Processing (OLAP) has become one of the most powerful and promi-
nent technologies for knowledge discovery in VLDB (Very Large Database) environ-
ments. Central to the OLAP paradigm is the data cube, a multi dimensional hierarchy
of aggregate values that provides a rich analytical model for decision support. Various
sequential algorithms for the efficient generation of the data cube have appeared in the
literature. However, given the size of contemporary data warehousing repositories, multi-
processor solutions are crucial for the massive computational demands of current and
future OLAP systems.

In this paper we discuss the development of MCMD-CUBE, a new parallel data
cube construction method for multi-core processors with multiple disks. We present
experimental results for a Sandy Bridge multi-core processor with four parallel disks.
Our experiments indicate that MCMD-CUBE achieves very close to linear speedup.
A critical part of our MCMD-CUBE method is parallel sorting. We developed a new
parallel sorting method termed MCMD-SORT for multi-core processors with multiple
disks which outperforms other previous methods.

Keywords: OLAP; parallel data cube; multi-core; multi-disk; external sorting.

∗Research partially supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and the IBM Center for Advanced Studies Canada.

1350002-1

http://dx.doi.org/10.1142/S0129626413500023


March 19, 2013 16:3 WSPC/INSTRUCTION FILE S0129626413500023

F. Dehne & H. Zaboli

1. Introduction

1.1. Background (Review)

While database and data management systems have always played a vital role in

the growth and success of corporate organizations, changes to the economy over

the past decade have even further increased their significance. To keep pace, IT

departments began to exploit rich new tools and paradigms for processing the

wealth of data and information generated on their behalf. Along with relational

databases, the venerable cornerstone of corporate data management, knowledge

workers and business strategists now look to advanced analytical tools in the hope

of obtaining a competitive edge. This class of applications comprises what are known

as Decision Support Systems (DSS). They are designed to empower the user with

the ability to make effective decisions regarding both the current and future state

of an organization. To do so, the DSS must not only encapsulate static information,

but it must also allow for the extraction of patterns and trends that would not be

immediately obvious. Users must be able to visualize the relationships between such

things as customers, vendors, products, inventory, geography, and sales. Moreover,

they must understand these relationships in a chronological context, since it is the

time element that ultimately gives meaning to the observations that are formed. One

of the most powerful and prominent technologies for knowledge discovery in DSS

environments is On-line Analytical Processing (OLAP). OLAP is the foundation

for a wide range of essential business applications, including sales and marketing

analysis, planning, budgeting, and performance measurement [8, 14]. The processing

logic associated with this form of analysis is encapsulated in what is known as

the OLAP server. By exploiting multi-dimensional views of the underlying data

warehouse, the OLAP server allows users to “drill down” or “roll up” on hierarchies,

“slice and dice” particular attributes, or perform various statistical operations such

as ranking and forecasting. Figure 1 illustrates the basic model where the OLAP

server represents the interface between the data warehouse proper and the reporting

and display applications available to end users.

To support this functionality, OLAP relies heavily upon a data model known

as the data cube [7, 10]. Conceptually, the data cube allows users to view organi-

zational data from different perspectives and at a variety of summarization levels.

It consists of the base cuboid, the finest granularity view containing the full com-

plement of d dimensions (or attributes), surrounded by a collection of 2d − 1 sub-

cubes/cuboids that represent the aggregation of the base cuboid along one or more

dimensions. Figure 2 illustrates a small four-dimensional data cube that might be

associated with the automotive industry. In addition to the base cuboid, one can see

a number of various planes and points that represent aggregation at coarser granu-

larity. Note that each cell in the cube structure corresponds to one or more measure

attributes (e.g. Total Sales). Typically, the collection of cuboids is represented as

a lattice [10] of height d + 1. Starting with the base cuboid — containing the full

complement of dimensions — the lattice branches out by connecting every parent
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Fig. 1. Three-tiered OLAP model.
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Fig. 2. A three dimensional data cube for automobile sales data.

node with the set of child nodes/views that can be derived from its dimension list.

In general, a parent containing k dimensions can be connected to k views at the

next level in the lattice. In principle, no special operators or SQL extensions are

required to take a raw data set, composed of detailed transaction-level records, and

turn it into a data structure, or group of structures, capable of supporting subject

oriented analysis. Rather, the SQL group-by and union operators can be used in

conjunction with 2d sorts of the raw data set to produce all cuboids. However, such

an approach would be both tedious to program and immensely inefficient, given

the obvious inter-relationships between the various views. Consequently, in 1995,

1350002-3



March 19, 2013 16:3 WSPC/INSTRUCTION FILE S0129626413500023

F. Dehne & H. Zaboli

the data cube operator (an SQL syntactical extension) was proposed by Gray et al.

[9] as a means of simplifying the process of data cube construction. Subsequent to

the publication of the seminal data cube paper, a number of independent research

projects began to focus on designing efficient algorithms for the computation of the

data cube [4, 5, 10, 11, 12, 15, 16, 17, 19, 21, 22, 23, 24]. The algorithms can be

divided into two major classes: top-down and bottom-up approaches. In the for-

mer case, we first compute the parent cuboids and then utilize these aggregated

views to efficiently compute children. Various techniques have been employed for

this purpose, including those based on sorting, hashing, and the manipulation of

in-memory arrays [4, 17, 24]. In all cases, the goal is to generate coarse granularity

tables from views that have previously been aggregated at a finer level of granu-

larity. In contrast, bottom-up computation seeks to first partition the data set on

single attributes [5, 15]. Within each partition, we recursively aggregate at finer

levels of granularity until we reach the point where no more aggregation is possi-

ble/necessary. Bottom-up algorithms tend to favor views with a larger number of

dimensions.

1.2. Problem Statement

In practice, materialized data cubes can be massive. Therefore, building data cubes

is often a very compute and data intensive operation. With ever increasing corpo-

rate databases, this poses a considerable challenge. It is unlikely that single pro-

cessor platforms can handle the massive size of future decision support systems.

To support very large data cubes, parallel processing can provide two key ingre-

dients: increased computational power through multiple processors and increased

I/O bandwidth through parallel storage. Furthermore, multi-core processors have

gained wide acceptance and are now present in nearly all computer systems. This

raises an interesting new problem: how to develop parallel data cube construction

methods that make efficient use of the computational power of multi-core processors

and parallel I/O. The aim of our paper is to address this problem.

1.3. Results

In the remainder of this paper, we discuss the development of MCMD-CUBE, a new

parallel data cube construction method for multi-core processors with parallel disks.

We present experimental results for a ”Sandy Bridge” multi-core processor with four

parallel disks. Our experiments indicate that MCMD-CUBE achieves 50% of the

theoretically optimal linear speedup. Our parallel data cube construction method is

based on the classical Pipesort [4] which decomposes the lattice into a set of chains

called pipes, and computes the views in each chain through an external memory

sort. Therefore, the performance of our MCMD-CUBE method depends critically

on parallel external memory sorting. At the core of our MCMD-CUBE method

is a new parallel sorting method termed MCMD-SORT for multi-core processors

with parallel disks which significantly outperforms previous methods. We first build
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the lattice of data cube and partition the lattice into pipes. Each pipe is a chain

of cuboids from top of the data cube toward its bottom. Cuboids in each pipe

share one or more dimensions of the data cube so that after computing a cuboid

at depth l of the lattice, it is more efficient and easier to build the next cuboid

at depth l + 1 directly from its parent cuboid in depth l. The choice of child(ren)

cuboids in each level is a matching problem and can be transformed to the weighted

bipartite matching problem[4]. Once all cuboids are assigned to their appropriate

pipe in the lattice, it is sufficient to apply our MCMD-SORT algorithm only once

to each pipe and build the pipe from top to bottom. The remainder of this paper

is organized as follows. In the following section, we outline our new parallel sorting

method MCMD-SORT for multi-core processors with parallel disks. Our sorting

method also includes a new multi-core merging method. In Section 3, we present

our parallel data cube construction method MCMD-CUBE for multi-core processors

with multiple parallel disks. Section 4 presents discussions and experimental results

for MCMD-CUBE and MCMD-SORT, and Section 5 concludes our paper.

2. Parallel External Sorting on Multi-Core Processors with

Parallel Disks

As discussed earlier, the performance of our MCMD-CUBE data cube computation

method depends crucially on parallel external memory sorting. In this section we

present an outline of our MCMD-SORT algorithm for multi-core processors with

multiple parallel disks. Consider a multi-core processor platform with p cores, a

local shared memory of size M and a storage of d disks which can be accessed in

parallel by the cores. We assume this platform for the remainder of this paper. We

also assume an input data set of size N data records distributed over the d disks.

2.1. Background

External sorting, also called out-of-core sorting, refers to sorting data items or

records residing on external storage. There are numerous fast sorting algorithms

presented in the literature, e.g. [3, 2, 6]. Although these sorting algorithms are

efficient when running on their specific platforms they may not be efficient when

sorting on new parallel platforms. Multi-core processors with shared memory and

parallel shared external storage (multiple disks) is a new platform for which only

few results have been developed. The best current external memory sorting code

available for multi-core processors is a combination of STXXL [6] and MCSTL [1].

STXXL [6] is a standard sorting library including external memory sorting. It was

originally designed for single processor platforms but then adapted to work for

clusters and later multi-core processors through combination with MCSTL [1], a

recent standard library for the new multi-core platforms. In this paper, we propose a

new external memory sorting method called MCMD-SORT developed especifically

for multi-core processors with parallel disks. We will show that our MCMD-SORT
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significantly outperforms STXXL/MCSTL on multi-core processors with parallel

disks.

2.2. MCMD-SORT Algorithm

For single processor platforms and clusters of single processor machines with dis-

tributed storage, multi-way merge has been a common method for sorting the data

residing on external storage. This method tries to minimize the number of reads

and writes to disks since the sorting problem is an I/O-bound problem and needs

little computation compared to the slow rate of data transfer from/to disks. In this

method, the total data of size N items is partitioned into blocks each of size M that

can fit in internal memory. Each of these blocks is loaded from disk into memory

and then an internal sorting algorithm sorts each loaded block and writes it back to

the disk. After sorting all blocks, a multi-way merge procedure is called and reads

data simultaneously from all blocks on disk and merges them into an output buffer.

Once the buffer is full, it is written back to disk as the first block including the

smallest data records over all N data items. The merge continues until all blocks

are completely read and merged. However the merging algorithm will become slow

when the total data size (N) and consequently total number of blocks is large rel-

ative to memory size (M). In this case, the method tries to perform a recursive

division of N into smaller lists and separately apply the same merging method to

blocks of each list. The division continues until the number of lists becomes small

enough to be merged using the basic merging procedure. If N becomes large relative

to M , specially larger than a few hundred gigabytes or terabytes, the number of

division-merge steps grows with a rate of O(logN/MN). This in turn, increases the

number of reads and writes to grow logarithmically in N . For very large databases,

this can become slow and inefficient.

In contrast, our MCMD-SORT presented in this paper uses a scheme similar

to deterministic sample sort for clusters [20]. Deterministic sample sort tries to

minimize the number of reads/writes to disk(s)and can sort with constant number

of reads and writes to disk(s). This is critical for multi-core processors with parallel

disks where compute power is abundant and I/O can easily become the bottleneck.

In the remainder of this section we present our MCMD-SORT method. We first

present our method for a single disk platform and then extend it to parallel multi-

disk platforms.

Given an input data set of size N data records, a shared memory of size M , and

p cores, we consider various cases of data size N compared to M . If N is smaller

than M3/2, N is small enough to be partitioned into N1/3(or less) sublists each of

size M or smaller. Otherwise, N data records will be divided into sublists each of

size M3/2. If the number of sublists of size M3/2is larger than N1/3, then a recursive

division on N will be performed until we have nested lists and sublists each of size

M3/2 and M , respectively, with a total number of N1/3(or less) sublists in each list

and N1/3(or less) lists over all N data records. Figure 3 illustrates the division step.
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Fig. 3. Input data division into smaller blocks of data.

After the division step, the data is partitioned into sublists of size M and pos-

sibly one list of size N ′ or smaller. N ′ will be equal to N in case N ≤ M3/2where

only one round of division is needed. According to our calculations, the ratio of the

power of 3

2
is so large that even very large input data sizes (several terabytes) can

be sorted with only one round of input data division, which is one advantage of our

sorting method over other sorting merthods based on multi-way merge.

An important feature of our method is that even for extremely large data sets,

the division step will never need to recurse at all. For example, with an internal

memory M of size 2 giga bytes, which is small compared to todays memory sizes,

and one round of data division without recursion, MCMD-SORT can sort up to 32

tera bytes of 8-byte data records. With M = 8 giga bytes, as available on our test

platform, MCMD-SORT can sort up to 256 tera bytes of 8-byte data records with

only one round of division (without any recursion). This is very important because

one round of division implies a very small, fixed, number of external data accesses.

When the division step is complete, we have blocks of data each of size M .

Each block is read from disk and loaded into internal memory. In this step, the

loaded blocks are sorted and written back to disk. Therefore we need to apply

an internal memory multi-core sorting method to sort each block. Recently, many

sorting methods have been proposed for multi-core processors. STL sort available

in the STL library, libmt sort [13],[9], [18] are state-of-the-art sorting methods. We

tested these sorting methods on in memory data to choose the fastest of them.

We observed for our multi-core platform that the latest STL sort implementation

with full multi-core support outperforms the other recent sorting implementations

for multi-core. Hence we chose STL sort as part of our MCMD-SORT for sorting

blocks of size M . Note that in case of any new faster internal memory sorting

method, STL sort can be easily replaced by that method which in turn makes

MCMD-SORT sort faster as well.

After each block is sorted using STL sort on p cores, before it is written back

to disk, M1/2 samples with equal distance from each other will be taken from M

items of the block and stored in memory. Then the next block of size M is loaded

into memory until all blocks on disk have been sorted.

In the next step, the set of samples stored in memory will be merged. Because

the samples from each block are in the ascending order, they together build N1/3

small sorted buckets. We need to make one sorted list of samples out of them. This

can be done using a merging algorithm rather than a complete sorting algorithm.
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This is the first instance where we apply our new multi-core merging algorithm to

be presented in the next section.

After merging all samples, we will have a sorted list of size N1/3×N1/3 equal to

N2/3 which is equal to M . M samples can be merged in memory without accessing

external memory. After merging all samples we choose a subset of samples called

global samples (GS). More precisely, we choose N1/3 equidistant global samples out

of the N2/3 sorted samples and store them in memory. We observe that the number

of global samples is so small that they can remain in memory.

In the next step, we take each global sample GSi, and compute bucket Bi as

follows. We read from each sorted sublist in external memory into main memory the

data records that are smaller than GSi (and larger than the the previous GSi−1 for

later rounds). As shown in [20], the total size of data records in Bi will not exceed

2 × N1/3 ×
N2/3

N1/3 . Therefore, if we choose M to be half of the available internal

memory size, then the total loaded data will not exceed available memory.

After loading data for Bi, we can merge them instead of using a complete sorting

method because it consists of N1/3sorted sublists. Therefore, we again apply our

multi-core merging algorithm presented in the next section. Finally, each Bi is

written back to disk. Note that all elements in Bi are larger than all elements in

Bi−1. Hence, after completing the process for all Bi, all N data records are sorted

in external storage.

2.3. MCMD-Merge Algorithm

Note that all merging steps of MCMD-SORT are executed on data loaded into

internal memory. This is an advantage of our MCMD-SORT because it generates

sorted sublists that can fully fit into the internal memory of size O(M). We now

outline an internal memory multi-core merging algorithm.

Given a total set of M data items in B sorted sublists, and p processor cores,

we assign B
p sublists to each core. Each core merges its B

p sublists using a binary

merging process. Note that all cores start merging processes at the same time and

they work in parallel on independent data. After this step we will have p sorted

sublists. Now we need to merge the p sorted sublists using p cores. Here again we

need to divide each of the p sublists into p smaller buckets and then distribute them

between the p cores. We need to assign equal work loads to the p cores, i.e. the total

number of items assigned to each core should not exceed a maximum threshold.

This can be achieved by applying again a deterministic sampling method. Note

that randomized sampling is also applicable which will result in a slight reduction

of work complexity. However, there would not be any guarantee on the total size

of buckets assigned to each core. Therefore, we choose to apply a deterministic

sampling method as follows.

We start by assigning one sublist to each core. Next, each core takes p equidistant

sample items from its sublist. After that, the p2 selected samples are sorted using

any multi-core sorting method. Note that, the total of p2 is so small that does not
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require applying any merging methods. In the next step, core pi takes the (ip)th

sample item out of the p2 sorted samples and finds its location in each of p sublists

using a parallel binary search algorithm. Next, core pi takes for each sublist 1 ...p

all items smaller than the (ip)th sample and larger than the (i − 1)pth sample.

Therefore, each core pi obtains p buckets containing all data items smaller than

the (ip)th sample and larger than ((i− 1)p)th sample. Note that data items in each

bucket are already sorted. In the last step, core pi merges its p buckets by applying

a binary merge method. After all cores completed their merging processes, all of M

items are sorted.

3. Parallel Data Cube Computation on a Multi-Core Multi-Disk

Platform

Since the appearance of data cube operator in [7], there have been many methods

proposed for computation of data cubes. However, computation of data cubes on

multi-core platform is still in its infancy. One might consider that a simple task

since, after all, a data cube with d dimensions is composed of 2d cuboids which all

need to be created. At first sight, there seems to be more than enough parallelism.

However, efficient data cube construction methods do not build the 2d cuboids in-

dependently but use relationships between cuboids to improve efficiency. Examples

include the top-down and bottom-up methods discussed in Section 1.1. Any parallel

data cube construction method needs to utilize these relationships between cuboids

or risk adding additional work. That makes parallelism at the cuboid level compli-

cated. Another problem for parallelism at the cuboid level is that different cuboids

can have very different sizes. Therefore, assigning different cuboid computations to

different processors can lead to serious load balancing problems.

In this paper, we choose to create parallelism at a finer level of granularity. We

utilize the classical Pipesort sequential method [4] and parallelize each of the pipes

generated by Pipesort. A critical part of generating each pipe as outlined in [4] is

external memory sorting. That is why our MCMD-SORT method presented earlier

will be a critical component of our solution. In the following section, we present our

MCMD-CUBE method.

3.1. MCMD-CUBE Computation

Our method is based on the classical Pipesort sequential top-down computa-

tion of data cubes [4]. Given a data cube with d dimensions of cardinalities

< D1, D2, D3, ..., Dd > there are 2d cuboids to be computed. These 2d cuboids

can be ordered to be computed based on the lattice of the data cube. An example

of this lattice for a data cube with 5 dimensions is shown in Figure 4. In this figure,

arrows show the order in which pipes are formes and cuboids computed. In the first

step, those cuboids that can be computed from other cuboids are specified. This will

form a parent-child relationship between each two levels i and i + 1 of the lattice.

Each parent can have many children and each child can be computed from different
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Fig. 4. Lattice of a 5-dimensional data cube.

parents. Therefore, for each child we need to specify from which parent cuboid it

should be computed. We need to find the parent that applies the minimum cost

of computation for the child node. This cost can be calculated according to the

estimated sizes of each cuboid which itself can be calculated using cardinalities of

the dimensions in a cuboid. The problem of matching parents and children for each

two levels i and i+ 1 can be reduced to a bipartite matching problem. Details are

presented in [4].

After assignment of each child to a parent, the lattice of the data cube can be

divided into pipes each containing a series of cuboids which can be computed from

each other. More precisely, we start building each pipe by computing the first parent

cuboid which is the largest cuboid in the pipe and then computing child cuboids

using the parent. We continue computing the cuboids in the pipe in parent-child

order until all cuboids are computed. When we compute a cuboid, we apply our

MCMD-SORT method to compute the cuboid using all cores. This guarantees full

usage of all cores while load balancing the computation.

Given a five-dimensional fact table with dimensions A, B, C, D, E, the cor-

responding lattice shown in Figure 4 is partitioned into pipes. For example, in

Figure 4, one such pipe is ABCDE-ABCD-ABC-AB-A. The full set of pipes of the

lattice in Figure 4 is listed in Table 1. As shown in Table 1, we obtain 1 pipe of

length 5 containing 6 cuboids, 4 pipes of length 3 each containing 4 cuboids, and 5

pipes of length 1 each containing 2 cuboids each. Note that the cuboid “All“ does

not need to be computed.

For our parallel MCMD-CUBE method, the computation of pipe is parallelized

as follows. We apply MCMD-SORT to the first cuboid of the pipe. Then we par-

allel aggregate with respect to the dimensions not included in the first cuboid. We

note that aggregation can be parallelized by partitioning the sorted cuboid into

p segment, aggregating independently and in parallel on each segment, and then

aggregating in parallel across the p segment boundaries. Next, we extract all the
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Table 1. 10 pipes of the lattice of Figure 4.

Pipes

ABCDE-ABCD-ABC-AB-A
BCEA-BCE-BC-B
CDEA-CDE-CD-C
DEAB-DEA-DE-D
EBDC-EBD-EB-E

ADB-AD
BDC-BD
AEB-AE
CEA-CE
ACD-AC

remaining cuboids in the pipe by aggregating again in parallel with respect to the

other dimensions that are removed for those cuboids. Here, we follow again the

classical Pipesort methods [4] but replace each sequential aggregation by a paral-

lel aggregation as outlined above. The major benefit of this approach is that we

still utilize the relationships between cuboids that lead to work reduction while

obtaining maximum parallelism and work balance.

4. Experimental Results

We now present experimental results for our MCMD-SORT and MCMD-CUBE

methods. We tested our MCMD-CUBE method by building data cubes on both

synthetic databases and the standard TPC database benchmark. We also report

experimental results for our MCMD-SORT method and compare it with STXXL

sorting package and its parallel STXXL/MCSTL version called PMSTXXL which

currently is the fastest external memory sorting method for multi-core platform.

Our experimental setup includes a machine with a Sandy Bridge Intel processor

and 16 GB of internal memory shared between 8 cores. ( Note that, not all of the

16 GB can be used due to OS limits.) Our external storage consists of 4 parallel

disks that can be accessed independently by each core. All implementations were

performed in OpenMP and run on Linux kernel 2.6.38.

Our experiments are divided into two groups: sorting and data cube computa-

tion. In the first group of experiments, we tested our MCMD-SORTing method on

the above platform with a variety of parameters and configurations. We also ran

our MCMD-SORT against PMSTXXL and observed that MCMD-SORT achieved

better performance. In the second group of experiments, we compute data cubes

with two sets of data (synthetic and TPC benchmark), and observed close to linear

speedup with respect to the number of parallel disks and processor cores.

4.1. Experimental Results for MCMD-SORT

We tested our MCMD-SORT method with respect to the impact of total data size,

number of processor cores and disks, internal memory size, and record size. As a
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standard configuration, our data includes records of 8 bytes and we use all of 8

bytes as sort key. Where we test the impact of record size, we change our record

structure and use a 8-byte key followed by a data field of desired size. All sort keys

are generated randomly unless otherwise mentioned. Tests of our MCMD-SORT

and PMSTXXL sort are peformed on the same above mentioned machine.

The first set of tests are performed to observe the impact of growing total data

size. In this test, the only variable parameter is total size of the data to be sorted.

Data can resides on 1, 2, or 4 disks. Where there are more than one disk, we

evenly distribute the data between disks. Fixed parameters are record size equal to

8 bytes and memory size equal to 8 Giga bytes. This test includes three parts each

performed on a fixed number of disk(s) and processors core(s). The results of this

set of tests are shown in Figure 5(a-c).

In Figure 5(a-c), both the data size and time axis are logarithmic. Therefore,

the difference in performance between our MCMD-SORT and PMSTXXL are sub-

stantial. The runtime difference between the two methods on 128 Giga bytes of data

on 1-disk-1core, 2-disk-2-core, and 4-disk-4-core configurations are 4635, 2367, and

1785 seconds, respectively. These differences imply 44%, 32%, 48% of lower sorting

time for our our MCMD-SORT compared to PMSTXXL.

The second set of tests examines the speedup of our MCMD-SORT method.

Figure 6 shows speedup curves for two data sizes, 32 GB and 128 GB, with full

memory usage. The only variable parameter in this test is the platform configuration

which can vary between 1-disk 1-core, 2-disk 2-core, and 4-disk 4-core. Figure 6

shows that our MCMD-SORTmethod sorts faster by increasing number of processor

cores and disks. We were not able to install more parallel disks on our platform but

we expect to see faster sorts with 8 disks, 8 cores. Figure 6 shows that our MCMD-

SORT method obtains close to optimal, linear speedup. We observed a 30 percent

improvement on total sorting time when moving from a 1-disk 1-core to a 2-disk

2-core configuration. From 2-disk 2-core configuration to 4-disk 4-core, we observed

a 40 percent improvement in total sorting time. The curve for 128 GB of data has

a larger negative slope compared to the curve for 32 GB. This effect is due to a

better utilization of parallel cores for larger data sizes.

The third set of tests shows the impact of memory size. In this experiment, the

only variable parameter is the total memory size available to our MCMD-SORT

method. Fixed parameters are total data size (32 Giga bytesor 128 Giga bytes as

in the second test) and record size of 8 bytes, using a 4-disk 4-core configuration.

The results are shown in Figure 7. By increasing the memory size available to the

cores, each time they can load larger blocks of data into memory and sort them.

This does have a major impact on the block sorting part of the algorithm. However

in the merging part, we also observed a large difference due to the reduced number

of blocks to be merged, especially on large data sets. By increasing memory size,

sorting time decreases as the number of merging rounds decreases. We observed that

on the 32 Giga byte data set, because total data size is not large compared to total

memory size (between 4 and 32 times larger), the decrease in total sorting time is
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Fig. 5. Impact of growing data size on sorting time for different hardware configurations. Memory
size: 8 GBytes, Record size: 8 bytes. (a) 1 disk, 1 processor core. (b) 2 disks, 2 processor cores.
(c) 4 disks, 4 processor cores.
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Fig. 7. Impact of memory size on sorting time. Record size: 8 bytes, 4 disks, 4 cores.

slight. However when dealing with larger data sets such as 128 Giga bytes, increasing

memory size has a significant impact on the merging part and consequently total

sorting time. As shown in Figure 7, for a 128 Giga byte data set with 8 GB of

memory, total sorting time is significantly lower than with 1 GB of memory.

The last set of tests for our MCMD-SORT method shows the impact of record

size. In this experiment, we changed the structure of each data record and increased

the size of data records from 8 bytes up to 64 bytes. Size of data records is the only

variable parameter in this test. The sort key is always 8 bytes but the data field

changes from 0 to 56 bytes. By increasing the record size and keeping the same

total size for the entire data to be sorted, the number of records decreases. The

amount of the data to be moved between memory and disks is fixed (128 GB).
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Fig. 8. Impact of record size on sorting time. Total data size: 128 GB. Memory size: 8 GB. 4
disks. 4 cores.

For example, when our record sizes are 8 bytes, we have 16 Giga records equal to

16× 230records. When we increase the records size to 64 bytes, we have 8-byte keys

with 56 bytes for data part in each record. In this case, the total number of records

to be sorted is 2 Giga records equal to 2× 230records. As expected we observe that

the total sorting time decreases with increasing the record size because we sort a

smaller number of records. However we are moving the same amount of data, and

this data I/O prevents us from achieving full speedup. In Figure 8, total sorting

time decreases with a smaller slope compared to slopes of the curves in Figure 6.

This experiment shows that our MCMD-SORT method is I/O bound like all other

sorting methods. It also highlights the importance of the small fixed number of disk

accesses in MCMD-SORT achieved by the deterministic sampling method.

4.2. Experimental Results for MCMD-CUBE

We tested MCMD-CUBE on two databases: a synthetic random generated database

and the standard TPC database benchmark. Both data cubes are computed on the

same hardware platform. The TPC benchmark includes a variety of different data

warehouses. In our experiments, we used the TPC-DS data warehouse.

4.2.1. Random data sets

In this set of experiments, we created a data warehouse with 5 dimensions. Data

records in dimension tables are generated randomly including primary keys that

are used in the fact table. We integrated these primary keys in the fact table and

generated the fact table. Each record in the fact table contains primary keys of the

5 dimensions. All keys are generated randomly. We refer to these dimensions as

A,B,C,D,E. The cardinalities of the dimensions are 1024, 512, 512, 1024, and 256,

respectively.
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We first built the lattice of the data cube and created all pipes in the lattice.

Table 1 summarizes the chosen pipes of the lattice shown in Figure 4. Then we start

reading the fact table and keys in each row and apply our MCMD-CUBE method.

In our sample data cube, we start with cuboid ABCDE and compute it from the

fact table by sorting data records based on the order of concatenated keys in cuboid

ABCDE. Next cuboids in ABCDE pipe can be generated from ABCDE by a single

pass over it. We continue computing cuboids of Table 1 in the same way until all

pipes are built. By building all pipes, data cube is computed.

Although we have 5 dimensions in our database, we added some data fields to

the records of the fact table to make it similar to the TPC-DS database. Our fact

table records have 164 byte of length which is equal to the average record size in

TPC-DS benchmark. When building the data cube, we transfer the whole record

to/from internal memory including keys of the 5 dimensions and data part which

can contain measures and other attributes of dimensions.

Considering the above approach, our first experiment is to compute our random

data cube using different hardware configurations with growing the size of fact

table. Figure 9 summarizes this experiment on our 5-dimensinal database.
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Fig. 9. Computing data cube of randomly generated data warehouse with 5 dimensions. Memory
size: 8 GB. Record size: 164 bytes.

Figure 9 shows the impact of total data size on the runtime of MCMD-CUBE

as well as the speedup obtained through the use of multiple processor cores and

multiple disks. The size of the fact table varies from 0.25× 164 GB to 2× 164 GB.

With increasing data size, total time of data cube computation increases smoothly.

Figure 9 also shows the impact of different disk and processor core configurations.

The configuration with 4 disks and 4 core computes the data cube nearly twice

as fast as the configuration with 2 disks and 2 cores, indicating close to linear

speedup.
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Fig. 10. Computing data cube on different data distributions. Memory size: 8 GB. Record size:
164 bytes.

The impact of different data distributions on the speedup is shown in Figure 10.

As we mentioned earlier, our records and keys were first generated with a unifrom

distribution. We also generatedd our random data base with Gaussian and Zipf dis-

tributions and then used our MCMD-CUBE method to build data cubes on these

distributions. As expected, there was only minimal (within measurement noise)

fluctuation of MCMD-CUBE’s performance in the presence of different distribu-

tions. This is due to the fact that MCMD-CUBE uses deterministic sample sort

which is not influenced by the data distribution. Figure 10 shows that for all three

distributions, MCMD-CUBE achieves close to linear speedup. Note that when dou-

bling the number of disks and cores, total computation time will not be half. This is

due to bottlenecks that appear when dealing with reading from/writing to parallel

disks. Both hardware and OS cause a bottleneck and prevent us to fully exploit the

parallel power of disks and cores. However, total data cube computation time with

4-disk 4-core configuration is almost 33 percent of the total time with 1-disk 1-core

configuration.

4.2.2. TPC-DS databse benchmark

The TPC-DS database benchmark is a well known database benchmark. We chose

this benchmark to compute data cubes using our MCMD-CUBE method. The TPC-

DS benchmark has 10 dimensions and 7 fact tables. The largest fact table is the

table ’Store Sales’. We chose this fact table and computed its data cube using our

MCMD-CUBE. Each row of the table contains attribute values of the 10 dimensions

and the measure. Average record size of the fact table is 164 bytes. Out of the

10 dimensions, we chose 5 key dimensions and computed a data cube for these

5 dimensions. These dimensions are: ’Item’, ’Customer’, ’Store’, ’Promotion’, and

’Ticket Number’.
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Fig. 11. Computing data cube of TPC-DS benchmark. Memory size: 8 GB. Record size: 164
bytes.
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Fig. 12. Speedup curve for computing data cube of TPC-DS benchmark. Fact table size: 124
GB. Memory size: 8 GB. Record size: 164 bytes.

Figure 11 shows the impact of total data size on the runtime of MCMD-CUBE

as well as the speedup obtained through the use of multiple processor cores and

multiple disks. (Note that the TPC-DS benchmark is only available in specific

sizes .) With increasing data size, total time of data cube computation increases

smoothly. Figure 11 also shows the impact of different disk and processor core

configurations. As also shown in Figure 12, the configuration with 4 disks and 4

cores computes the data cube nearly twice as fast as the configuration with 1 disk

and 1 core, indicating approximately 50% of optimal linear speedup.

Figure 13 shows the impact of internal memory size on the performance of

MCMD-CUBE. Using larger memory sizes allow the method to load more data
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Fig. 13. Impact of memory size on computing time of TPC-DS data cube. Fact table size: 124
GB. Record size: 164 bytes.

records at once and creates larger pipes with only one pass of disk read/write. This

effect is a consequence of the lower work load of the MCMD-SORT when sorting

with larger memory sizes. Therefore, when increasing the memory size available to

MCMD-CUBE, the total time for building data cubes decreases.

5. Conclusion

On-line Analytical Processing (OLAP) has become one of the most powerful and

prominent technologies for knowledge discovery in VLDB (Very Large Database)

environments. However, given the size of contemporary data warehousing reposito-

ries, multi-processor solutions are crucial for the massive computational demands of

current and future OLAP systems. In this paper, we discussed the development of

MCMD-CUBE, a new parallel data cube construction method for multi-core proces-

sors with parallel disks. Our experimental results for a ”Sandy Bridge” multi-core

processor with four parallel disks indicate that MCMD-CUBE achieves 50% of the

theoretically optimal linear speedup.
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