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ABSTRACT
One of the most powerful and prominent technologies for knowledge discovery in decision support systems 
is online analytical processing (OLAP). Most of the traditional OLAP research, and most of the commercial 
systems, follow the static data cube approach proposed by Gray et.al. and materialize all or a subset of the 
cuboids of the data cube in order to ensure adequate query performance. Practitioners have called for some 
time for a real-time OLAP approach where the OLAP system gets updated instantaneously as new data ar-
rives and always provides an up-to-date data warehouse for the decision support process. However, a major 
problem for real-time OLAP is the significant performance issues with large scale data warehouses. The aim 
of our research is to address these problems through the use of efficient parallel computing methods. In this 
paper, we present a parallel real-time OLAP system for multi-core processors. To our knowledge, this is the 
first real-time OLAP system that has been parallelized and optimized for contemporary multi-core architec-
tures. Our system allows for multiple insert and multiple query transactions to be executed in parallel and in 
real-time. We evaluated our method for a multitude of scenarios (different ratios of insert and query transac-
tions, query transactions with different amounts of data aggregation, different database sizes, etc.), using the 
TPCDS “Decision Support” benchmark data set. As multi-core test platforms, we used an Intel Sandy Bridge 
processor with 4 cores (8 hardware supported threads) and an Intel Xeon Westmere processor with 20 cores 
(40 hardware supported threads). The tests demonstrate that, with increasing number of processor cores, our 
parallel system achieves close to linear speedup in transaction response time and transaction throughput. On 
the 20 core architecture we achieved, for a 100 GB database, a better than 0.25 second query response time 
for real-time OLAP queries that aggregate 25% of the database. Since hardware performance improvements 
are currently, and in the foreseeable future, achieved not by faster processors but by increasing the number 
of processor cores, our new parallel real-time OLAP method has the potential to enable OLAP systems that 
operate in real-time on large databases.
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1. INTRODUCTION

This paper reports on the results of an IBM 
funded research project to investigate the use 
of multi-core processors for high performance, 
real-time, online analytical processing (OLAP). 
Such OLAP systems are at the heart of many 
business analytics applications. The ever 
growing data warehouses built by corporate 
and institutional users have lead to significant 
performance bottlenecks which motivated this 
research project.

1.1. Background

Decision Support Systems (DSS) are designed 
to empower the user with the ability to make ef-
fective decisions regarding both the current and 
future state of an organization. To do so, the DSS 
must not only encapsulate static information, 
but it must also allow for the extraction of pat-
terns and trends that would not be immediately 
obvious. Users must be able to visualize the 
relationships between such things as customers, 
vendors, products, inventory, geography, and 
sales. Moreover, they must understand these 
relationships in a chronological context since it 
is the time element that ultimately gives meaning 
to the observations that are formed. One of the 
most powerful and prominent technologies for 
knowledge discovery in DSS environments is 
online analytical processing (OLAP).

OLAP is the foundation for a wide range 
of essential business applications, including 
sales and marketing analysis, planning, bud-
geting, and performance measurement (Han, 
2000 & The OLAP Report). The processing 
logic associated with this form of analysis is 
encapsulated in what is known as the OLAP 
server. By exploiting multidimensional views 
of the underlying data warehouse, the OLAP 
server allows users to “drill down” or “roll 
up” on hierarchies, “slice and dice” particular 
attributes, or perform various statistical opera-
tions such as ranking and forecasting. Figure 
1 illustrates the basic model where the OLAP 
server represents the interface between the data 

warehouse proper and the reporting and display 
applications available to end users.

To support this functionality, OLAP relies 
heavily upon a classical data model known as 
the data cube (Gray, 1997). Conceptually, the 
data cube allows users to view organizational 
data from different perspectives and at a variety 
of summarization levels. It consists of the base 
cuboid, the finest granularity view contain-
ing the full complement of d dimensions (or 
attributes), surrounded by a collection of 2d-1 
sub-cubes/cuboids that represent the aggre-
gation of the base cuboid along one or more 
dimensions. Figure 2 illustrates a small four-
dimensional data cube that might be associated 
with the automotive industry. In addition to the 
base cuboid, one can see a number of various 
planes and points that represent aggregation 
at coarser granularity. Note that each cell in 
the cube structure corresponds to an aggregate 
value along one or more measure attributes 
(e.g. total sales).

Most of the traditional OLAP research, 
and most of the commercial systems, follow 
the static data cube approach proposed by 
Gray (1997) and materialize all or a subset of 
the cuboids of the data cube in order to ensure 
adequate query performance. Building the data 
cube can be a massive computational task, and 
significant research has been published on 
sequential and parallel data cube construction 
methods (e.g. (Chen, 2008 & Dehne, 2002 & 
Gray, 1997 & GuoLiang, 2010 & Ng, 2001 & 
You, 2008)). However, the traditional static data 
cube approach has several disadvantages. The 
OLAP system can only be updated periodically 
and in batches, e.g. once every week. Hence, 
latest information cannot be included in the 
decision support process. The static data cube 
also requires massive amounts of memory space 
and leads to a duplicate data repository that is 
separate from the online transaction processing 
(OLTP) system of the organization. Several 
practitioners have therefore called for some 
time for an integrated OLAP/OLTP approach 
with a real-time OLAP system that gets updated 
instantaneously as new data arrives and always 
provides an up-to-date data warehouse for 
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the decision support process (e.g. (Bruckner, 
2002)). Some recent publications have tried to 
address this problem by providing “quasi real-
time” incremental maintenance schemes and 
loading procedures for static data cubes (e.g. 
(Bruckner, 2002 & Jin, 2008 & Santos, 2008 
& Santos, 2009)). However, these approaches 
are not fully real-time. A major problem is 
significant performance issues with large scale 
data warehouses. The aim of our research is to 
address these performance problems through 
the use of efficient parallel multi-core comput-
ing methods.

1.2. Contributions

In this paper, we present a parallel real-time 
OLAP system for multi-core processors. To 
our knowledge, this is the first real-time OLAP 
system that has been parallelized and optimized 
for contemporary multi-core processors. Our 
system is an in-memory data management sys-
tem for OLAP (Plattner, 2012) that allows for 
multiple insert and multiple query operations 
to be executed in parallel and in real-time. It is 
based on a new parallel data structure termed 
PDC-tree. The basic mechanism is outlined in 
Figure 3. In order to process an input stream of 
OLAP insert and OLAP query transactions in 
real-time, our PDC-tree data structure allows for 

Figure 1. Three-tiered OLAP model
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the concurrent execution of these transactions 
through multiple threads executed in parallel 
on a multi-core processor. Here we employ two 
types of parallelism: executing multiple OLAP 
transactions in parallel and further speeding up 
individual OLAP transactions by assigning each 
of them multiple parallel execution threads.

The main challenge is the possible in-
terference between parallel insert and query 
transactions, as well as between parallel inserts 
operating on the same portion of the tree data 
structure. For example, each OLAP query has 
to include all data from prior OLAP insert 
transactions, including those recent insert 
transactions that are not yet completed and are 
being executed in parallel with current OLAP 
query transactions. A straightforward solution 
would e.g. lock subtrees on which an insert is 
being performed. This would however lead to 

significant wait times for other queries and result 
in a method where the performance does not 
scale with increasing number of processor cores. 
Our main contribution is the design of a mini-
mal locking scheme which allows concurrent 
insert and query transactions to move “freely” 
and which detects and recovers transactions 
working on invalid or incomplete data.

We evaluated our method for a multitude 
of scenarios (different ratios of insert and query 
transactions, query transactions with different 
amounts of data aggregation, different data-
base sizes, etc.), using the TPCDS “Decision 
Support” benchmark data set. As multi-core 
test platforms, we used an Intel Sandy Bridge 
processor with 4 cores (8 hardware supported 
threads) and an Intel Xeon Westmere processor 
with 20 cores (40 hardware supported threads). 
The tests demonstrate that our parallel real-time 

Figure 2. A three dimensional data cube for automobile sales data
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OLAP system scales with increasing number 
of processor cores and achieves a close to lin-
ear speedup in transaction response time and 
throughput on contemporary multi-core proces-
sors. On the 20 core architecture we achieved a 
better than 0.25 second query response time for 
real-time OLAP queries that aggregate 25% of 
a 100 GB database. Since, for the foreseeable 
future, hardware performance improvements 
are achieved not by faster processors but by 

increasing the number of processor cores, our 
new parallel real-time OLAP method has the 
potential to enable OLAP systems that operate 
in real-time on large databases.

The remainder of this paper is organized 
as follows. In Section “Review: Multi-Dimen-
sional Index Structures for Real-Time OLAP 
on Multi-core Processors”, we review related 
previous results and in Section “A Parallel DC-
Tree (PDC-Tree) Data Structure for Parallel 

Figure 3. A PDC-tree: In order to process an input stream of OLAP insert and OLAP query 
transactions in real-time, we provide speedup through concurrent execution of transactions on 
a multi-core processor
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Real-Time OLAP”, we present our parallel 
algorithms for real-time OLAP on multi-core 
processors. In Section “Experimental Evalua-
tion”, we analyze the performance of our method 
on two contemporary multi-core platforms and 
Section “Conclusions” concludes our paper.

2. REVIEW: MULTI-
DIMENSIONAL INDEX 
STRUCTURES FOR REAL-
TIME OLAP ON MULTI-
CORE PROCESSORS

Building a parallel real-time OLAP data ware-
house is related but considerably more complex 
than concurrent updates and searches in general 
OLTP databases which have been studied since 
the 90’s for example in (Banks, 1995 & Chakrab-
arti, 1999) and more recently in (Haritsa, 2000 & 
Lee, 2003). One major difference is that OLAP 
queries may need to aggregate large portions 
of the database whereas OLTP transactions are 
more local in nature. Concurrent operations in 
spatial databases have recently been studied 
e.g. in Dai (2009). Whereas such databases 
can process range queries over large portions 
of the DB, spatial database index structures are 
generally not efficient for the large number of 
dimensions typically required for OLAP. It is 
not unusual for OLAP systems to process data 
with 10, 15 or more dimensions. Another im-
portant difference are the elaborate dimension 
hierarchies which are typical for OLAP systems. 
To our knowledge, the only published fully 
dynamic data structure for OLAP queries on 
data cubes is the DC-tree introduced by Kriegel 
et.al. (Ester, 2000), which is a sequential tree 
based index structure specifically designed for 
data warehouses with dimension hierarchies. 
An extension of the DC-tree to handle special 
properties of the time dimension was recently 
published in (Ahmed, 2010). The DC-tree (Es-
ter, 2000) extends the X-tree (Berchtold, 1996) 
and R-tree (Guttman, 1984) data structures for 
multidimensional data indexing.

An OLAP database consists of several 
functional attributes, grouped into dimensions, 

and some dependent attributes, called measures. 
For dimensions with more than one functional 
attribute, these attributes are organized into 
hierarchy schemas. For example, the dimension 
customer can have functional attributes region, 
nation, customer ID. A DC-tree builds a partial 
ordering and concept hierarchy for each dimen-
sion. A concept hierarchy is a tree structure stor-
ing for a given dimension all values that occur 
in the DC-tree at a given time. Using the partial 
ordering defined by the concept hierarchy for 
each dimension, the DC tree extends the X-tree 
(Berchtold, 1996) and R-tree (Guttman, 1984) 
by replacing the standard minimum bounding 
rectangles (MBR) assigned to directory nodes 
by minimum describing rectangles (MDS). An 
MDS contains for each dimension a set of values 
at different levels of the dimension hierarchy, 
and describes a set of hyper rectangles which 
together contain the data stored in the respec-
tive subtree. The rationale for these minimum 
bounding rectangles is that they enable more 
efficient queries for the high dimensional data 
and multiple levels of granularity that are 
typical for OLAP. The DC-Tree includes two 
operations: Insert (Section 4.1 in Ester (2000)) 
and Range Query(Section 4.4 in Ester (2000)). 
When an insert causes a DC-tree node to exceed 
its capacity, this is handled by operations Split 
and Hierarchy Split(Section 4.2 and 4.3 in Ester 
(2000), respectively).

Even though the DC-tree was first pub-
lished more than 10 years ago, and despite the 
fact that it does provide an elegant algorithmic 
solution for real-time OLAP systems, the DC-
tree data structure has not found its way into 
commercial OLAP systems. A major problem 
is performance. For large data warehouses, 
pre-computed cuboids still outperform real-time 
data structures but of course with the major 
disadvantage of not allowing real-time updates, 
as discussed earlier. The main contribution of 
this paper is the design of a parallel DC-Tree 
(termed PDC-tree) for multi-core architectures. 
We demonstrate that the performance of our 
parallel DC-Tree method scales with increasing 
number of processor cores, thereby providing 
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the opportunity for real-time OLAP on large 
databases.

3. A PARALLEL DC-TREE (PDC-
TREE) DATA STRUCTURE FOR 
PARALLEL REAL-TIME OLAP

Our parallel DC-tree method (termed PDC-tree) 
consists of two parts: (1) An extension of the 
DC-tree data structure to help exploit parallel 
processing and (2) new algorithms PARAL-
LEL OLAP INSERT and PARALLEL OLAP 
QUERY to replace the Insert and Range Query 
operations in Ester (2000). The main challenge 
for our parallel DC-tree method is the possible 
interference between parallel insert and query 
operations, as well as between parallel insert 
operations operating on the same portion of the 
tree data structure. A straightforward solution 
would e.g. lock subtrees on which an insert is 
being performed. This would however lead 
to significant wait times for other queries and 
result in a method where the performance does 
not scale with increasing number of processor 
cores. Our solution consists of three parts: (1) A 
minimal locking scheme where insert operations 
only lock the node they are currently updating 
instead of the entire subtree. This can however 
result in concurrent other transactions working 
on invalid or incomplete data. (2) A timestamp 
mechanism added to the DC-tree data structure 
which allows for concurrent transactions to 
detect when they are working on invalid or 
incomplete data. (3) A set of horizontal sibling 
links added to the DC-tree structure which 
allows transactions to recover after they have 
detected that they were working on invalid or 
incomplete data.

Our method includes features that are 
similar to previously presented parallelizations 
of B-trees and R-trees. Kornacker and Banks 
(1995) presented the first parallel R-tree by 
adding two features to regular R-trees: a LSN 
(logical sequence number) and rightward links 
for each node. Their methods were improved 
in (Song, 2004) and (K., 1998) by introducing 
a new directory node structure and applying 

node copying strategies at the time of split. 
However, these methods for B-trees and R-trees 
are considerably simpler than our parallelization 
of DC-trees presented here. The DC-tree data 
structure is much more complicated than R-trees 
and B-trees because it needs to deal efficiently 
with very high dimensional data, intricate di-
mension hierarchies and data aggregation, all of 
which are not considered for R-trees or B-trees 
and their parallelizations. For example, the 
variety of node types in DC-trees is much more 
involved, and the directory node split strategies 
for DC-trees are much more complicated. As 
discussed in the remainder of this paper, this 
leads to many new problems and our solution 
includes many novel features that are needed 
for an efficient and scalable parallelization of 
DC-trees for parallel real-time OLAP.

3.1. Extension of the DC-
Tree Data Structure

We first describe our extension of the DC-tree 
data structure to handle multiple parallel trans-
actions (insert and query operations). There are 
three types of nodes in a DC-tree: data nodes 
which are leaves of the tree, directory nodes 
which are internal index nodes and super nodes 
which are directory nodes with unlimited capac-
ity. The directory nodes are the backbone of the 
DC-tree index. Next, we describe our extension 
of these directory nodes.

An illustration of an extended directory 
node is shown in Figure 4. The blue entries 
show the original DC-Tree entries as presented 
in Ester (2000): MDS is the minimum describing 
set for the subtree rooted at the given directory 
node, M is the aggregate measure of all data in 
the subtree, and a link provides a reference to 
each child node. The MDS is used for the rout-
ing of OLAP queries and the M entry is used 
for data aggregation in OLAP queries. The red 
entries in Figure 4 are those that we are adding 
for the parallel DC-Tree. These new entries 
include: (1) a time stamp TS which records 
the time of the most recent modification of the 
directory node, (2) a link to the right sibling of 
the given directory node, and (3) MDS and TS 
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entries for each child link, recording the MDS 
and TS values for those children. The TS entry is 
for concurrent transactions to detect when they 
are working on invalid or incomplete data. The 
link to the right sibling will allow transactions 
to recover after they have detected that they 
were working on invalid or incomplete data. 
The MDS and TS entries for each child link will 
allow to further reduce the number of locks. In 
the following Sections “Algorithm PARALLEL 
OLAP INSERT” and “Algorithm PARALLEL 
OLAP QUERY” we will outline our method 
in more detail by presenting new parallel DC-
Tree operations PARALLEL OLAP INSERT 
and PARALLELOLAPQUERY, respectively.

3.2. Algorithm PARALLEL 
OLAP INSERT

An outline of our PARALLEL OLAP INSERT 
method is shown in Algorithm 1. In the fol-
lowing, we will discuss this algorithm in more 
detail. For a new data item N, the algorithm 
starts tracing down the tree using the MDS 
information (Steps 24). At each directory node, 
three cases may occur. If Nis contained in the 
MDS of exactly one child, then the algorithm 
proceeds to that child (Step 2). If Nis contained 
in the MDS of more than one child (overlap), 
then the algorithm proceeds to the child with 
the smallest subtree (Step 3) in order to balance 
subtree sizes. If Nis not contained in the MDS 
of any child, then N needs to be added to the 
child whose MDS update leads to a minimum 
overlap between children in order to maintain 
the efficiency of search queries (Step 4). Al-
gorithm 1 performs this operation without any 
node locking by fisiz creating a copy of the 

respective directory node, performing all of 
the above operations on the copy, and ficreat 
inserting the new directory node with a single 
link update. Note, however, that search queries 
passing through this node during the update 
may not become aware of the update and may 
therefore miss the newly inserted data item 
N. As discussed later, Algorithm 2 for search 
queries will detect and correct this with the help 
of the time stamp (TS) and right sibling entries 
added to the modified directory node. After 
Steps 1 to 4 of Algorithm 1 are completed, a 
leaf directory node has been found where the 
new data item N can be inserted. The remain-
ing Steps 5 to 11 will trace the path back to the 
root and update the MDS entries of all direc-
tory nodes on the path. Note that, during this 
process at most two nodes are locked at any 
point in time: the current node and its parent. 
This is necessary to correctly perform the split 
operation in Step 8 which is required when a 
directory node’s capacity is exceeded because 
of the new entry. In this case, a split operation 
has to be performed where directory node D is 
split into two directory nodes D and D’. For the 
split, we applied the sequential method in Ester 
(2000), Sections 4.2 and 4.3. As discussed at 
the end of this section, we also experimented 
with parallelizing the split operation itself. 
After D is split into two nodes D and D’, node 
D’ becomes the right sibling of D and we need 
to update the right sibling links accordingly. 
Furthermore, the time stamps of D and D’ will 
be set such that D’ receives the old time stamp 
of D (before the split) and D receives a new 
time stamp representing the current update. As 
discussed in the following Section “Algorithm 

Figure 4. Extended structure of a directory node for the Parallel DC-Tree. DC-Tree entries (blue): 
MDS (minimum describing set), M (measure), link to each child node. Additional entries for the 
parallel DC-Tree (red): TS (time stamp), link to sibling, MDS and TS for each child node link.
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PARALLEL OLAP QUERY”, this will be im-
portant for concurrent OLAP queries.

At any point in time, our PDC-tree data 
structure will be performing multiple concur-
rent PARALLEL OLAP INSERT operations 
executed by different threads of the multi-core 
processor. Any two such PARALLEL OLAP 
INSERT operations will not interfere unless 
they are attempting to perform a node split on 
the same directory node at the same time. This is 

our minimal node locking condition. Otherwise, 
there are no locks. In particular, at any point in 
time there can be multiple concurrent node split 
operations happening in the PDC-tree.

While the PARALLEL OLAP QUERY 
operations presented in the following section 
are also individually parallelized by applying 
multiple threads to each OLAP query operation, 
each individual PARALLEL OLAP INSERT 
operation as outlined above is single threaded. 

INPUT: N (new data item).  
 1: Set D=root.  
REPEAT 
 2: IFN is contained in the MDS of only one of the children  
    of D THEN set D equal to the directory node for that child.  
 3: IFN is contained in the MDS of more than one of the  
    entries of D THEN set D equal to the root of the child  
    subtree with minimum number of data nodes.  
 4: IFN is not contained in any MDS of a child of D THEN 
    4.1: Make a copy D’ of D. Note that this also copies the  
         MDS and TS values of the children because of our  
         extended directory node structure.  
    4.2: For each child C of D’: Add the new data item N to C  
         and calculate the MDS enlargement and overlap caused.  
    4.3: Set D = the child which causes minimal overlap.  
UNTILD is a leaf node.  
 5: Acquire a LOCK for D.  
REPEAT 
 6: Insert data item N into D and update the measure, MDS,  
    and time stamp (TS) of D.  
 7: Acquire a LOCK for the parent of D.  
 8: IF capacity of D is exceeded THEN 
    8.1: Split D into two directory nodes D and D’ as  
         outlined in Ester (2000), Sections  
        4.2 and 4.3.  
    8.2: Make D’ the right sibling of D and update the right  
         sibling links accordingly.  
    8.3: Set the time stamp TS of D’ equal to the old TS  
         value for D and assign D a new time stamp TS  
         representing the current update.  
 9: Update the Measure and MDS fields for the parent of D.  
10: Release the LOCK for D.  
11: Set D = parent of D.  
UNTIL no further update required OR D=root. 

Algorithm 1. PARALLEL OLAP INSERT
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We experimented with parallelizing the node 
split operation (Step 8) in Algorithm 1 which 
is the most time consuming part. As outlined in 
Ester (2000), Sections 4.2 and 4.3, a node split 
for a directory node D considers all “seed” pairs 
of entries in D, computes for each pair of seeds 
a node split by assigning all remaining entries 
to the closest seed element, and then chooses 
the best split of D with minimum overlap and 
volume. Clearly, one can also perform this 
operation in parallel using multiple threads. 
We experimented with this and it turns out that 
parallelizing the split operations is usually not 
beneficial for current multi-core processors. 
The reason is that a benefit would only occur 
if there are free compute resources available 
for additional threads. However, for a typical 
OLAP workload, such as the TPCDS benchmark 
used in our experiments (Section “Experimen-
tal Evaluations”), the number of concurrent 
transactions on the PDC-tree data structure 
usually exceeds the number of hardware threads 
available on current multi-core processors. In 
fact, parallelizing the split operations created 
additional context switching overheads in our 
experiments and we therefore switched the node 
split back to the sequential code. However, for 
future multi-core processors with many more 
processor cores, switching on the internal OLAP 
query parallelization described above could 
bring further performance benefits.

3.3. Algorithm PARALLEL 
OLAP QUERY

Our PARALLEL OLAP QUERY method shown 
in Algorithm 2 answers OLAP aggregate range 
queries. For a query range R (hyper rectangle 
on a cuboid/aggregate), it reports the aggregate 
measure value of all data items contained in 
R(e.g. total value of sales). In addition to the 
extended directory nodes outlined in Section 
“Extension of the DC-Tree Data Structure”, we 
add a stack S to each query in order to ensure 
proper execution. Stack S controls the tree 
traversal as well as the error recovery from a 
detected interference with a parallel insert. The 
query process starts at the root and proceeds 

downwards. At each directory node, all children 
are evaluated for possible overlap with the query 
range R (Step 4.3). For those dimensions where 
the child MDS and query are at different levels 
of the dimension hierarchy, the one with lower 
level needs to be converted to the higher level 
(Step 4.3.1). If a child MDS fully contains R, 
then the entire subtree is part of the result (Step 
4.3.2) and the query does not need to search 
inside the subtree. If a child MDS overlaps R, 
then that child is pushed into the stack S for 
further examination (Step 4.3.3). This leads 
to a branching off into multiple subtrees for 
those directory nodes where multiple children 
overlap R. The stack mechanism ensures that 
these subtrees are traversed in depth first order. 
For parallel transactions, the problem arising 
is that while one subtree of a directory node is 
being searched, the directory node itself could 
be modified by a parallel insert operation (e.g. a 
directory node split). This problem is addressed 
in the IF statement at the beginning of Step 4 
together with Steps 4.1 & 4.2. Assume that the 
search branches off into a subtree of node D and 
that, during that time, node D is modified by a 
parallel insert. When the search returns to node 
D, its “old” version D’ is on top of stack Sand 
a comparison of the time stamp of D’ and the 
current time stamp of D detects a difference, 
indicating a parallel update. Figure 5 shows an 
illustration. Directory node D1 is pushed into 
stack Sand then directory nodes D2 and D3. 
In the meantime, a concurrent insert causes a 
directory node split for D1 that updates its time 
stamp, creates a new sibling node D4 with the 
old time stamp of node D1, and redistributes 
the children. Node D3 is now a child of node 
D4. The concurrent search query completes its 
task and pops nodes D2 and D3 from the stack. 
However, when the search query wants to pop 
node D1 it detects that node D1 has been split.

In order for the search query to recover 
and report the correct result, the list of siblings 
maintained by the “Link to Sibling” pointers 
shown in Figure 4 should be traversed and 
added to stack S, thereby making sure that the 
subtrees are revisited and the newly inserted 
item is found. Note that, when a directory node 
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is split, its children are redistributed between 
the original and the newly added directory 
node. Therefore, we need to be careful when 
revisiting subtrees to not “double count” items 
by adding them twice to the aggregate measure 
value R. For each item in a revisited subtree, 
the time stamps recorded and contents of the 
stack S are sufficient to determine whether this 
item has already been counted or not.

As outlined in Section “Contributions”, 
our system employs two types of parallelism: 
executing multiple OLAP operations in paral-
lel and further speeding up individual OLAP 
operations by assigning each of them multiple 
parallel execution threads. For a directory node 
D, if multiple children of D have an MDS that 
overlaps the query range R, then these multiple 
subtrees need to be traversed. If this happens 
close to the root node then the sizes of these 
subtrees can be substantial. Therefore, we 
parallelize the search of the subtrees as shown 
in Step 4.3.3 of Algorithm 2. More precisely, 

for each child C of D that overlaps R but is 
not contained in R we create a new thread that 
executes Algorithm 2 with input parameters 
Rand C.

We note that our PARALLEL OLAP 
QUERY method creates no locks whatsoever 
and therefore creates no slowdown between 
parallel transactions. However, it can create 
additional work during the recovery phase of 
interfering parallel transactions. This could po-
tentially affect the scalability of our method. To 
which degree this does actually happen will be 
determined in our experimental evaluation in the 
following Section “Experimental Evaluation”.

4. EXPERIMENTAL 
EVALUATION

For our experimental evaluation, we used two 
multi-core hardware platforms shown in Table 1:

Figure 5. Usage of stack and timestamp mechanism to detect updates on already counted nodes 
in an OLAP query
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•	 An Intel Sandy Bridge processor with 
4 cores (8 hardware threads via hyper-
threading) and 16 GB memory;

•	 A dual socket Intel Westmere EX with 
20 cores (40 hardware threads via hyper-
threading) and 256 GB memory.

The main goal of our experimental evalu-
ation is to determine how our DC-Tree paral-
lelization scales when we increase the number 
of processor cores. As discussed in Section “A 

Parallel DC-Tree (PDC-Tree) Data Structure 
for Parallel Real-Time OLAP”, our PDC-tree 
algorithms use a minimal locking scheme which 
allows parallel transactions to execute inde-
pendently without concern about interference. 
Should such interference occur, our algorithm 
detects this and corrects the result during a 
recovery step. How much overhead is created 
during those recovery steps depends on the 
actual data and queries. Clearly, using random 
data and random queries does not provide a 

INPUT: R (MDS of the given query range), D (root node).
OUTPUT: Result (aggregate measure of all data items contained in R). 
Local Variable: Stack S. 
 1: Push D into stack S.  
REPEAT 
 2: Pop top item D’ from stack S.  
 3: Set D to the tree node corresponding to D’.  
 4: IF the time stamp (TS) of D’ is smaller (earlier) than  
    the time stamp (TS) of D THEN 
4.1: Using the ”Link to Sibling” field in directory nodes, tra-
verse the list of siblings of D. Push all siblings with time 
stamp (TS) larger (later) than the parent of D into stack S.  
    4.2: Push D into stack S.  
  ELSE 
    4.3: FOR each child C of D DO 
       4.3.1: For each dimension of C where C and R are at  
              different level in the dimension hierarchy,  
              convert the lower level entry to the higher level.  
       4.3.2: IFMDS of C is contained in R THEN add C to Result.  
       4.3.3: IFMDS of C overlaps R but is not contained in R  
              THEN create a new thread that executes  
              Algorithm 2 with input parameters R and C.  
UNTIL all threads are completed and stack S is empty. 

Table 1. The two hardware platforms used in our experiments 

Processor Number of Cores Memory Size

Intel 
Sandy Bridge

4 Cores
16 GB Memory

8 Hardware Threads (Hyper-threading)

Intel 
Xeon Westmere 
EX (2 Sockets)

20 Cores
256 GB Memory

40 Hardware Threads (Hyper-threading)

Algorithm 2. PARALLEL OLAP QUERY
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correct estimate because one would expect it 
to evenly distribute the parallel threads over the 
PDC-tree which would be a best case scenario 
for the amount of interference between concur-
rent transactions. What is needed is a realistic 
set of data and queries that provides real life 
scenarios. After discussions with members of 
the data analytics team at IBM/Cognos Canada, 
we selected the TPCDS “Decision Support” 
benchmark by the Transaction Processing 
Performance Council (TPCDS). The TPCDS 
benchmark provides transactions that model 
the decision support system of a retail product 
supplier. It includes OLAP queries and data 
insertions. (Decision support systems are based 
on historic corporate data and usually do not 
include data deletions.) The TPC benchmark and 
its variants are the standard and most widely 
used benchmarks for OLAP. As stated on the 
TPC website, “although the underlying business 
model of TPCDS is a retail product supplier, the 
database schema, data population, queries, data 
maintenance model and implementation rules 
have been designed to be broadly representative 
of modern decision support systems” (TPCDS).

Our PDC-tree algorithm was implemented 
in C++ with OpenMP, and compiled/executed on 
Linux kernel 2.6.38 using g++ 4.5.2. For each 
experiment, we first built an initial PDC-tree 
with TPCDS data and then tested our system 
with a stream of TDCDS insert and query 
transactions as shown in Figure 3. Another 
important parameter influencing query time 
(sequential or parallel) is the amount of data that 
an OLAP query needs to aggregate. Clearly, a 
query that computes an aggregate over 5% of 
the database has a much smaller workload than 
a query that computes an aggregate over 50% 
of the database. We refer to this parameter as 
query coverage, and we evaluate in our experi-
ments how our PDC-tree method performs for 
different query coverages.

4.1. Experiments on Intel 
Sandy Bridge (4 Cores)

Figures 6 (a & b) show the performance of 
the initial PDC-tree building phase. Here we 

show the average transaction response time 
and throughput when 400,000 initial PARAL-
LEL OLAP INSERT operations (with TPCDS 
data) are executed on 1, 2, 4, 8, and 16 threads, 
respectively. Figures 6 (c & d) show the average 
transaction response time and throughput for 
a subsequent set of 1,000 PARALLEL OLAP 
INSERT operations into an OLAP database 
with 400,000 loaded items. The performance in 
Figures 6(a & b) is lower because the fib) inserts 
into an initially small tree data structure create 
a relatively large number of expensive directory 
node splits and have a very high probability of 
query interference.

As shown in Figures 6(c & d), for a data-
base with 400,000 loaded items, performance 
improves significantly. In general, we observed 
that performance is better for larger data ware-
houses. The speedup shown in Figures 6(c & d) 
is approx. 40% of the maximum theoretically 
possible linear speedup. Considering that the 
cores of the Sandy Bridge processor share 
resources (e.g. memory bus), this is an en-
couraging result for a fully running system on 
“real life” benchmark data. The Sandy Bridge 
platform is clearly too small a platform with 
insufficient memory for a sufficiently large 
database. For larger data warehouses on a larger 
platform, as discussed in Section “Experiments 
on Intel Xeon Westmere EX (20 Cores)” below, 
the performance results are considerably better.

Figures 7, 8 and 9 show the performance 
(transaction response time and transaction 
throughput) for a stream of PARALLEL OLAP 
INSERT and PARALLEL OLAP QUERY 
transactions (using TPCDS benchmark data) 
executed on 1, 2, 4, 8, and 16 threads, respec-
tively. Note that the single thread code on one 
processor core is the sequential code only with 
all parallelization code (and possibly resulting 
overhead) removed. The different curves cor-
respond to different ratios between the number 
of insertions and queries (IOLAP insertions and 
QOLAP queries). Since the performance of a 
(sequential or parallel) OLAP query is strongly 
influenced by the query coverage, we provide 
three different graphs, Figure 7, Figure 8 and 
Figure 9 for queries that aggregate 1%, 5% and 
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25% of the entire database, respectively. In each 
case, we show response time and throughput 
for 1, 2, 4, 8, and 16 threads. In order to better 
show the speedup achieved, we show each set of 
curves in linear scale as well as in log-log scale. 
Our main observation is that we achieve about 
40% of optimal linear speedup. Considering that 
the cores of the Sandy Bridge processor share 
resources (e.g. memory bus), this is an encour-
aging result for a fully running system on such 
a small platform. We also observe that query 
transactions are considerably slower than insert 
transactions. This is typical (also for sequential 
transactions) since an insert corresponds to just 
one path down and back up the tree whereas 
query transactions may need to search multiple 

subtrees and may need to aggregate a sizeable 
portion of the database. In the mix of parallel 
insert and query transactions on the same da-
tabase, the speedup observed was best for the 
hardest case of queries only, which is where 
speedup is most needed in practice.

In addition to the speedup observed, we also 
compared the runtimes of our PDC-tree imple-
mentation with those of a current multithreaded 
database system. We chose MySQL (MySQL), a 
well-known open source database system which 
has been optimized for multi-core parallelism. 
On the same Intel Sandy Bridge architecture, 
we ran our PDC-tree implementation against 
MySQL with its multithreading option set to 
“maximum” parallelism, i.e. its fastest setting. 

Figure 6. Parallel OLAP insertion performance of the PDC-tree as a function of the number of 
parallel threads for Intel Sandy Bridge. (a) & (b) Average transaction response time & throughput 
for 400,000 OLAP insertions to build an initial database. (c) & (d) Average transaction response 
time & throughput for a subsequent 1,000 OLAP insertions into the built database.
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For both, the PDC-tree and MySQL, we first 
executed the same sequence of 400,000 data 
insertions from the TPCDS data set and then, 
for query coverages 1%, 25%, 75% and 100%, 
the same sequences of queries. Table 2 sum-
marizes the results. For 1% query coverage, 
multithreaded MySQL performs essentially at 
the same speed as the PDC-tree. Such queries 
aggregate only a very small portion of the data-
base and are easy to answer directly in standard 
database systems like MySQL. However, as we 
increase query coverage, the queries become 
much more time consuming for MySQL and 
the PDC-tree starts outperforming MySQL by 
a wide margin. For the extreme case of 100% 
query coverage, the PDC-tree can pick up the 

aggregated result at nodes very close to the 
root and performs extremely fast, two orders 
of magnitude faster than MySQL. For 25% and 
75% query coverage, our PDC-tree implemen-
tation outperforms multithreaded MySQL by 
approximately a factor five.

We also observe that in Table 2, for 25% 
and 75% query coverage, the single thread 
performance of our PDC-tree implementation 
approximately matches the performance of 
multithreaded MySQL. If we compare that 
with e.g. Figure 9a, this means that the baseline 
for the speedup observed for our PDC-tree 
Figure 9a (i.e. it’s single thread performance) 
is similar to the performance of multithreaded 
MySQL. We are highlighting this because 

Figure 7. Parallel OLAP transaction performance of the PDC-tree as a function of the number of 
parallel threads for Intel Sandy Bridge. Mixed input of I OLAP insertions and Q OLAP queries. 
Queries aggregate 1% of database. (a) Average response time, linear scale. (b) Average response 
time, log-log scale. (c) Throughput, linear scale. (d) Throughput, log-log scale.
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speedup is easy to achieve with respect to a 
slow sequential performance but in our case, 
the PDC-tree achieves a good speedup relative 
to a highly optimized and widely used public 
domain system.

4.2. Experiments on Intel Xeon 
Westmere EX (20 Cores)

As discussed in the previous section, the Intel 
Sandy Bridge platform is very limited in terms 
of memory (i.e. database size) and number of 
cores available. In order to test our PDC-tree 
on an architecture that would be more typical 
for commercial in-memory OLAP systems, 
IBM provided us access to one of their com-
mercial servers, a 20 core Xeon Westmere EX 

with 256 GB memory. This allowed us to use 
a more realistic database size and also test the 
speedup achieved by our PDC-tree method for 
a larger number of processor cores. The latter 
is critical since achieving good speedup is typi-
cally easier for a smaller number of processors 
and becomes harder as the number of processor 
cores increases. We performed the following 
experiments:

1. 	 Measuring the performance of 14 million 
OLAP inserts into a PDC-tree with 1 mil-
lion data items (PDC-tree loading);

2. 	 Measuring the performance of a mixed 
stream of OLAP insert and query transac-
tions on a PDC-tree with 1 million data 
items;

Figure 8. Parallel OLAP transaction performance of the PDC-tree as a function of the number of 
parallel threads for Intel Sandy Bridge. Mixed input of I OLAP insertions and Q OLAP queries. 
Queries aggregate 5% of database. (a) Average response time, linear scale. (b) Average response 
time, log-log scale. (c) Throughput, linear scale. (d) Throughput, log-log scale.
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Figure 9. Parallel OLAP transaction performance of the PDC-tree as a function of the number 
of parallel threads for Intel Sandy Bridge. Mixed input of I OLAP insertions and Q OLAP que-
ries. Queries aggregate 25% of database. (a) Average response time, linear scale. (b) Average 
response time, log-log scale. (c) Throughput, linear scale. (d) Throughput, log-log scale.

Table 2. Runtime comparison between PDC-tree and multithreaded MySQL. Times shown are 
the total runtimes for the same sequences of 1,000 OLAP queries, with varied query coverages, 
on the same databases with 400,000 items. All data and queries are from the TPCDS benchmark. 

PDC-Tree

# Threads: 1% Coverage 25% Coverage 75% Coverage 100% Coverage

1 26.894 sec 197.745 sec 274.416 sec 9.136 sec

2 15.395 sec 112.229 sec 156.912 sec 6.824 sec

4 9.433 sec 72.014 sec 100.114 sec 5.433 sec

8 5.942 sec 51.634 sec 72.265 sec 4.961 sec

16 4.220 sec 37.892 sec 53.091 sec 4.788 sec

MySQL

# Threads: 1% Coverage 25% Coverage 75% Coverage 100% Coverage

“maximum” 5 sec 161 sec 245 sec 415 sec
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3. 	 Measuring the performance of a mixed 
stream of OLAP insert and query transac-
tions on a PDC-tree with 10 million data 
items (100 GB).

The first experiment tests the performance 
of our PDC-tree implementation during the 
initial loading of a database. We built an initial 
PDC-tree with 1 million TPCDS data items and 
then executed a stream of 14 million TPCDS 
data insertions. The measured throughput and 
transaction response times for the 14 million 
insertions are shown in Figure 10. The speedup 
shown for up to 20 threads (on 20 processor 
cores) is very close to optimal linear speedup. 
As outlined in Section “A Parallel DC-Tree 
(PDC-Tree) Data Structure for Parallel Real-

Time OLAP”, at any point in time, a PARALLEL 
OLAP INSERT operation only locks a most two 
PDC-tree directory nodes (e.g. for a node split). 
When the PDC-tree is large, there is close to 
no interference and parallel PARALLEL OLAP 
INSERT threads can operate independently on 
the tree data structure. This explains the very 
close to optimal speedup. As shown in Figure 
10, when the number of threads is between 
20 and 40, the additional speedup decreases 
significantly because these additional threads 
are supported by hyper-threading rather than 
actual cores.

The second experiment tests the perfor-
mance of our PDC-tree implementation for 
a mixed stream of OLAP insert and query 
operations on a PDC-tree for a smaller size 

Figure 10. PDC-tree insertions only performance as a function of the number of parallel threads 
for Intel Xeon Westmere EX. Stream of 14 million insertions into an initial PDC-tree with 1 mil-
lion data items. (a) Throughput in log-log scale. (b) Average transaction response time in loglog 
scale. (c) Throughput in linear scale. (d) Average transaction response time in linear scale.
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database (but larger than the database on the 
Intel Sandy Bridge). We first built an initial 
PDC-tree by inserting 1 million rows of the 
TPCDS data set and then executed a stream of 
TPCDS transactions that consists of a mix of 
1,000 query and 100 insert operations. Figure 
11 shows throughput and response time of our 
PDC-tree implementation as we increase the 
number of threads. The red and green curves 
show the performance for OLAP queries with 
5% and 25% query coverage, respectively. As 
shown in Figure 11, performance increases with 
close to optimal linear speedup for the range of 
1 to 20 threads (on 20 processor cores). For the 
range of 20 to 40 threads, we obtain another 18% 
performance increase through hyper-threading 

which is within the typical 15%30% interval 
reported by Intel (D., 2002). Performance 
peaks at around 40 threads. For more than 40 
threads, performance stays flbu (no more gains 
via latency hiding compared to overhead from 
context switching between threads).

The third experiment tests the performance 
of our PDC-tree implementation for a mixed 
stream of OLAP insert and query transactions 
on a PDC-tree for a larger size database. We 
first built an initial PDC-tree by inserting 10 
million rows (100 GB) of the TPCDS data set 
and then executed a stream of TPCDS transac-
tions that consists of a mix of 10,000 query and 
1,000 insertion operations. Figure 12 shows 
throughput and response time of our PDC-tree 

Figure 11. Parallel OLAP insertion and query performance of the PDC-tree as a function of the 
number of parallel threads for two query coverages, 5% & 25%, on a PDC-tree with 1 million 
data items for Intel Xeon Westmere EX. Number of queries and insertions are 1000 and 100, 
respectively. (a) Throughput in log-log scale. (b) Average transaction response time in log-log 
scale. (c) Throughput in linear scale. (d) Average transaction response time in linear scale.
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implementation as we increase the number of 
threads. The red and green curves show the 
performance for OLAP queries with 5% and 
25% query coverage, respectively. Note that, 
the response times in Figure 12 are approxi-
mately ten times the response times in Figure 
11 because on the PDC-tree with 10 million data 
items, OLAP queries with 5% and 25% query 
coverage aggregate ten times as much data as 
OLAP queries with 5% and 25% query coverage 
on a PDC-tree with 10 million data items. As 
discussed earlier, query times are significantly 
larger than insertion times and dominate the 
average transaction performance. As shown 
in Figure 12, performance on the larger size 
database increases with close to optimal linear 

speedup for the range of 1 to 20 threads (on 
20 processor cores). For the range of 20 to 40 
threads, we obtain again a smaller performance 
increase through hyper-threading that is within 
the typical range reported by Intel (D., 2002). 
Performance peaks again at around 40 threads. 
For more than 40 threads, performance stays 
flla. The speedup obtained is further elucidated 
in Table 3 (same data is in Figure 12) which 
shows for our mixed stream of 10,000 queries 
and 1,000 insertions the average transaction 
response times and speedup for 5% and 25% 
query coverage. In both cases, we measure an 
optimal linear speedup of 20 for a machine with 
20 processor cores. We also observe that our 
multi-core parallelization enables us to achieve 

Figure 12. Parallel OLAP insertion and query performance of the PDC-tree as a function of the 
number of parallel threads for two query coverages, 5% & 25%, on a PDC-tree with 10 million 
data items for Intel Xeon Westmere EX. Number of queries and insertions are 10,000 and 1000, 
respectively. (a) Throughput in log-log scale. (b) Average transaction response time in log-log 
scale. (c) Throughput in linear scale. (d) Average transaction response time in linear scale.
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a better than 0.25 second response time for 
real-time OLAP queries that aggregate 25% 
of a 100 GB database.

5. CONCLUSION

In this paper, we presented a parallel real-time 
OLAP system for multi-core processors. We 
evaluated our method on an Intel Sandy Bridge 
processor with 4 cores and an Intel Xeon West-
mere processor with 20 cores, using the TPCDS 
“Decision Support” benchmark data set. The 
tests demonstrate that, with increasing number 
of processor cores, our parallel system achieves 
close to optimal linear speedup in transaction 
response time and transaction throughput. On 
the 20 core architecture we achieved, for a 100 
GB database, a better than 0.25 second query 
response time for real-time OLAP queries that 
aggregate 25% of the database. Since hardware 
performance improvements are currently, and 
in the foreseeable future, achieved not by faster 
processors but by increasing the number of 
processor cores, our new parallel-real-time 
OLAP method has the potential to enable 

OLAP systems that operate in real-time on 
large databases.
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