

 Int. J. Intelligent Information and Database Systems, Vol. 7, No. 1, 2013 79

 Copyright © 2013 Inderscience Enterprises Ltd.

OLAP for moving object data

Oliver Baltzer
Flagstone RE, Suite 700 Cogswell Tower,
2000 Barrington Street,
Halifax, NS, B3J 3K1, Canada
E-mail: obaltzer@flagstonere.com

Frank Dehne
School of Computer Science,
Carleton University,
1125 Colonel By Drive,
Ottawa, ON, K1S 5B6, Canada
E-mail: dehne@scs.carleton.ca

Andrew Rau-Chaplin*
Dalhousie University,
Faculty of Computer Science,
1459 LeMarchant St.,
P.O. Box 15000, Halifax,
NS, B3H 4R2, Canada
E-mail: arc@cs.dal.ca
*Corresponding author

Abstract: In this paper, we present an OLAP framework for moving
object data. We introduce a new operator GROUP_TRAJECTORIES for
group-by operations on moving object data and present two implementation
alternatives for computing groups of moving objects for group-by
aggregation: group by overlap and group by intersection. We also present an
interactive OLAP environment for resolution drill-down/roll-up on sets of
trajectories and parameter browsing. We evaluate the performance of our
GROUP_TRAJECTORIES operator by using generated as well as real life
moving object datasets.

Keywords: online analytical processing; OLAP; group-by operator; moving
object data; spatial OLAP.

Reference to this paper should be made as follows: Baltzer, O., Dehne, F. and
Rau-Chaplin, A. (2013) ‘OLAP for moving object data’, Int. J. Intelligent
Information and Database Systems, Vol. 7, No. 1, pp.79–112.

Biographical notes: Oliver Baltzer received his PhD from Dalhousie
University in 2011, and in 2002, Dipl-Ing and MSc from HTW Berlin and
Reading University, respectively. Since 2007, he has been the lead Architect
for high-performance computing at Flagstone Reinsurance and continues to
collaborate on various research projects. His research interests include
high-performance computing, location intelligence and spatial OLAP, as well
as risk analytics.

 80 O. Baltzer et al.

Frank Dehne received his MCS (Dipl. Inform.) from the RWTH Aachen
University, Germany in 1983 and PhD (Dr. Rer. Nat.) from the University of
Wurzburg, Germany in 1986. In 1986, he joined the School of Computer
Science at Carleton University in Ottawa and in 2009 he was appointed
Chancellor’s Professor of Computer Science. His research interests include
parallel computing, coarse grained parallel algorithms, parallel computational
geometry, parallel data warehousing and OLAP, and parallel bioinformatics.

Andrew Rau-Chaplin received his MCS and PhD from Carleton University in
Ottawa in 1990 and 1993, respectively. In 1994, he joined the faculty at the
Technical University of Nova Scotia and in 1997 became a Professor in the
Faculty of Computer Science at Dalhousie University. His research interests are
in the application of high performance computing to data and computationally
intensive domains including data warehousing, OLAP, spatial information
systems, catastrophe modelling, and risk analytics.

1 Introduction

The analysis of moving object databases is a field of research that has received significant
attention in recent years (Anwar Hossain and Bazlur Rashid, 2012; Vaisman, 2012; Sistla
et al., 1997; Wolfson et al., 1998; Güting and Schneider, 2005; Benetis et al., 2006;
Gidófalvi and Pedersen, 2006, 2009; Kuijpers and Vaisman, 2007; Leonardi et al., 2010;
Gómez et al., 2008). Typical applications of this discipline are location-based services
(Saltenis and Jensen, 2002; Yim et al., 2011), traffic control (Papadias et al., 2001),
transport logistics (Ding and Guting, 2004), wild life tracking (Laube and Imfeld, 2002;
Li et al., 2011), and epidemiology (Sinha and Mark, 2005). With the large adoption of
global positioning systems (GPS), radio frequency identification (RFID) and mobile
devices in everyday life, an increasing amount of moving object data is being collected
by such applications. Moving object datasets are becoming so large that there is a
growing need for the analysis of aggregated information about moving objects.

In traditional data warehouses, a key instrument for the analysis of aggregated
information is online analytical processing (OLAP) (Chaudhuri and Dayal, 1997). OLAP
enables the efficient analysis of multidimensional data by allowing the user to
interactively explore the multidimensional space. The selection of views of the
multidimensional space is realised by projecting multidimensional points (facts) into a
lower-dimensional space defined by only a relevant subset of dimensions. This approach
projects a number of points onto the same point in lower-dimensional space for which the
measures of the projected points are being aggregated using a predefined aggregation
function. Additionally, there may be hierarchies defined for each dimension. They
provide a hierarchical grouping of dimension values into categories, resulting in a
decrease of cardinality for the dimension at each hierarchy level. During a roll-up
operation, the categorical grouping of dimension values at each level of the hierarchy is
used to aggregate the measures of facts that are mapped into the same group, similar to
the aggregation of measures of multidimensional facts when they are projected into
lower-dimensional space. Other important operations provided by OLAP are slice and
dice, which can select sub-spaces of the multidimensional space and are comparable to
range queries.

 OLAP for moving object data 81

To enable a similar interactive analysis of moving object data in an OLAP manner,
mechanisms need to be provided that support basic OLAP operations such as conceptual
aggregation of facts with respect to selected dimensions and at varying levels of
granularity. When analysing moving object data, the objects’ trajectories become the
facts of the analysis. Consider for example a ride sharing (car pooling) type application
where our fact table consists of records representing people and their daily drive from
their homes to their offices. Assume that each person’s daily drive is represented as a
sequence of points representing locations along the drive in time order. We refer to such
location sequences as trajectories. Our goal is to use a GROUP BY operator to create
groups of persons that can share a vehicle. The problem here is that traditional OLAP
would group and aggregate records with equal values in a given set of feature
dimensions. For a set of trajectories, such as in the above ride sharing example, it is very
unlikely that any two trajectories are exactly the same (i.e., equal). Using the traditional
OLAP approach would result in a GROUP BY operator that does nothing; i.e., creates no
groups whatsoever. For OLAP on moving object data, we need new types of GROUP BY
operators. That is the main problem addressed in this paper. As can be seen from the
above ride share example, GROUP BY operators need to be based on trajectory similarity
rather than equality. Furthermore, when grouping moving object data, different types of
grouping logic may be required depending on the application. Consider for example a
fact table representing the movements of a set of people and an application in which we
wish to determine the spread of a virus. We desire a GROUP BY operator which returns
groups of people that have infected each other. For two persons A and B to infect each
other, their paths do not even need to be similar (as in the ride share example). All that is
required is that their paths overlap for a certain minimum period of time. This will give
rise to a very different GROUP BY operator that will be discussed later in this paper.

When grouping trajectories, issues of resolution that do not occur in the context of
traditional OLAP need to be considered. This is largely because the grouping criteria
needs to capture the idea of similarity rather than exact match. A GROUP BY operator
for trajectories needs to consider both time resolution and space resolution in determining
groupings. For example, in the ride sharing application the space resolution parameter
controls how similar trajectories need to be in order to be grouped, that is how far people
are willing to walk to their ride share. The time resolution parameter would control the
time people are willing to wait for their ride share and how precise the arrival time at
their destination needs to be. Needless to say, selection of these parameters have a
considerable impact on how the GROUP BY operation should be performed.

In the remainder of this section, we will first introduce a formal framework for OLAP
on moving object data and then outline the main results of this paper, namely how to
implement GROUP BY operations on trajectories. Consider a set of moving objects
stored as a relational table objects where each record has an attribute trajectory =
[(x1, y1, t1), (x2, y2, t2),…(xm, ym, tm)] representing the movement of the respective object
as a sequence of positions at times t1, t2,…tm. Our goal is to evaluate OLAP-typical
GROUP BY queries with respect to the trajectory dimension. The problem is illustrated
using the example shown in Figure 1. In Figure 1(a), we observe a number of individual
objects that move on random paths plus ten groups of objects that move together on
similar paths. Each group consists of more than five objects moving on similar paths
which, taken together, appear to the human eye as ‘bold’ paths. Consider the following
SQL query where trajectory is both, a feature dimension that is the subject of the GROUP

 82 O. Baltzer et al.

BY operator as well as a measure dimension that is subject to the aggregation function
AGGREGATE:

SELECT AGGREGATE(trajectory) AS trajectory

 COUNT(trajectory) AS count

FROM objects

GROUP BY GROUP_TRAJECTORIES(trajectory, resolution)

HAVING COUNT(*) >= 5

In this example, the aim of the GROUP BY operation with respect to the feature
dimension trajectory is to group similar trajectories and eliminate groups with less than a
given minimum support (less than five similar trajectories). The resulting set of groups is
shown in Figure 1(b). Once the groups of trajectories have been determined, aggregate
trajectories summarising the trajectories in each group are reported. In this example, an
aggregate trajectory is the average trajectory computed by calculating for each time ti the
average of the locations (xi, yi) of the trajectories contained in the corresponding group.
The result is shown in Figure 1(c), where each qualifying group is represented by its
aggregate trajectory and support (count).

Figure 1 Example of OLAP for moving object data, (a) Input data (b) Groups with support above
the required minimum support (c) Aggregate results reported (aggregate trajectories and
counts)

(a) (b) (c)

In this paper, we propose a new class of GROUP BY operators specifically targeted to
OLAP analysis of trajectories and to answering aggregate queries with respect to the
spatiotemporal movement of a set of objects. A preliminary description of our results was
published in Baltzer et al. (2008) and more details can also be found in a PhD thesis
(Baltzer, 2011). The main problem studied here is how to identify aggregation groups
with respect to a feature dimension representing trajectories. As discussed earlier, it is
very unlikely that any two trajectories are exactly the same. Hence, standard aggregation
of records based on groups with equivalent trajectory values is not very useful in most
cases. Instead, we propose to partition the given trajectories into groups of trajectories
using a new GROUP BY operator, which we term GROUP_TRAJECTORIES. This
operator returns a group identifier for each trajectory, and then OLAP can proceed with
standard aggregation according to the group identifiers, instead of the trajectories
themselves. The simplest case for forming these groups is to identify disjoint groups.

 OLAP for moving object data 83

However, when grouping moving objects, identification of disjoint groups may not
always be possible, or even desired given that group association may change over time.
The goal of the new GROUP_TRAJECTORIES operator is to identify groups of objects
that have sufficiently similar behaviour and to deal with the variances in moving object
data which often renders traditional GROUP BY operators unsuitable.

Before we proceed with outlining our results, we briefly mention some related
approaches for identifying groups of moving objects which we will discuss in detail in
Section 2. Various solutions have been developed for specific domains but they do not
easily adapt to an application in a general purpose OLAP framework. An exception is
frequent pattern mining which has been widely adopted by the data warehousing and data
mining community. Many frequent pattern mining approaches have shown good results
when identifying patterns that are shared between individual objects. However, they often
do not produce results suitable for the moving object data analysis studied in this paper.
The most significant reason for this is the amount of redundant information generated by
many of these algorithms. For example, even with only a small amount of noise present
in the moving object dataset, it is documented, e.g., in Gidófalvi and Pedersen (2006),
that a lot of frequent patterns are detected that do not provide any valuable information.
Additionally, frequent pattern mining algorithms consider each pattern as an independent
piece of information and do not take into account any relationships that may exist
between the detected patterns. In many scenarios, interesting patterns may be related to
each other by the trajectories they share. These relationships are of importance in
applications such as disease tracking, as they may characterise groups of people who
potentially have communicated a disease virus through transitive relationships.

The solution proposed in this paper extends frequent pattern mining methods,
and presents new algorithms that are more appropriate for identifying groups of
moving objects. Our methods are specifically designed to capture relationships between
movement patterns and thus supports identification of groups of objects that exhibit
a complex behaviour, as in the example of a spreading virus. At the same time,
our approach integrates well with existing OLAP models by using established data
representations and query languages, as well as allowing the user to interactively browse
the results at varying levels of resolution and aggregated information. The main challenge
addressed in this paper is how to define and compute the GROUP_TRAJECTORIES
operator in such a way that that it defines groups in a manner that supports a
meaningful analysis of object movements via OLAP. We propose two versions
of the GROUP_TRAJECTORIES operator to compute groups of trajectories that are
appropriate for OLAP analysis in different circumstances and applications:

1 group by overlap

2 group by intersection.

Section 3 shows in detail how the two versions of the GROUP_TRAJECTORIES
operator are defined and computed. The following outlines the intuition and motivation
behind these operators.

The group by intersection method identifies subsets of trajectories that correspond to
movements along a similar path. Figure 1 shows an example where movements that
follow similar trajectories are aggregated. Group by intersection also identifies groups
with parallel movements such as ‘marching band’ style parallel trajectories. A schematic
illustration is shown in Figure 2(a).

 84 O. Baltzer et al.

Figure 2 Illustration of two different version of operator GROUP_TRAJECTORIES,
(a) group by intersection (b) group by overlap

GROUP_TRAJECTORIES

GROUP-ID = G1
COUNT = 4

(a)

GROUP-ID = G2
COUNT = 4

(b)
GROUP_TRAJECTORIES

 (a) (b)

The trajectories shown could, for example, represent a group of four people walking
together, and the aggregate would be a simplified representation of that movement.

The group by overlap method aggregates subsets of trajectories that correspond to
sequences of movements with sufficient overlap between subsequent trajectories. A
schematic illustration is shown in Figure 2(b). The trajectories shown could, for example,
represent movements of people who pass on a disease virus, and the aggregate would
then represent the total movement of the virus.

Our group by intersection and group by overlap methods for the
GROUP_TRAJECTORIES operator are presented in Section 3. Both methods depend on
various parameters including spatial and time resolution. That allows for analysing
trajectories at various levels of detail/resolution and provides another opportunity for an
OLAP-style analysis by enabling drill-down and roll-up on the resolution dimension. In
Section 4, we outline an interactive OLAP environment for the analysis of trajectories
that allows resolution drill-down and roll-up as well as parameter browsing. An
experimental evaluation of the proposed algorithms is presented in Section 5. The
main goal of the experiments is to determine how well the two versions of the
GROUP_TRAJECTORIES operator allow meaningful analysis of object movements via
OLAP. We have used various generated and real-life moving object datasets and tested
whether the GROUP_TRAJECTORIES operator is appropriate for the OLAP analysis of
trajectories in the context of different application scenarios.

2 Related work

A number of data structures and access methods have been proposed to efficiently store,
retrieve and update information about moving objects (Kollios et al., 1999; Ŝaltenis et al.,
2000; Pfoser et al., 2000; Porkaew et al., 2001; Procopiuc et al., 2002; Saltenis and
Jensen, 2002; Hadjieleftheriou et al., 2002; Agarwal et al., 2003; Tao et al., 2003; Chen
and Meng, 2009; Zhang et al., 2010). An overview and classification of most of these
data structures can be found in Mokbel et al. (2003). In many applications, however, the
amount of collected data makes it infeasible to analyse the raw information of every
individual object. Instead, data is being processed and analysed in an aggregated manner
to extract trends, rules and typical behaviour, as well as exceptions from this typical
behaviour. There are a multitude of criteria and information embedded in moving object
data that can be analysed in an aggregated manner. However, much of the previous work
focused on the aggregation of only numerical facts that are without correlation to the
spatiotemporal properties of the object’s trajectories. Typical choices for aggregate

 OLAP for moving object data 85

dimensions are often time-only dimensions to provide aggregation ‘by day’ or ‘by year’,
or space-only dimensions for aggregation based on topological relationships, such as
‘by location square’ or ‘within 10 km of’ (see for example, Marchand et al., 2004). A
comprehensive survey of these methods can be found in López et al. (2005). A different
kind of aggregated analysis of moving object trajectories that focuses on the combined
spatiotemporal properties of the trajectories has its roots in the area of visual reasoning
and artificial intelligence (Yip and Zhao, 1996). In these disciplines, it often is not
sufficient to aggregate the numerical properties of trajectories with respect to auxiliary
dimensions. Instead, the spatiotemporal properties of the trajectories are aggregated with
respect to groups of trajectories that exhibit a similar behaviour.

Next we discuss the previously published work in more detail, using the following
classification of techniques:

• clustering

• computational geometry

• edit distance and variants thereof

• frequent pattern or association rule mining.

Note that, no single currently know mining technique is superior to all others in all
circumstances. Each of them has its strengths and weaknesses for different patterns of
trajectories and applications. A framework that combines several techniques in order to
cover a wider range of applications was recently presented in Li et al. (2010, 2011).

2.1 Clustering

An intuitive approach to identifying groups of moving objects is clustering. However,
traditional static geometry-based clustering techniques such as k-means (Hartigan, 1975),
or more recent variants (Har-Peled, 2004), are not always sufficient for moving objects,
as objects may leave and enter clusters over time and thus impact the set of clusters that
is formed. Li et al. (2004) addressed this problem by applying a micro-clustering strategy,
which allows for efficient updating of clusters as time passes and the original set of
clusters deteriorates. The underlying concept of this strategy is that objects move
continuously and micro-clusters are formed among a small number of close objects with
a similar short-term movement (their bounding box does not exceed a given threshold).
As the motion within each micro-cluster is roughly the same, each micro-cluster can be
considered as an individually moving unit, and updates over time only need to consider
interactions among micro-clusters and locally within each cluster. This separation of
global and local interactions leads to a significantly reduced amount of computation
required to maintain a reasonable clustering over time when compared to recomputing
clusters for the entire dataset at each time step. To report groups of similarly moving
objects, however, the sequence of clustering that was found through this approach has to
be post-processed, an issue not addressed in Li et al. (2004).

In Kriegel and Pfeifle (2005), Kriegel and Pfeifle revisited static clustering for
moving object data and proposed an approach using what they call medoid clustering.
This approach takes into account the uncertainty that is associated with the position of an
object for a particular observation. By sampling object locations from a spatial density
function that models the location uncertainty, it is possible to compute a set of static

 86 O. Baltzer et al.

clusterings. These static clusterings are then compared and ranked according to their
distance to each other. The clustering with the smallest rank, i.e., the smallest average
distance to other clusterings, is then considered the medoid clustering – the average and
most stable clustering of the original dataset.

To address the shortcomings of traditional clustering methods such as k-means with
respect to clustering of moving object trajectories, Nanni and Pedreschi (2006) proposed
the use of density-based clustering (Ester et al., 1996). Using a naïve distance function
for trajectories, they showed that density-based clustering is more suitable for clustering
trajectories, as the produced clusters can have an arbitrary non-spherical shape and are
more robust with respect to noise. However, Nanni and Pedreschi noted that the naïve
distance function considers trajectories as atomic entities, which is not suitable in many
applications. To address this issue, they proposed a technique called temporal focusing,
which examines the neighbourhood of each trajectory to identify time intervals that
potentially produce a more meaningful and interesting clustering. Their results show that
temporal focusing greatly improves the clustering quality of the naïve distance function.

Clustering is a technique that would be intuitive to use for the identification of groups
of moving objects. However, the spatiotemporal nature of trajectories makes it difficult to
apply common clustering approaches. While the solutions discussed above are suitable
for a number of special purpose applications, they do not fit into a general-purpose data
warehousing and OLAP context. Our research focuses on methods that can be applied
universally and build on top and integrate with existing database, data warehousing, and
data mining technologies.

2.2 Computational geometry

One of the first approaches to use computational geometry to identify patterns in
large moving object datasets was proposed by Laube et al. (2004) as an extension
to an analysis approach called REMO (Laube and Imfeld, 2002). REMO is based on a
coarse-grained analysis of motion parameters that have been stripped of their absolute
positions in Euclidean space and instead use parameters such as orientation, speed, and
acceleration. These parameters, once mapped to discrete values, and obtained at constant
time intervals for each object can be represented as a two-dimensional bitmap. The two
dimensions of the bitmap represent the set of objects and time respectively and the value
for each element of the bitmap is a numerical value, representing a particular motion
parameter. Interesting patterns in the dataset are then identified by determining
continuous regions of identical value within the bitmap. The patterns that can be detected
using this approach are constance (an object maintains constant motion parameter values
over a consecutive set of time intervals), concurrence (a number of objects have the same
motion parameters during the same time interval), and trend-setter (a constance pattern
followed by a concurrence pattern). Laube et al. extended this method by including
absolute position information for each recorded observation and employed computational
geometry algorithms to identify movement patterns in addition to those above. The
general approach is to compute the spatial region, e.g., a circular region, for which a set
of constraints is satisfied. These constraints can be, for example, the size of the region or
the number of observations for different objects in the region. The additional patterns
Laube et al. proposed to detect using the computational geometry approach were track
(a constance pattern additionally constrained by a maximum Euclidean distance
between two consecutive observations of the same object), flock (a concurrence

 OLAP for moving object data 87

pattern constrained by a maximum distance of the objects to each other), leadership
(a trend-setter pattern constrained by a maximum distance between the objects when
concurrent movement commences), convergence (a minimum number of objects pass
through a region of fixed size independent of time), and encounter (a convergence pattern
with the constraint that the objects are within the identified region at the same time).
Gudmundsson et al. improved the complexity of the exact encounter algorithm from
Laube et al. (2004) and provided for all grouping patterns discussed in Laube et al.
(2004) approximation algorithms to estimate the size of a region, and the minimum
number of objects for which interesting patterns can be detected in a given dataset
(Gudmundsson et al., 2004). More recently, Benkert et al. (2006) provided computational
geometry approximation algorithms with improved asymptotic bounds for the flock
pattern, and Andersson et al. (2007) discussed an algorithm to detect leadership without
an a priori knowledge of the time interval of interest.

The described computational geometry approaches to identifying groups of moving
objects appear very powerful and able to identify well-defined patterns. However, these
approaches are not designed to integrate with technologies such as data warehouses or
OLAP, and rather represent stand-alone solutions without the support of established data
processing frameworks.

2.3 Edit distance

The edit distance approach, and variations of it, has also been the subject of studies
regarding similarity measures for trajectories that can be represented as sequences of
motion parameters (e.g., location, orientation, speed, etc.). The most common method
that is related to the edit distance and used to measure the similarity between two or more
trajectories is finding the longest common subsequence (LCSS). LCSS has originally
been proposed for finding similarity in time-series databases (Yazdani and Ozsoyoglu,
1996), which is a problem area closely related to moving object databases. Sclaroff et al.
(2001) extended the LCSS approach to trajectories and proposed three new similarity
functions:

1 trajectories are similar when they are close to each other and, within a given
tolerance, represent the same path

2 trajectories are similar if, independent of their extent and location, their change in
orientation and movement is similar

3 trajectories are similar if they follow a similar path, but are translated from one
another.

By relaxing the requirement for an exact match and allowing limited deviation in space
and time, Sclaroff et al. were able to provide better complexity bounds for their versions
of LCSS compared to exact match approaches. For their third similarity function, Sclaroff
et al. additionally proposed an approximation algorithm to estimate the amount of
translation at which two trajectories match within a given error.

Vlachos et al. (2002) built on top of this approach and provided a more extensive
analysis. Shim and Chang (2003) extended the basic LCSS approach with a k-warping
technique, allowing up to k replications of motion segments in the query trajectory in
order to match similar trajectories. Further, Zeinalipour-Yazti et al. (2006) addressed the
interesting problem of querying similar trajectories from a bulk of trajectory fragments

 88 O. Baltzer et al.

that are distributed across a network of nodes. Their approach performs localised top-k
queries using LCSS to find the k most similar trajectory fragments at each node and then
combine only fragments that are associated with the same trajectory across all nodes.

Edit distance techniques are powerful approaches for determining similarity
between two sequences of discrete items. However, for large datasets they become
computationally very expensive. In contrast, approaches applying sequential pattern
mining, as described in the next subsection, are significantly more efficient. They are also
better suited for data processing frameworks, such as data warehousing and OLAP as
they are very similar to other pattern mining approaches already available in such
systems.

2.4 Frequent pattern mining

Another, recently very common, approach to identifying groups of trajectories is pattern
mining. Pattern mining is a method that has its origins in the mining of association rules
from large sets of transactional data (Agrawal et al., 1993). It is often described in the
context of mining frequent sets of items from shopping baskets to identify items or
products that are frequently bought together (Han and Kamber, 2001). It has also been
shown that the pattern mining approach is applicable to identifying patterns in sequence
databases (Agrawal and Srikant, 1995). The analysis of sequential data is a requirement
for a wide area of applications including, for example, the analysis of DNA or protein
sequences, data streams in telecommunication, or tracking of diseases. A number of
approaches that focus on the analysis of sequence data have been proposed and show
an improved performance in identifying patterns when compared to transactional
approaches. Most recent representatives of these approaches are PrefixSpan introduced
by Pei et al. (2001, 2004) and CloSpan introduced by Yan et al. (2003), as well as an
algorithm suitable for noisy data streams by Yang et al. (2002). A special case of
identifying patterns in sequence data is the identification of patterns that occur
periodically in constant time intervals. This special case of sequential pattern mining has
been addressed by Han et al. (1999) and Ma and Hellerstein (2001).

One of the first approaches that utilises frequent pattern mining for the analysis of
spatiotemporal databases was introduced by Tsoukatos and Gunopulos (2001).
Their algorithm is based on the SPADE algorithm (Zaki, 2001), which was originally
proposed for mining frequent subsequences from sequence databases. Both algorithms
represent the search space for frequent subsequences as a lattice and then traverse
the lattice to identify frequent subsequences that occur in the dataset. The two algorithms
differ by the method that is used to search the lattice and by the results they produce.
The SPADE algorithm performs a lattice-decomposition to obtain sublattices on
which it can perform localised in-memory breadth-first search to find all frequent
subsequences. Tsoukatos and Gunopulos’s algorithm, on the other hand, uses a
depth-first search on the entire search space lattice and finds only maximal frequent
subsequences, i.e., frequent subsequences with the maximal number of items for
which no supersequences exist that are also frequent. As outlined in the remainder
of this section, many authors have since focused on developing improved algorithms
for the mining of patterns from spatiotemporal databases and in particular moving
object databases (Agrawal et al., 1993; Cao et al., 2005; Gidófalvi and Pedersen,
2006; Han et al., 2004; Hwang et al., 2005; Mamoulis et al., 2004; Peng and Chen, 2003;
Wang et al., 2003).

 OLAP for moving object data 89

Other than in classical subsequence mining, the data stored in moving object
databases is inherently noisy and exact subsequences are rarely found. Wang et al. (2003)
and Hwang et al. (2005) introduced algorithms specifically for the detection of grouping
behaviour among moving objects. In both cases the algorithms are intended to find
patterns which resemble the movement of multiple objects in unison along similar
trajectories. In Wang et al. (2003), the trajectories are represented as sequences of
observation points and Wang et al. proposed algorithms which identify similar
trajectories by permitting a certain level of spatial and temporal mismatch when
comparing observation points of two trajectories. The two algorithms Wang et al.
proposed have been derived from the well-known frequent pattern mining algorithms
Apriori (Agrawal et al., 1993) and FP-growth (Han et al., 2004) and extended to allow for
the desired ‘fuzziness’ when comparing observation points. The Apriori algorithm
exploits the property of frequent itemsets, that every subset of a frequent itemset is also a
frequent itemset, to efficiently prune the search space for frequent itemsets. The
FP-growth algorithm, on the other hand, first encodes the dataset in a data structure called
FP-tree and then extracts frequent itemsets from this data structure directly.

Hwang et al. extended the algorithms proposed in Wang et al. (2003) by representing
trajectories as sequences of line segments rather than observation points, such that for
each point along a trajectory the distance to another trajectory can be determined. This
approach improves the quality of results compared to those obtained in Wang et al.
(2003) and is in particular superior when observations are sparsely distributed along
trajectories. Similarly, Cao et al. described an approach allowing trajectory data to be
noisy and imprecise by employing a line simplification method which locally removes
segment points from a trajectory if they are within a certain distance to the resulting
trajectory. Frequent patterns are then determined based on the simplified trajectories (Cao
et al., 2005).

With a focus on mining periodic spatiotemporal patterns, Mamoulis et al.
(2004) proposed two algorithms: STPMine1 and STPMine2. Both algorithms consider
trajectories as sequences of locations that have been sampled in uniform time intervals.
To determine frequent periodic patterns within these trajectories, both algorithms first
employ a clustering of locations that have been sampled at time steps that are multiples of
a fixed period length apart from each other. The clustering determines dense regions of
locations, and regions with a number of locations below the minimum support are
discarded. The remaining regions are then considered frequent one-itemsets from
which the STPMine1 (Apriori-based) and STPMine2 (FP-growth-based) algorithms can
generate all remaining frequent itemsets. While the generation of the remaining frequent
itemsets is efficient, especially when using the STPMine2 algorithms, the generation of
the initial frequent one-itemsets is costly for both algorithms as it requires the use of
expensive clustering methods.

Two interesting application scenarios for the mining of patterns from moving object
databases are described by Peng and Chen (2003) and Gidófalvi and Pedersen (2006).
Peng and Chen addressed the problem of data allocation in mobile communication
systems and showed how the identification of frequent patterns in the movement of the
system’s users can help to optimise the allocation of system resources and improve the
system’s performance (Peng and Chen, 2003).

In Gidófalvi and Pedersen (2006), Gidófalvi and Pedersen focused on the problem of
identifying rideshare opportunities for commuters. Their dataset consisted of long-term
route information for a number of cars that were equipped with GPS recording devices.

 90 O. Baltzer et al.

Gidófalvi and Pedersen’s approach employs a frequent pattern mining algorithm that
finds closed frequent itemsets and is based on a database projection method allowing the
algorithm to be entirely implemented in SQL and executed on the database system
storing the actual trajectory data.

In summary, frequent pattern mining approaches are most similar to the methods
presented in this paper. Many frequent pattern mining approaches have shown good
results when identifying patterns that are shared between individual objects. However,
they often do not produce results suitable for the moving object data analysis studied in
this paper. The most significant reason for this is the amount of redundant information
generated by frequent pattern mining. For example, even with only a small amount of
noise present in the moving object dataset, it is documented, e.g., in Gidófalvi and
Pedersen (2006), that a lot of frequent patterns are detected that do not provide any
valuable information. Additionally, frequent pattern mining algorithms consider each
pattern as an independent piece of information and do not take into account any
relationships that may exist between the detected patterns. In many scenarios, interesting
patterns may be related to each other by the trajectories they share. These relationships
are of importance in applications such as disease tracking since they may characterise
groups of people who potentially have communicated a disease virus through transitive
relationships. The methods presented in this paper aim at solving these shortcomings.

3 GROUP_TRAJECTORIES: a new operator for OLAP on moving
object data

Consider N moving objects, each identified by a unique tag number i. Object movements
are recorded through a set of readings (i, t, (x, y)) indicating that object i was located at
position (x, y) at time t. The N moving objects are represented by a relational table objects
with N records. Each record contains attributes such as tag, name, size, colour, etc.
describing an object in a traditional relational manner that can be represented as a
star schema (Chaudhuri and Dayal, 1997). Among these attributes is an attribute
trajectory representing the movement of the respective object as a sequence [(x1, y1, t1),
(x2, y2, t2),…,(xm, ym, tm)] of positions at times t1, t2,…,tm. Our goal is to group objects
with respect to attribute dimension trajectory. For this purpose, we define a new operator
GROUP_TRAJECTORIES, which returns for each trajectory a group identifier, and then
proceeds with standard OLAP aggregation according to the group identifiers instead of
the trajectories themselves.

In this section, we present two different implementations of the operator
GROUP_TRAJECTORIES which compute groups of trajectories that are appropriate for
OLAP analysis in different application scenarios: group by overlap and group by
intersection.

3.1 General framework and preprocessing

We begin with an outline of the high-level framework and preprocessing steps for the
two implementations of the GROUP_TRAJECTORIES operator. The details of these
implementations are then discussed in Sections 3.2 and 3.3.

The analysis of trajectories begins with a preprocessing step. Note that, the time
complexity is quadratic in the number of trajectories. The goal of this preprocessing step

 OLAP for moving object data 91

is to prepare the set of input trajectories T for the further processing by one of the
implementations of our GROUP_TRAJECTORIES operator. The preprocessing stage is
composed of three parts:

1 the mapping of trajectories to sequences of distinct items

2 the extraction of frequent patterns from the set of mapped trajectories

3 the reverse association of frequent itemsets with sets of trajectories that contain
them.

As discussed earlier, the readings of real-world trajectories are often inherently noisy
and even though two trajectories follow approximately the same path, the attribute
values of their readings may differ significantly. This issue is addressed in the first part
of the preprocessing stage by transforming the attribute values of each reading into
corresponding discretised dimensions whose resolution is selected by the user. The
motivation behind this transformation is two-fold:

1 noise and minor variances within trajectories are being compensated by mapping
fine-grained coordinates to a coarser-grained grid

2 the user has control over the granularity of the mapping in an interactive manner.

This transformation of attribute values is also applied to the time dimensions, allowing
trajectories to be analysed at different levels of time resolution. For example, the time
granularity ‘day’ may be sufficient for a high-level analysis of GPS data for the
movement of a fleet of ships. An analysis of the set of paths taken by a group of ships
entering a port, on the other hand, may require a time granularity ‘minute’.

Following the mapping of each trajectory’s time/position pairs into a discrete space,
individual readings from different trajectories may now be mapped onto the same discrete
attribute values and consequently can be considered equivalent. Based on this property,
we now employ frequent itemset mining to identify sets of distinct time/position pairs
that are shared among a minimum number of trajectories. We refer to each of these sets
as a frequent itemset and call the number of trajectories which share the frequent itemset
the ‘support’ of the frequent itemset. The minimum support an itemset must have to be
considered frequent is user-specified and allows the user to control the size of initial
groups of trajectories that should be considered for further analysis.

Additionally, we apply a threshold on the size of each frequent itemset which is
controlled by the user. It allows the user to limit the frequent itemsets to those which
contain a minimum number of items. The motivation for this threshold is that frequent
itemsets with a larger number of distinct items corresponds to longer shared paths, while
frequent itemsets with fewer items correspond to shorter shared paths. The rationale for
this is that we assume longer shared paths to be more interesting than shorter paths.
However, this method can be analogously applied to prefer shorter paths.

The last step of the preprocessing is dedicated to the mapping of frequent itemsets
back to the sets of trajectories that contain them. For each frequent itemset f, we
determine the set C of trajectories such that each trajectory contains all of the
time/position pairs in f. We let C be the set of all pairs (f, C), where f is a frequent itemset
and C is the corresponding set of trajectories. After the completion of the preprocessing
phase, the group merging phase which employs our new GROUP_TRAJECTORIES
operator follows. The details of our two versions of the GROUP_TRAJECTORIES

 92 O. Baltzer et al.

operator, group by overlap and group by intersection, are discussed in the following
subsections.

3.2 Group by overlap

The group by overlap method, shown in Algorithm 1, introduces a parameter called the
overlap ratio threshold (ORT) that controls the strength of the grouping process. The
interactive OLAP environment discussed in Section 4 allows for an interactive
modification of this parameter. The method uses a relationship graph Γ whose vertices
correspond to the trajectories. For each frequent itemset f and corresponding set C of
trajectories, we consider all pairs of trajectories (ti, tj) with ti ∈ C and tj ∈ C and add an

edge (ti, tj) to Γ if 2 | | .
| | | |i j

f ORT
t t
⋅

≥
+

 We call 2 | |
| | | |i j

f
t t
⋅
+

 the overlap ratio of the

trajectories. The intuition is to quantify the amount of overlap between two trajectories
relative to their sizes. Figure 3(a) illustrates the relationship between trajectories and their
overlap that is characterised by a frequent itemset. The resulting graph Γ then contains
edges between those trajectories that have an overlap ratio of at least ORT. We then
compute the connected components of graph Γ and report each connected component as a
group of trajectories. The nature of the obtained groups of trajectories is characterised by
two factors:

1 the ORT determines how much overlap two trajectories must have to be considered
within the same group

2 the construction of connected components captures transitivity among trajectories
and thus cascaded ‘relay’-type movements as illustrated in Figure 2(b).

Depending on the chosen ORT, objects will have to move in unison for more or less of
their trajectories to form cascading trajectories.
Algorithm 1 Group by overlap

Input: Set T of trajectories. Set C of mappings from frequent itemsets to sets of trajectories
as determined in Section 3.1. Overlap ratio threshold ORT.

Output: Set of groups G
 Build relationship graph Γ = (VΓ, EΓ)
 1 Initialize set of vertices VΓ ← T
 2 Initialize set of labeled edges EΓ ← Ø,
 3 for all (f, C) ∈ C do
 4 for all pairs (ti, tj) with ti ∈ C and tj ∈ C do
 5

Add an edge (ti, tj) to EΓ if
2 | |

| | | |i j

f ORT
t t
⋅

≥
+

 6 end for
 7 end for
 Determine overlap groups in Γ
 8 Compute connected components G of graph Γ
 9 Remove singletons from G
 10 return G

 OLAP for moving object data 93

Figure 3 Illustration of (a) overlap ratio and (b) intersection ratio

ti

tj

f

gi

gj

g g
U

i j

(a) (b)

3.3 Group by intersection

The group by intersection method is shown in Algorithm 2. It introduces a parameter
called the intersection ratio threshold (IRT), which is used to control how aggressively
groups are formed. In an interactive OLAP environment, this parameter can be modified
interactively as part of the explorative analysis process. The group by intersection
algorithm first creates an initial set G of groups of trajectories, where each group C is the
set of trajectories associated with a frequent itemset f as determined in the preprocessing
step discussed in 3.1. Each group C is assigned a group strength GS(C), which is initially
set to the size of the corresponding frequent itemset. Using the unweighted size of the
frequent itemset allows us later to identify groups that are characterised by long frequent
itemsets. The remainder of our method merges groups in G by iterating the following
loop (Lines 6–20 in Algorithm 2): for each pair gi, gj ∈ G, compute the intersection ratio

(), min , ,i j i j
i j

i j

g g g g
IR g g

g g

⎛ ⎞∩ ∩
⎜ ⎟=
⎜ ⎟
⎝ ⎠

which represents the number of trajectories that occur in both gi and gj, relative to the
sizes of gi and gj. The intuition behind this definition is that pairs of groups that share a
large percentage of their trajectories are more strongly related to each other than pairs
that do not share as many trajectories relative to their group sizes. Figure 3(b) illustrates a
pair of trajectory groups and the trajectories they share. After computing the intersection
ratio, we consider only those pairs (gi, gj) as candidates for merging whose intersection
ratio is larger than the IRT. The parameter allows to control how strongly related two
trajectory groups are required to be to qualify for merging. For each qualifying pair
(gi, gj), we compute its merge strength, which is the average of their group strength
values:

()
() ()

, .
2

i j
i j

GS g GS g
MS g g

+
=

The merge strength represents the average support in terms of shared locations the new
group receives from each contributing group independent of the actual number of
trajectories in the group. We chose not to weight the merge strength by the size of the
groups that contribute to the merged group, as the goal of the merging is to identify
groups that are supported by long frequent itemsets. The influence of the number of
trajectories in each group is only intended to impact the intersection ratio and otherwise

 94 O. Baltzer et al.

have no influence on the grouping process. Hence, the number of trajectories in each
group is not considered when computing the merge strength.
Algorithm 2 Group by intersection

Input: Set C determined in Section 3.1. Intersection Ratio Threshold IRT.
Output: Set of groups G.
 Create initial set of intersection groups
 1 G ← Ø,
 2 for all (f, C) ∈ C do
 3 G ← G ∪ {C}
 4 set initial Group Strength GS(C) = | f |
 5 end for
 Merge intersection groups
 6 repeat
 7 for all gi, gj ∈ G, gi ≠ gj do

 8 set Intersection Ratio

()
1 2

| | | | | | | |
, min ,

| | | |
i j i j

i j

g g g g
IR g g

g g
∩ ∩⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 9 if IR(gi, gj) > IRT then
 10 set Merge Strength

()
() ()

,
2

i j
i j

GS g GS g
MS g g

+
=

 11 else
 12 set Merge Strength MS(gi, gj) = 0
 13 end if
 14 end for
 15 find (gi′, gj′) for which MS(gi′, gj′) is maximal
 16 if MS(gi′, gj′) ≠ 0 then
 17 G ← (G \ {gi′, gj′}) ∪ {gi′ ∪ gj′}
 18 set Group Strength
 GS(gi′ ∪ gj′) = MS(gi′, gj′)
 19 end if
 20 until MS(gi′ ∪ gj′) = 0
 21 return G

All candidate pairs are then ranked by their merge strength and a pair (gi′, gj′) with
maximum merge strength is merged to produce a new group. The intuition for using a
pair with maximum merge strength is that the average support in terms of shared
locations in the resulting group is highest. This implies that trajectories within the group
are on average supported by more shared locations than in other groups, and are thus
characterised by longer frequent itemsets. The group strength GS(gi′ ∪ gj′) of the new

 OLAP for moving object data 95

merged group is the merge strength MS(gi′, gj′) of the pair (gi′, gj′). This process is
repeated until there are no more pairs of groups with intersection ratio larger than the IRT
and non-zero merge strength.

The group by intersection method aggregates subsets of trajectories that constitute a
movement of individual objects in parallel, similar to that of a marching band or a flock
of birds. The nature of the obtained groups of trajectories is characterised by:

1 the IRT, which determines how many shared trajectories between two groups are
‘sufficient’ for them to be merged

2 the merge strength, which favours the merging of groups that are supported by long
frequent itemsets.

Thus, groups that are merged do not only share trajectories, but share trajectories that are
supported by long and interesting frequent itemsets. We first merge those candidate
groups whose shared trajectory segments are longest and then proceed top-down,
merging groups with shorter shared trajectory segments. Unlike the group by overlap
method, which combines sequences of trajectories, the group by intersection method
combines parallel trajectories.

4 Interactive OLAP for trajectories

The algorithms for the two different versions of the GROUP_TRAJECTORIES operator
presented in Section 3 are guided by the following parameters:

• space resolution

• minimum support of a frequent itemset

• minimum trajectory length

• IRT

• ORT.

This provides an opportunity for an interactive OLAP analysis of groups of trajectories at
various levels of resolution or ‘connectedness’. For example, consider the analysis of
tracking data from GPS-enabled trucks. A high-level analysis of trajectories belonging to
trucks that travel long distances may be sufficient at a time-dimension granularity of
‘day’. However, an analysis of trajectories that belong to trucks within an urban area may
require a time-dimension granularity of ‘minute’ to capture more detailed movement
patterns.

We implemented a prototype real-time interactive environment to provide
users with the ability to browse the parameter space and dynamically tune the
parameters based on application specific knowledge. As shown in Figure 4, all
parameters can be dynamically modified by moving sliders, with the clusters being
displayed interactively and in real-time. Our code was written in C, using the Cairo
library (http://www.cairographics.org/) for visualisation. Some utility code was written in
Ruby. We used the AFOPT C++ library (Liu et al., 2003) for frequent pattern mining and
the user interface was implemented in HTML and JavaScript. Our prototype ran on a
dual-processor dual-core AMD Opteron 2.2 GHz-based machine. In order to achieve

 96 O. Baltzer et al.

real-time response, the relationship graph is constructed as a preprocessing step, where all
edges are labelled with parameter ranges for which they are valid.

Figure 4 Screenshot of the interactive environment for OLAP for trajectories

As an example for browsing a parameter like the ORT, consider a set of trajectories
representing movements of people who pass on a disease virus. The grouping determined
by the group by overlap method could be used to analyse the total movement of the virus.
In this example, the ORT would represent the amount of interaction between individuals
required to pass on the virus. Changing the threshold value allows one to evaluate how
far the virus will spread based on different assumptions about its transmission. A
prototype of an interactive environment for the OLAP analysis of trajectories is shown in
Figure 4. The interactive environment allows for resolution drill-down and roll-up as
well as parameter browsing. The system visualises an implementation of the two
GROUP_TRAJECTORIES operators presented in this paper. It does not yet include other
OLAP functionality, such as spatiotemporal aggregation or aggregation with respect to
other feature dimensions. The system allows the user to explore the results of the
GROUP_TRAJECTORIES operators depending on different resolution and threshold
values for several synthetic and real-life datasets. The user can load a dataset and then
move the sliders representing the different parameters to observe the results for different
parameter settings. For example in a ride share application, the space resolution would
represent the distance people are willing to walk to their ride share. When moving the
space resolution slider, our system interactively displays the different sets of sharable
rides for different walk distances.

 OLAP for moving object data 97

5 Experimental evaluation

The experimental evaluation of the GROUP_TRAJECTORIES operators presented
in this paper is divided into four parts. Sub-Section 5.1 provides a detailed analysis
of each algorithm using appropriate examples. In sub-Section 5.2, the robustness
of the GROUP_TRAJECTORIES operators against background noise is evaluated.
Sub-Section 5.3 then investigates the influence of the algorithms’ parameters on the
results produced. Finally, sub-Section 5.4 concludes the experimental evaluation with
results obtained using real-world data and compares them to results obtained using
frequent pattern mining only.

5.1 Detailed analysis

In this section, we evaluate our algorithms with respect to a variety of synthetic scenarios
that are carefully designed to demonstrate the strengths and weaknesses of the grouping
algorithms. Each scenario addresses a specific property of the dataset and evaluates the
influence of changing that property on the results obtained by both of our algorithms.

5.1.1 Overlap

The overlap property represents the number of shared frequent items (grid cells) between
at least two trajectories compared to their total lengths. This property is used by the group
by overlap algorithm to identify trajectories that should be grouped together.

Figure 5 shows two datasets, each containing three frequent itemsets with a minimum
support of 2. The frequent itemsets are closed, that is, there are no frequent itemsets with
the same or greater support that are supersets of the frequent itemsets shown. Both
datasets are identical except for the change in the length of the overlapping trajectories
that appear to connect the ‘left’ and the ‘right’ side of each dataset. Note, the number of
shared locations in frequent itemset F3 changes from | F3 | = 1 to | F3 | = 2.

Figure 5 Two datasets each containing three closed frequent itemsets but with different
associated overlap (see online version for colours)

Dataset A2

Dataset A1

F1

F3 F2

F3

F1

F2

Figure 6 shows the resulting groups for each of our algorithms when applied to dataset
A1. For the group by overlap algorithm we chose an ORT of ORT = 0.25 and for the
group by intersection algorithm we chose an IRT of IRT = 0.25. None of our algorithms
combines the groups on either side of the overlap as the overlap ratio OR = 1 / 6 does not

 98 O. Baltzer et al.

satisfy the ORT of ORT = 0.25. Similarly, the intersection ratio of IR = 1 / 5 for the
association of the overlapping trajectories with the shorter trajectories does not satisfy the
threshold IRT = 0.25 required for grouping by intersection. Hence, for the group by
intersection algorithm each of the overlapping trajectories is present in two groups
(represented as dashed lines in Figure 6), one group for each closed frequent itemset it
shares.

Figure 6 Grouping results for dataset A1 with ORT and IRT set to 0.25 respectively,
(a) group by overlap (b) group by intersection

(a)

(b)

When increasing the length of the overlap between the ‘left’ and the ‘right’ side from
| F3 | = 1 to | F3 | = 2 shared frequent items in dataset A2, the overlap ratio for the
overlapping segment changes from 1 / 6 to 2 / 7 and consequently satisfies the ORT of
ORT = 0.25.

This results in the merging of the ‘left’ and ‘right’ side into a single group by the
group by overlap algorithm, as shown in Figure 7. The result of the group by intersection
algorithm does not change, as the length of the overlap does not impact the intersection
ratio.

Figure 7 Grouping results for dataset A2 with ORT and IRT set to 0.25 respectively,
(a) group by overlap (b) group by intersection

(a)

(b)

Note: The change in overlap results in a different grouping for group by overlap when
compared to dataset A1.

 OLAP for moving object data 99

5.1.2 Intersection

The intersection ratio between two groups is the number of trajectories shared between
the groups relative to the size of the largest of the two groups. This property is used by
the group by intersection algorithm to recursively identify groups that can be merged.

Figure 8 illustrates two datasets, each containing three closed frequent itemsets with a
minimum support of 4. Both datasets are identical except for two additional trajectories
added to dataset B2. The added trajectories have an influence on the intersection ratio
between the initial groups that are formed from the three frequent itemsets.

Figure 8 Changing the intersection ratio by changing the number of parallel trajectories
(see online version for colours)

Dataset B1

F1 → g1, |g1| = 11

F3 → g3, |g3| = 4 F2 → g2, |g2| = 11

Dataset B2

F1 → g1, |g1| = 12

F3 → g3, |g3| = 6 F2 → g2, |g2| = 12

Figure 9 Grouping results for dataset B1 with ORT and IRT set to 0.20 respectively,
(a) group by overlap (b) group by intersection

(a)

(b)

Figure 9 shows the results for each of our grouping algorithms when there are only two
trajectories on every side overlapping with the trajectories of the other side (dataset B1).
The ORT and IRT were both chosen to be 0.2. For the group by intersection algorithm,
the initial groups g1, g2 and g3 are created from the frequent itemsets F1, F2 and F3
respectively. Since, the size of the intersection between groups g1 and g3, or g2 and g3 is
only of size 2, and g1 and g2 each have 11 trajectories, the intersection ratio of IR = 2 / 11

 100 O. Baltzer et al.

does not satisfy the requirement of IRT = 0.2. Hence, the group by intersection algorithm
does not combine the groups into a single group. Similarly, the overlap of | F3 | = 1 is not
sufficient to match the required ORT of ORT = 0.2 for the group by overlap algorithm.

However, the group by intersection algorithm is able to combine groups if the size of
the intersection is increased such that the requirement of IRT = 0.2 is satisfied for
candidate groups. For the first merge iteration, the example contains two candidate
groups g1 ∪ g3 and g2 ∪ g3, both with an intersection ratio of 3 / 12 = 0.25. Since both
candidate groups have the same merge strength, either group can be chosen to be created
first. Assume group g1 ∪ g3 is chosen to be created first. The next merge iteration then
contains a single candidate group (g1 ∪ g3) ∪ g2 with an intersection ratio of 3 / 15 = 0.2.
The intersection ratio 0.2 satisfies the requirement IRT = 0.2, and the group is created,
resulting in a single group containing all trajectories in dataset B2 as shown in Figure 10.
In this scenario the group by overlap algorithm is not able to combine the groups, as the
size of the intersection does not have an influence on the overlap ratio between two
trajectories.

Figure 10 Grouping results for dataset B2 with ORT and IRT set to 0.2 respectively,
(a) group by overlap (b) group by intersection

(a)

(b)

Note: The increase of intersection size results in a different grouping for group by
intersection when compared to dataset B1.

The experiments discussed in this section demonstrate the detailed behaviour of our
algorithms for carefully designed synthetic datasets and explore various boundary cases
of our algorithms. The experiments show the different properties of the input dataset for
which either our group by overlap algorithm or our group by intersection algorithm is
better suited to identify groups. For the group by overlap algorithm, the experiments
show that the algorithm favours the combination of groups whose trajectories have a
sufficient amount of locations in common. It can therefore be used to identify groups of
trajectories that are formed by sequentially connected trajectories where each
‘connection’ must be of a certain length in comparison to the length of each trajectory in
the group. The experiments for the group by intersection algorithm, on the other hand,
show that the algorithm is better suited for identifying groups that are composed of

 OLAP for moving object data 101

trajectories that run in parallel. It favours the merging of groups that have entire
trajectories in common, i.e., trajectories that run in parallel, and the number of trajectories
in common is at least a given fraction of the size of each group. Thus, if the goal is to
identify groups that are formed by the partial overlap of trajectories, the group by overlap
algorithm should be applied. However, if groups should be identified that have many
parallel trajectories, then the group by intersection algorithm is a more appropriate
choice.

5.2 Robustness against noise

We tested the robustness of the GROUP_TRAJECTORIES implementations against
background noise. For that, we created a synthetic dataset of ten groups with ten
trajectories each and then added random trajectories as background noise. Figure 11(a)
shows four input datasets, all containing the same groups but each with a different
amount of background noise. For this example we have chosen datasets with 0%
(no noise), 50%, 75% and 95% noise. The percentage of noise is specified with respect to
the total number of trajectories in the dataset. The subject of the evaluation is: What level
of noise can be present in the input data while maintaining a correct result? Here,
correctness means that GROUP_TRAJECTORIES reports the original groups and
discards the randomly added trajectories. Figure 11(b) shows the initial groups obtained
by the frequent itemset mining algorithm before applying the group by overlap or group
by intersection algorithm. The frequent itemset mining algorithm identifies 51 groups for
noise levels of 0%, 50% and 75% and 52 groups for a noise level of 95%. While it
eliminates most of the noise from the input data, it does not identify a suitable grouping
of the remaining trajectories as it does not capture the relationships between trajectories
characterised by different frequent itemsets. The group by overlap algorithm on the other
hand identifies for each dataset the correct set of distinct groups [see Figure 11(c)]. It
improves on the grouping obtained from frequent itemset mining and the groups it
identifies sufficiently represent the original groups. Only 16% of trajectories that belong
to groups in the input dataset have not been captured by the algorithm (false negatives).
However, this can be attributed to the quality of the frequent itemset mining algorithm, as
those trajectories are not characterised by any frequent itemset and thus could not have
been included in the final grouping. For this example, at 95% noise, the frequent itemset
mining also classifies only a single trajectory (1.18%) as a false positive, which
subsequently is reported as part of a final result group determined by the group by
overlap algorithm.

Figure 11(d) shows the final groups identified by the group by intersection
algorithm. Even though it improves the grouping determined by frequent itemset
mining, it does not produce the same quality of groups as the group by overlap
algorithm. For the 0% and 50% noise levels, it produces 12 final groups; and for 75% and
95% noise levels, it produces 13 final groups, resulting in some trajectories not being
grouped together in the same group, though still being reported as a separate group.
Depending on the application scenario, this deficiency is acceptable, as the overall result
is still superior when compared to results obtained by frequent itemset mining only. Note,
at a noise level of 95% it becomes difficult for the human eye to visually detect the
original groups; however, both GROUP_TRAJECTORIES methods still report very good
results.

 102 O. Baltzer et al.

Figure 11 Groups identified by each of our algorithms from a dataset with varying levels of noise,
(a) Input data with 0%, 50%, 75% and 95% noise respectively (b) Groups identified
by frequent itemset mining (c) Groups identified by group by overlap with ORT = 0.5
(d) Groups identified by group by intersection with IRT = 0.5

(a)

(b)

(c)

(d)

Note: The input parameters were set to a space resolution of 5, a minimum support of 4
and a minimum frequent itemset length of 4.

5.3 Input parameters

In this section, we examine the influence of the algorithms’ input parameters on the
results produced. As input data we use a synthetic dataset that consists of a mix of groups
of trajectories. Some groups are of the type that is best for group by overlap, and some

 OLAP for moving object data 103

groups are of the type that is best for group by intersection. The dataset is shown in
Figure 12. It consists of three spirals with parallel paths in each spiral. While a spiral-like
movement is not a pattern commonly occurring in real world data, it represents a
challenging pattern for our methods. Note the subdivision of the spiral into several
colour-coded segments. Each such segment represents a group of trajectories that are
moving in unison. To achieve a more realistic movement, a small random variance is
added to the movement of each trajectory. Furthermore, each segment overlaps with the
previous and the following segment.

Figure 12 Synthetic dataset with 24 groups each consisting of ten trajectories and a partial overlap
of approximately 25%

In the following, we examine the key parameters that influence the results obtained by
our algorithms, namely:

1 the resolution at which the frequent pattern mining is performed

2 the ORT parameter of the group by overlap algorithm

3 the IRT parameter of the group by intersection algorithm.

5.3.1 Resolution

The resolution parameter determines the discretisation of the space that is performed
before the mining of the frequent itemsets from the trajectories. It is used to generalise
the trajectories’ locations such that locations that are mapped to the same grid cell are
regarded as identical locations. This approach reduces noise and local variances in
trajectories and allows for more meaningful frequent itemsets to be found. It has a strong
influence on the quality of the final groups found by our algorithms. Figure 13 shows the
results of both of our algorithms for the dataset described above, with a set of fixed
parameters min_support = 4, min_length = 4, ORT = 0.2, IRT = 0.2, and a variable
resolution between 2 and 8 bits across the extent of each dimension. We observe that the
group by overlap algorithm indeed favours the overlapping spiral segments and
eventually identifies one group for each spiral at resolution levels of 5 and 6 bits.
Conversely, the group by intersection algorithm does not make use of the overlap
between the segments and cannot clearly identify individual spirals. However, even at

 104 O. Baltzer et al.

higher resolutions when the generalisation of the trajectories becomes less effective, our
Group by Intersection algorithm can still be used to identify individual segments of the
spirals which constitute parallel movements. Note, that at lower and higher resolutions
the sizes of the detected groups significantly decrease compared to medium resolutions.
This can be attributed to the fact that at lower resolutions most frequent itemsets do not
satisfy the minimum length of at least four items and at higher resolutions frequent
itemsets do not satisfy the minimum support of four trajectories due to the variance in the
trajectories.

Figure 13 Groups identified by each of our algorithms at levels of resolution between 2 and 8
(left to right), (a) group by overlap (b) group by intersection

(a)

(b)

Note: Fixed parameters are min_support = 4, min_length = 4, ORT = 0.2, IRT = 0.2.

Figure 14 Number of groups each algorithm identifies for the given input dataset depending on the
resolution

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

N
um

be
ro

fg
ro

up
s

Level of resolution

Number of groups vs. resolution (ORT = 0.2 / IRT = 0.2)

Group by Overlap
Group by Intersection

Note: Group by overlap tends to identify fewer but larger groups, group by intersection,
on the other hand, identifies more but smaller groups.

 OLAP for moving object data 105

Figure 14 illustrates the relationship between the level of resolution and the number of
groups identified by each algorithm. It can be observed that the group by intersection
algorithm tends to identify many but smaller groups while group by overlap favours
fewer but larger groups.

5.3.2 ORT and IRT

The ORT and IRT input parameters for our GROUP_TRAJECTORIES implementations
influence their sensitivity towards identifying groups.

Using the dataset in Figure 12, we tested our GROUP_TRAJECTORIES
implementations for various values of ORT and IRT. The results are shown in Figure 15.

Figure 15 Groups (identified by colour) computed by both of our methods for ORT = IRT = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7 (min_support = 4, min_length = 4), (a) group by overlap
(b) group by intersection

(a)

(b)

We observe that for lower values of ORT and IRT, the identified groups become larger in
size, but fewer groups are identified. This behaviour is expected, as a lower threshold
provides less constraints on the formation of groups. For larger values for ORT and IRT
on the other hand, the algorithms become more restrictive in terms of identifying and
merging groups, and other more subtle patterns are detected.

In the example shown in Figure 15, the group by overlap method identifies larger
groups for low values of ORT, and reports the entire spirals. The identified groups
become closer to the initial set of groups of trajectories in the spirals as the value for ORT
increases. For large values of ORT, there is insufficient overlap between parallel paths
and the reported groups become smaller to a point where individual trajectories are not
grouped any more and are being discarded as singletons. For the group by intersection
method, we observe that the number of groups reported increases with increasing values
for IRT as the algorithm becomes more and more discriminating between the initial
groups formed by frequent itemset mining. A summary of the number of groups reported
as a function of ORT = IRT is given in Figure 16.

 106 O. Baltzer et al.

Figure 16 Relationship between the number of identified groups and values for ORT and IRT

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
um

be
ro

fg
ro

up
s

OST/AST

Number of groups vs. OST/AST

Group by Overlap
Group by Intersection

5.4 Real world data

For the evaluation of our methods on real-world data, we have chosen the school buses
dataset that can be freely obtained from Theodoridis (2003). The dataset contains
145 trajectories of buses that are moving in and around an urban area.

Figure 17(a) shows the majority of the dataset around the urban center (a few routes
going to far out places were removed to better display the data). Figure 17(b) represents
the 76 groups that are identified by applying only frequent pattern mining (as, e.g., in
Gidófalvi and Pedersen, 2006; Mamoulis et al., 2004; Cao et al., 2005) plus a minimum
length cutoff as used in our methods. The large number of groups reported by
frequent-pattern-mining-based methods is often a disadvantage because it may lead to
very little aggregation in an OLAP setting. Figure 17(c) shows the groups reported by the
group by overlap method for ORT values 0.4, 0.5, 0.6, and 0.7. We observe that the
parameter ORT in our group by overlap method allows for a much finer control over the
grouping of trajectories reported and that this method reports a considerably smaller
number of groups when compared to the original number of frequent patterns.
Additionally, the groups found by the group by overlap algorithm are significantly more
distinct than the original frequent itemsets and one can distinguish sets of trajectories that
appear to be grouped due to their spatial proximity and the locations they share. For
example, the orange group in Figure 17(c) for ORT = 0.5 primarily includes trajectories
in the southern region of the sample dataset. For the larger ORT values of 0.6 and 0.7,
however, this group is no longer identified as the overlap among trajectories in this group
as it does not satisfy the ORT constraint anymore. The groups that remain for ORT values
of 0.6 and 0.7 are spatially smaller and denser groups where many trajectories share
locations within a smaller spatial region. This selectivity of groups depending on the
values of ORT makes the group by overlap algorithm a good choice for the analysis of
the given dataset. It furthermore enables an interactive exploration of moving object data
and helps discovering hidden relationships among the moving objects.

 OLAP for moving object data 107

Figure 17 Results obtained for the school buses dataset, (a) Entire dataset (b) Groups
reported (identified by colour) using frequent itemset mining only (76 groups)
(c) Groups reported (identified by colour) using group by overlap and ORT = 0.4, 0.5,
0.6, 0.7 (min_support = 5, min_length = 30) (d) Groups reported (identified by colour)
using group by intersection and IRT = 0.05, 0.35, 0.64, 0.95 (min_support = 9,
min_length = 18)

(a) (b)

(c)

(d)

Figure 17(d) shows groups within the real-world dataset that have been identified using
our group by intersection algorithm. At a first glance the groups that are identified by the
group by intersection algorithm are not as distinct as those identified by the group by
overlap algorithm. However, the group by intersection algorithm does exhibit a very
subtle selection of groups with properties that satisfy the IRT. Assume the example
dataset represents the trajectories of roaming individuals and the subject of the analysis is
the spreading of an infectious disease, where a transfer of the disease is only likely when
a critical mass of individuals in the same location is met. Given an IRT value of 0.05, i.e.,

 108 O. Baltzer et al.

a critical mass of 5% of the population in a particular location, we can see in the leftmost
plot in Figure 17(d), that there are two distinct groups (red and green) which are able to
carry the disease. If the critical mass increases to 65%, i.e., IRT = 0.65 (third plot from
the left), we observe that the group by intersection algorithm identifies more distinct
groups that can carry the disease, however, the population of each group is much smaller.
Assuming the origin of a disease infection is known, the use of this algorithm can help to
quickly identify populations that may be at risk.

6 Summary

In this paper, we have introduced a novel approach for the evaluation of group-by
queries over trajectories to facilitate an OLAP-like analysis of moving object data. We
introduced the concept of the GROUP_TRAJECTORIES group-by operator and provided
two implementations of this operator. Our approach builds on top of the established
frequent pattern mining method, which is readily available in many data warehousing
systems, while improving its results by making them more suitable for interactive
analysis. Each of our two algorithms is designed to group trajectories that exhibit a
particular type of movement and we support this claim with a detailed experimental
evaluation using synthetic and real-world datasets.

References
Agarwal, P.K., Arge, L. and Erickson, J. (2003) ‘Indexing moving points’, Journal of Computer

and System Sciences, Vol. 66, No. 1, pp.207–243.
Agrawal, R. and Srikant, R. (1995) ‘Mining sequential patterns’, Proceedings of the 11th

International Conference on Data Engineering, IEEE Computer Society, pp.3–14.
Agrawal, R., Imieliński, T. and Swami, A. (1993) ‘Mining association rules between sets of items

in large databases’, ACM SIGMOD Record, Vol. 22, No. 2, pp.207–216.
Andersson, M., Gudmundsson, J., Laube, P. and Wolle, T. (2007) ‘Reporting leadership patterns

among trajectories’, Proceedings of the 2007 ACM Symposium on Applied Computing, ACM,
pp.3–7.

Anwar Hossain, Md. and Bazlur Rashid, A.N.M. (2012) ‘Challenging issues of spatio-temporal
data mining’, Computer Engineering and Intelligent Systems, Vol. 3, No. 4, pp.55–63.

Baltzer, O. (2011) ‘Computational methods for spatial OLAP’, PhD thesis, Dalhousie University.
Baltzer, O., Dehne, F., Hambrusch, S. and Rau-Chaplin, A. (2008) ‘OLAP for trajectories’, Proc.

Database and Expert Systems Applications (DEXA), Springer, pp.340–347.
Benetis, R., Jensen, C.S., Karĉiauskas, G. and Ŝaltenis, S. (2006) ‘Nearest and reverse nearest

neighbor queries for moving objects’, The VLDB Journal The International Journal on Very
Large Data Bases, Vol. 15, No. 3, pp.229–249.

Benkert, M., Gudmundsson, J., Huebner, F. and Wolle, T. (2006) ‘Reporting flock patterns’,
Lecture Notes in Computer Science, Vol. 4168, pp.660–671, Springer.

Cao, H., Mamoulis, N. and Cheung, D.W. (2005) ‘Mining frequent spatio-temporal sequential
patterns’, Proceedings of the 5th International Conference on Data Mining, IEEE Computer
Society, pp.82–89.

Chaudhuri, S. and Dayal, U. (1997) ‘An overview of data warehousing and OLAP technology’,
ACM SIGMOD Record, Vol. 26, No. 1, pp.65–74.

Chen, J. and Meng, X. (2009) ‘Update-efficient indexing of moving objects in road networks’,
GeoInformatica, Vol. 13, No. 4, pp.397–424.

 OLAP for moving object data 109

Ding, Z. and Guting, R.H. (2004) ‘Managing moving objects on dynamic transportation networks’,
Proceedings of the 16th International Conference on Scientific and Statistical Database
Management, IEEE Computer Society, pp.287–296.

Ester, M., Kriegel, H-P., Sander, J. and Xu, X. (1996) ‘A density-based algorithm for discovering
clusters in large spatial databases with noise’, Proceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining, AAAI Press, pp.226–231.

Gidófalvi, G. and Pedersen, T.B. (2006) ‘Mining long, sharable patterns in trajectories of moving
objects’, STDBM ‘06: Proceedings of the 3rd Workshop on Spatio-Temporal Database
Management.

Gidófalvi, G. and Pedersen, T.B. (2009) ‘Mining long, sharable patterns in trajectories of moving
objects’, GeoInformatica, Vol. 13, No. 1, pp.27–55.

Gómez, L.I., Kuijpers, B. and Vaisman, A.A. (2008) ‘Aggregation languages for moving object and
places of interest data’, Proceedings of the 2008 ACM Symposium on Applied Computing
(SAC08), ACM, pp.857–862.

Gudmundsson, J., van Kreveld, M. and Speckmann, B. (2004) ‘Efficient detection of motion
patterns in spatio-temporal data sets’, Proceedings of the 12th ACM International Workshop
on Geographic Information Systems, ACM, pp.250–257.

Güting, R.H. and Schneider, M. (2005) Moving Objects Databases, Morgan Kaufmann, San
Francisco, CA, USA.

Hadjieleftheriou, M., Kollios, G., Tsotras, V.J. and Gunopulos, D. (2002) ‘Efficient indexing of
spatiotemporal objects’, Proceedings of the 8th International Conference on Extending
Database Technology: Advances in Database Technology, pp.251–268.

Han, J. and Kamber, M. (2001) Data Mining: Concepts and Techniques, Morgan Kaufmann,
Walttham, MA, USA.

Han, J., Dong, G. and Yin, Y. (1999) ‘Efficient mining of partial periodic patterns in time series
database’, Proceedings of the 15th International Conference on Data Engineering, IEEE
Computer Society, Vol. 99, pp.106–115.

Han, J., Pei, J., Yin, Y. and Mao, R. (2004) ‘Mining frequent patterns without candidate generation:
a frequent-pattern tree approach’, Data Mining and Knowledge Discovery, Vol. 8, No. 1,
pp.53–87.

Har-Peled, S. (2004) ‘Clustering motion’, Discrete and Computational Geometry, Vol. 31, No. 4,
pp.545–565.

Hartigan, J.A. (1975) Clustering Algorithms, John Wiley & Sons, New York, NY, USA.
Hwang, S.Y., Liu, Y.H., Chiu, J.K. and Lim, E.P. (2005) ‘Mining mobile group patterns: a

trajectory-based approach’, Proceedings of the 9th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp.713–718.

Kollios, G., Gunopulos, D. and Tsotras, V.J. (1999) ‘On indexing mobile objects’, Proceedings of
the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pp.261–272.

Kriegel, H-P. and Pfeifle, M. (2005) ‘Clustering moving objects via medoid clusterings’,
Proceedings of the 17th International Conference on Scientific and Statistical Database
Management, Lawrence Berkeley Laboratory, pp.153–162.

Kuijpers, B. and Vaisman, A.A. (2007) ‘A data model for moving objects supporting aggregation’,
Proceedings of the 23rd International Conference on Data Engineering, IEEE Computer
Society, pp.546–554.

Laube, P. and Imfeld, S. (2002) ‘Analyzing relative motion within groups of trackable
moving point objects’, Proceedings of the Second International Conference on Geographic
Information Science, Springer, pp.132–144.

Laube, P., van Kreveld, M. and Imfeld, S. (2004) ‘Finding REMO – detecting relative motion
patterns in geospatial lifelines’, Proceedings of the 11th International Symposium on Spatial
Data Handling, Springer, pp.201–214.

 110 O. Baltzer et al.

Leonardi, L., Marketos, G., Frentzos, E., Giatrakos, N., Orlando, S., Pelekis, N., Raffaetà, A.,
Roncato, A., Silvestri, C. and Theodoridis, Y. (2010) ‘T-warehouse: visual OLAP analysis on
trajectory data’, 2010 IEEE 26th International Conference on Data Engineering (ICDE),
IEEE, pp.1141–1144.

Li, Y., Han, J. and Yang, J. (2004) ‘Clustering moving objects’, Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM,
pp.617–622.

Li, Z., Han, J., Ji, M., Tang, L-A., Yu, Y., Ding, B., Lee, J-G. and Kays, R. (2011) ‘Movemine:
mining moving object data for discovery of animal movement patterns’, ACM Trans. Intell.
Syst. Technol., Vol. 2, No. 4, pp.37.1–37.32.

Li, Z., Ji, M., Lee, J-G., Tang, L-A., Yu, Y., Han, J. and Kays, R. (2010) ‘Movemine: mining
moving object databases’, SIGMOD.

Liu, G., Lu, H., Yu, J.X. and Wei, W. (2003) ‘AFOPT: an efficient implementation of pattern
growth approach’, Proc. ICDM.

López, I.F.V., Snodgrass, R.T. and Moon, B. (2005) ‘Spatiotemporal aggregate computation:
a survey’, IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 2,
pp.271–286.

Ma, S. and Hellerstein, J.L. (2001) ‘Mining partially periodic event patterns with unknown
periods’, Proceedings of the 17th International Conference on Data Engineering, IEEE
Computer Society, pp.205–214.

Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y. and Cheung, D.W. (2004)
‘Mining, indexing, and querying historical spatiotemporal data’, Proceedings of the 2004
International Conference on Knowledge Discovery and Data Mining, ACM, pp.236–245.

Marchand, P., Brisebois, A., Bédard, Y. and Edwards, G. (2004) ‘Implementation and evaluation of
a hypercube-based method for spatiotemporal exploration and analysis’, ISPRS Journal of
Photogrammetry & Remote Sensing, Vol. 59, No. 1, p.620.

Mokbel, M., Ghanem, T. and Aref, W. (2003) ‘Spatio temporal access methods’, IEEE Data
Engineering Bulletin, Vol. 26, pp.40–49.

Nanni, M. and Pedreschi, D. (2006) ‘Time-focused clustering of trajectories of moving objects’,
J. Intell. Inf. Syst., Vol. 27, No. 3, pp.267–289.

Papadias, D., Kalnis, P., Zhang, J. and Tao, Y. (2001) ‘Efficient OLAP operations in spatial data
warehouses’, SSTD’01: Proceedings of the 7th International Symposium on Advances in
Spatial and Temporal Databases, Springer-Verlag, London, UK, pp.443–459.

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U. and Hsu, M.C. (2001)
‘PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern’, IEEE Int.
Conference on Data Engineering.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U. and Hsu, M-C. (2004)
‘Mining sequential patterns by pattern-growth: the PrefixSpan approach’, IEEE Transactions
on Knowledge and Data Engineering, Vol. 16, No. 11, pp.1424–1440.

Peng, W.C. and Chen, M.S. (2003) ‘Developing data allocation schemes by incremental mining of
user moving patterns in a mobile computing system’, IEEE Transactions on Knowledge and
Data Engineering, Vol. 15, No. 1, pp.70–85.

Pfoser, D., Jensen, C.S. and Theodoridis, Y. (2000) ‘Novel approaches in query processing for
moving object trajectories’, Proceedings of the 26th International Conference on Very Large
Data Bases, pp.395–406.

Porkaew, K., Lazaridis, I. and Mehrotra, S. (2001) ‘Querying mobile objects in spatio-temporal
databases’, Proc. of 7th SSTD, p.307.

Procopiuc, C.M., Agarwal, P.K. and Har-Peled, S. (2002) ‘STAR-tree: an efficient self-adjusting
index for moving objects’, Algorithm Engineering and Experiments: 4th International
Workshop, ALENEX 2002, 4–5 January 2002, revised papers, San Francisco, CA, USA.

 OLAP for moving object data 111

Saltenis, S. and Jensen, C.S. (2002) ‘Indexing of moving objects for location-based services’,
Proceedings of the 18th International Conference on Data Engineering, IEEE Computer
Society, pp.463–472.

Ŝaltenis, S., Jensen, C.S., Leutenegger, S.T. and Lopez, M.A. (2000) ‘Indexing the positions of
continuously moving objects’, ACM SIGMOD Record, Vol. 29, No. 2, pp.331–342.

Sclaroff, S., Kollios, G. and Betke, M. (2001) ‘Motion mining: discovering spatio-temporal
patterns in databases of human motion’, Proceedings of the 2001 ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, ACM.

Shim, C.B. and Chang, J.W. (2003) ‘A new similar trajectory retrieval scheme using k-warping
distance algorithm for moving objects’, Proceedings of the 4th International Conference on
Advances in Web-Age Information Management, Springer, pp.433–444.

Sinha, G. and Mark, D.M. (2005) ‘Measuring similarity between geospatial lifelines in studies of
environmental health’, Journal of Geographical Systems, Vol. 7, No. 1, pp.115–136.

Sistla, A.P., Wolfson, O., Chamberlain, S. and Dao, S. (1997) ‘Modeling and querying moving
objects’, Proceedings of the 13th International Conference on Data Engineering, IEEE
Computer Society, pp.422–432.

Tao, Y., Papadias, D. and Sun, J. (2003) ‘The TPR*-tree: an optimized spatio-temporal access
method for predictive queries’, VLDB, pp.790–801.

Theodoridis, Y. (2003) ‘The R-tree-portal’, available at http://www.rtreeportal.org/ (accessed on
30 July 2012).

Tsoukatos, I. and Gunopulos, D. (2001) ‘Efficient mining of spatiotemporal patterns’, Proceedings
of the 7th International Symposium on Advances in Spatial and Temporal Databases,
Springer, pp.425–442.

Vaisman, A. (2012) ‘Business intelligence’, in Aufaure, Marie-Aude and Zimányi, Esteban (Eds.):
Tutorial Lectures Series: Lecture Notes in Business Information Processing, Chapter ‘Data
warehouses: next challenges’, Vol. 96, pp.1–26, Springer Verlag, First European Summer
School, eBISS 2011, Paris, France, 3–8 July 2011.

Vlachos, M., Kollios, G. and Gunopulos, D. (2002) ‘Discovering similar multidimensional
trajectories’, Proceedings of the 18th International Conference on Data Engineering, IEEE
Computer Society, pp.673–684.

Wang, Y., Lim, E-P. and Hwang, S-Y. (2003) ‘On mining group patterns of mobile users’, in
Marík, V., Retschitzegger, W. and Stepánková, O. (Eds.): DEXA, Vol. 2736 of Lecture Notes
in Computer Science, pp.287–296, Springer.

Wolfson, O., Xu, B., Chamberlain, S. and Jiang, L. (1998) ‘Moving objects databases: issues and
solutions’, Proceedings of the 10th International Conference on Scientific and Statistical
Database Management, IEEE Computer Society, pp.111–122.

Yan, X., Han, J. and Afshar, R. (2003) ‘CloSpan: mining closed sequential patterns in large
datasets’, Proceedings of the 3rd SIAM International Conference on Data Mining, Society for
Industrial and Applied Mathematics, pp.166–177.

Yang, J., Wang, W., Yu, P.S. and Han, J. (2002) ‘Mining long sequential patterns in a noisy
environment’, Proceedings of the 2002 International Conference on Management of Data,
ACM, pp.406–417.

Yazdani, N. and Ozsoyoglu, Z.M. (1996) ‘Sequence matching of images’, Proceedings of the
Eighth International Conference on Scientific and Statistical Database Management,
pp.53–62.

Yim, J., Joo, J. and Park, C. (2011) ‘A Kalman filter updating method for the indoor moving object
database’, Expert Systems with Applications, Vol. 38, No. 12, pp.15075–15083.

Yip, K. and Zhao, F. (1996) ‘Spatial aggregation: theory and applications’, Journal of Artificial
Intelligence Research, Vol. 5, pp.1–26.

 112 O. Baltzer et al.

Zaki, M.J. (2001) ‘SPADE: an efficient algorithm for mining frequent sequences’, Machine
Learning, Vol. 42, No. 1, pp.31–60.

Zeinalipour-Yazti, D., Lin, S. and Gunopulos, D. (2006) ‘Distributed spatio-temporal similarity
search’, Proceedings of the 15th ACM International Conference on Information and
Knowledge Management, ACM, pp.14–23.

Zhang, R., Jagadish, H.V., Dai, B.T. and Ramamohanarao, K. (2010) ‘Optimized algorithms for
predictive range and KNN queries on moving objects’, Information Systems, Vol. 35, No. 8,
pp.911–932.

