
22 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
One of the most powerful and prominent technologies for knowledge discovery in decision support systems
is online analytical processing (OLAP). Most of the traditional OLAP research, and most of the commercial
systems, follow the static data cube approach proposed by Gray et.al. and materialize all or a subset of the
cuboids of the data cube in order to ensure adequate query performance. Practitioners have called for some
time for a real-time OLAP approach where the OLAP system gets updated instantaneously as new data ar-
rives and always provides an up-to-date data warehouse for the decision support process. However, a major
problem for real-time OLAP is the significant performance issues with large scale data warehouses. The aim
of our research is to address these problems through the use of efficient parallel computing methods. In this
paper, we present a parallel real-time OLAP system for multi-core processors. To our knowledge, this is the
first real-time OLAP system that has been parallelized and optimized for contemporary multi-core architec-
tures. Our system allows for multiple insert and multiple query transactions to be executed in parallel and in
real-time. We evaluated our method for a multitude of scenarios (different ratios of insert and query transac-
tions, query transactions with different amounts of data aggregation, different database sizes, etc.), using the
TPCDS “Decision Support” benchmark data set. As multi-core test platforms, we used an Intel Sandy Bridge
processor with 4 cores (8 hardware supported threads) and an Intel Xeon Westmere processor with 20 cores
(40 hardware supported threads). The tests demonstrate that, with increasing number of processor cores, our
parallel system achieves close to linear speedup in transaction response time and transaction throughput. On
the 20 core architecture we achieved, for a 100 GB database, a better than 0.25 second query response time
for real-time OLAP queries that aggregate 25% of the database. Since hardware performance improvements
are currently, and in the foreseeable future, achieved not by faster processors but by increasing the number
of processor cores, our new parallel real-time OLAP method has the potential to enable OLAP systems that
operate in real-time on large databases.

Parallel Real-Time OLAP on
Multi-Core Processors

Frank Dehne, School of Computer Science, Carleton University, Ottawa, Canada

Hamidreza Zaboli, School of Computer Science, Carleton University, Ottawa, Canada

Keywords:	 Index Structures, Multi-Core OLAP, Parallel, Processors, Real-Time

DOI: 10.4018/ijdwm.2015010102

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 23

1. INTRODUCTION

This paper reports on the results of an IBM
funded research project to investigate the use
of multi-core processors for high performance,
real-time, online analytical processing (OLAP).
Such OLAP systems are at the heart of many
business analytics applications. The ever
growing data warehouses built by corporate
and institutional users have lead to significant
performance bottlenecks which motivated this
research project.

1.1. Background

Decision Support Systems (DSS) are designed
to empower the user with the ability to make ef-
fective decisions regarding both the current and
future state of an organization. To do so, the DSS
must not only encapsulate static information,
but it must also allow for the extraction of pat-
terns and trends that would not be immediately
obvious. Users must be able to visualize the
relationships between such things as customers,
vendors, products, inventory, geography, and
sales. Moreover, they must understand these
relationships in a chronological context since it
is the time element that ultimately gives meaning
to the observations that are formed. One of the
most powerful and prominent technologies for
knowledge discovery in DSS environments is
online analytical processing (OLAP).

OLAP is the foundation for a wide range
of essential business applications, including
sales and marketing analysis, planning, bud-
geting, and performance measurement (Han,
2000 & The OLAP Report). The processing
logic associated with this form of analysis is
encapsulated in what is known as the OLAP
server. By exploiting multidimensional views
of the underlying data warehouse, the OLAP
server allows users to “drill down” or “roll
up” on hierarchies, “slice and dice” particular
attributes, or perform various statistical opera-
tions such as ranking and forecasting. Figure
1 illustrates the basic model where the OLAP
server represents the interface between the data

warehouse proper and the reporting and display
applications available to end users.

To support this functionality, OLAP relies
heavily upon a classical data model known as
the data cube (Gray, 1997). Conceptually, the
data cube allows users to view organizational
data from different perspectives and at a variety
of summarization levels. It consists of the base
cuboid, the finest granularity view contain-
ing the full complement of d dimensions (or
attributes), surrounded by a collection of 2d-1
sub-cubes/cuboids that represent the aggre-
gation of the base cuboid along one or more
dimensions. Figure 2 illustrates a small four-
dimensional data cube that might be associated
with the automotive industry. In addition to the
base cuboid, one can see a number of various
planes and points that represent aggregation
at coarser granularity. Note that each cell in
the cube structure corresponds to an aggregate
value along one or more measure attributes
(e.g. total sales).

Most of the traditional OLAP research,
and most of the commercial systems, follow
the static data cube approach proposed by
Gray (1997) and materialize all or a subset of
the cuboids of the data cube in order to ensure
adequate query performance. Building the data
cube can be a massive computational task, and
significant research has been published on
sequential and parallel data cube construction
methods (e.g. (Chen, 2008 & Dehne, 2002 &
Gray, 1997 & GuoLiang, 2010 & Ng, 2001 &
You, 2008)). However, the traditional static data
cube approach has several disadvantages. The
OLAP system can only be updated periodically
and in batches, e.g. once every week. Hence,
latest information cannot be included in the
decision support process. The static data cube
also requires massive amounts of memory space
and leads to a duplicate data repository that is
separate from the online transaction processing
(OLTP) system of the organization. Several
practitioners have therefore called for some
time for an integrated OLAP/OLTP approach
with a real-time OLAP system that gets updated
instantaneously as new data arrives and always
provides an up-to-date data warehouse for

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

24 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

the decision support process (e.g. (Bruckner,
2002)). Some recent publications have tried to
address this problem by providing “quasi real-
time” incremental maintenance schemes and
loading procedures for static data cubes (e.g.
(Bruckner, 2002 & Jin, 2008 & Santos, 2008
& Santos, 2009)). However, these approaches
are not fully real-time. A major problem is
significant performance issues with large scale
data warehouses. The aim of our research is to
address these performance problems through
the use of efficient parallel multi-core comput-
ing methods.

1.2. Contributions

In this paper, we present a parallel real-time
OLAP system for multi-core processors. To
our knowledge, this is the first real-time OLAP
system that has been parallelized and optimized
for contemporary multi-core processors. Our
system is an in-memory data management sys-
tem for OLAP (Plattner, 2012) that allows for
multiple insert and multiple query operations
to be executed in parallel and in real-time. It is
based on a new parallel data structure termed
PDC-tree. The basic mechanism is outlined in
Figure 3. In order to process an input stream of
OLAP insert and OLAP query transactions in
real-time, our PDC-tree data structure allows for

Figure 1. Three-tiered OLAP model

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 25

the concurrent execution of these transactions
through multiple threads executed in parallel
on a multi-core processor. Here we employ two
types of parallelism: executing multiple OLAP
transactions in parallel and further speeding up
individual OLAP transactions by assigning each
of them multiple parallel execution threads.

The main challenge is the possible in-
terference between parallel insert and query
transactions, as well as between parallel inserts
operating on the same portion of the tree data
structure. For example, each OLAP query has
to include all data from prior OLAP insert
transactions, including those recent insert
transactions that are not yet completed and are
being executed in parallel with current OLAP
query transactions. A straightforward solution
would e.g. lock subtrees on which an insert is
being performed. This would however lead to

significant wait times for other queries and result
in a method where the performance does not
scale with increasing number of processor cores.
Our main contribution is the design of a mini-
mal locking scheme which allows concurrent
insert and query transactions to move “freely”
and which detects and recovers transactions
working on invalid or incomplete data.

We evaluated our method for a multitude
of scenarios (different ratios of insert and query
transactions, query transactions with different
amounts of data aggregation, different data-
base sizes, etc.), using the TPCDS “Decision
Support” benchmark data set. As multi-core
test platforms, we used an Intel Sandy Bridge
processor with 4 cores (8 hardware supported
threads) and an Intel Xeon Westmere processor
with 20 cores (40 hardware supported threads).
The tests demonstrate that our parallel real-time

Figure 2. A three dimensional data cube for automobile sales data

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

OLAP system scales with increasing number
of processor cores and achieves a close to lin-
ear speedup in transaction response time and
throughput on contemporary multi-core proces-
sors. On the 20 core architecture we achieved a
better than 0.25 second query response time for
real-time OLAP queries that aggregate 25% of
a 100 GB database. Since, for the foreseeable
future, hardware performance improvements
are achieved not by faster processors but by

increasing the number of processor cores, our
new parallel real-time OLAP method has the
potential to enable OLAP systems that operate
in real-time on large databases.

The remainder of this paper is organized
as follows. In Section “Review: Multi-Dimen-
sional Index Structures for Real-Time OLAP
on Multi-core Processors”, we review related
previous results and in Section “A Parallel DC-
Tree (PDC-Tree) Data Structure for Parallel

Figure 3. A PDC-tree: In order to process an input stream of OLAP insert and OLAP query
transactions in real-time, we provide speedup through concurrent execution of transactions on
a multi-core processor

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 27

Real-Time OLAP”, we present our parallel
algorithms for real-time OLAP on multi-core
processors. In Section “Experimental Evalua-
tion”, we analyze the performance of our method
on two contemporary multi-core platforms and
Section “Conclusions” concludes our paper.

2. REVIEW: MULTI-
DIMENSIONAL INDEX
STRUCTURES FOR REAL-
TIME OLAP ON MULTI-
CORE PROCESSORS

Building a parallel real-time OLAP data ware-
house is related but considerably more complex
than concurrent updates and searches in general
OLTP databases which have been studied since
the 90’s for example in (Banks, 1995 & Chakrab-
arti, 1999) and more recently in (Haritsa, 2000 &
Lee, 2003). One major difference is that OLAP
queries may need to aggregate large portions
of the database whereas OLTP transactions are
more local in nature. Concurrent operations in
spatial databases have recently been studied
e.g. in Dai (2009). Whereas such databases
can process range queries over large portions
of the DB, spatial database index structures are
generally not efficient for the large number of
dimensions typically required for OLAP. It is
not unusual for OLAP systems to process data
with 10, 15 or more dimensions. Another im-
portant difference are the elaborate dimension
hierarchies which are typical for OLAP systems.
To our knowledge, the only published fully
dynamic data structure for OLAP queries on
data cubes is the DC-tree introduced by Kriegel
et.al. (Ester, 2000), which is a sequential tree
based index structure specifically designed for
data warehouses with dimension hierarchies.
An extension of the DC-tree to handle special
properties of the time dimension was recently
published in (Ahmed, 2010). The DC-tree (Es-
ter, 2000) extends the X-tree (Berchtold, 1996)
and R-tree (Guttman, 1984) data structures for
multidimensional data indexing.

An OLAP database consists of several
functional attributes, grouped into dimensions,

and some dependent attributes, called measures.
For dimensions with more than one functional
attribute, these attributes are organized into
hierarchy schemas. For example, the dimension
customer can have functional attributes region,
nation, customer ID. A DC-tree builds a partial
ordering and concept hierarchy for each dimen-
sion. A concept hierarchy is a tree structure stor-
ing for a given dimension all values that occur
in the DC-tree at a given time. Using the partial
ordering defined by the concept hierarchy for
each dimension, the DC tree extends the X-tree
(Berchtold, 1996) and R-tree (Guttman, 1984)
by replacing the standard minimum bounding
rectangles (MBR) assigned to directory nodes
by minimum describing rectangles (MDS). An
MDS contains for each dimension a set of values
at different levels of the dimension hierarchy,
and describes a set of hyper rectangles which
together contain the data stored in the respec-
tive subtree. The rationale for these minimum
bounding rectangles is that they enable more
efficient queries for the high dimensional data
and multiple levels of granularity that are
typical for OLAP. The DC-Tree includes two
operations: Insert (Section 4.1 in Ester (2000))
and Range Query(Section 4.4 in Ester (2000)).
When an insert causes a DC-tree node to exceed
its capacity, this is handled by operations Split
and Hierarchy Split(Section 4.2 and 4.3 in Ester
(2000), respectively).

Even though the DC-tree was first pub-
lished more than 10 years ago, and despite the
fact that it does provide an elegant algorithmic
solution for real-time OLAP systems, the DC-
tree data structure has not found its way into
commercial OLAP systems. A major problem
is performance. For large data warehouses,
pre-computed cuboids still outperform real-time
data structures but of course with the major
disadvantage of not allowing real-time updates,
as discussed earlier. The main contribution of
this paper is the design of a parallel DC-Tree
(termed PDC-tree) for multi-core architectures.
We demonstrate that the performance of our
parallel DC-Tree method scales with increasing
number of processor cores, thereby providing

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

the opportunity for real-time OLAP on large
databases.

3. A PARALLEL DC-TREE (PDC-
TREE) DATA STRUCTURE FOR
PARALLEL REAL-TIME OLAP

Our parallel DC-tree method (termed PDC-tree)
consists of two parts: (1) An extension of the
DC-tree data structure to help exploit parallel
processing and (2) new algorithms PARAL-
LEL OLAP INSERT and PARALLEL OLAP
QUERY to replace the Insert and Range Query
operations in Ester (2000). The main challenge
for our parallel DC-tree method is the possible
interference between parallel insert and query
operations, as well as between parallel insert
operations operating on the same portion of the
tree data structure. A straightforward solution
would e.g. lock subtrees on which an insert is
being performed. This would however lead
to significant wait times for other queries and
result in a method where the performance does
not scale with increasing number of processor
cores. Our solution consists of three parts: (1) A
minimal locking scheme where insert operations
only lock the node they are currently updating
instead of the entire subtree. This can however
result in concurrent other transactions working
on invalid or incomplete data. (2) A timestamp
mechanism added to the DC-tree data structure
which allows for concurrent transactions to
detect when they are working on invalid or
incomplete data. (3) A set of horizontal sibling
links added to the DC-tree structure which
allows transactions to recover after they have
detected that they were working on invalid or
incomplete data.

Our method includes features that are
similar to previously presented parallelizations
of B-trees and R-trees. Kornacker and Banks
(1995) presented the first parallel R-tree by
adding two features to regular R-trees: a LSN
(logical sequence number) and rightward links
for each node. Their methods were improved
in (Song, 2004) and (K., 1998) by introducing
a new directory node structure and applying

node copying strategies at the time of split.
However, these methods for B-trees and R-trees
are considerably simpler than our parallelization
of DC-trees presented here. The DC-tree data
structure is much more complicated than R-trees
and B-trees because it needs to deal efficiently
with very high dimensional data, intricate di-
mension hierarchies and data aggregation, all of
which are not considered for R-trees or B-trees
and their parallelizations. For example, the
variety of node types in DC-trees is much more
involved, and the directory node split strategies
for DC-trees are much more complicated. As
discussed in the remainder of this paper, this
leads to many new problems and our solution
includes many novel features that are needed
for an efficient and scalable parallelization of
DC-trees for parallel real-time OLAP.

3.1. Extension of the DC-
Tree Data Structure

We first describe our extension of the DC-tree
data structure to handle multiple parallel trans-
actions (insert and query operations). There are
three types of nodes in a DC-tree: data nodes
which are leaves of the tree, directory nodes
which are internal index nodes and super nodes
which are directory nodes with unlimited capac-
ity. The directory nodes are the backbone of the
DC-tree index. Next, we describe our extension
of these directory nodes.

An illustration of an extended directory
node is shown in Figure 4. The blue entries
show the original DC-Tree entries as presented
in Ester (2000): MDS is the minimum describing
set for the subtree rooted at the given directory
node, M is the aggregate measure of all data in
the subtree, and a link provides a reference to
each child node. The MDS is used for the rout-
ing of OLAP queries and the M entry is used
for data aggregation in OLAP queries. The red
entries in Figure 4 are those that we are adding
for the parallel DC-Tree. These new entries
include: (1) a time stamp TS which records
the time of the most recent modification of the
directory node, (2) a link to the right sibling of
the given directory node, and (3) MDS and TS

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 29

entries for each child link, recording the MDS
and TS values for those children. The TS entry is
for concurrent transactions to detect when they
are working on invalid or incomplete data. The
link to the right sibling will allow transactions
to recover after they have detected that they
were working on invalid or incomplete data.
The MDS and TS entries for each child link will
allow to further reduce the number of locks. In
the following Sections “Algorithm PARALLEL
OLAP INSERT” and “Algorithm PARALLEL
OLAP QUERY” we will outline our method
in more detail by presenting new parallel DC-
Tree operations PARALLEL OLAP INSERT
and PARALLELOLAPQUERY, respectively.

3.2. Algorithm PARALLEL
OLAP INSERT

An outline of our PARALLEL OLAP INSERT
method is shown in Algorithm 1. In the fol-
lowing, we will discuss this algorithm in more
detail. For a new data item N, the algorithm
starts tracing down the tree using the MDS
information (Steps 24). At each directory node,
three cases may occur. If Nis contained in the
MDS of exactly one child, then the algorithm
proceeds to that child (Step 2). If Nis contained
in the MDS of more than one child (overlap),
then the algorithm proceeds to the child with
the smallest subtree (Step 3) in order to balance
subtree sizes. If Nis not contained in the MDS
of any child, then N needs to be added to the
child whose MDS update leads to a minimum
overlap between children in order to maintain
the efficiency of search queries (Step 4). Al-
gorithm 1 performs this operation without any
node locking by fisiz creating a copy of the

respective directory node, performing all of
the above operations on the copy, and ficreat
inserting the new directory node with a single
link update. Note, however, that search queries
passing through this node during the update
may not become aware of the update and may
therefore miss the newly inserted data item
N. As discussed later, Algorithm 2 for search
queries will detect and correct this with the help
of the time stamp (TS) and right sibling entries
added to the modified directory node. After
Steps 1 to 4 of Algorithm 1 are completed, a
leaf directory node has been found where the
new data item N can be inserted. The remain-
ing Steps 5 to 11 will trace the path back to the
root and update the MDS entries of all direc-
tory nodes on the path. Note that, during this
process at most two nodes are locked at any
point in time: the current node and its parent.
This is necessary to correctly perform the split
operation in Step 8 which is required when a
directory node’s capacity is exceeded because
of the new entry. In this case, a split operation
has to be performed where directory node D is
split into two directory nodes D and D’. For the
split, we applied the sequential method in Ester
(2000), Sections 4.2 and 4.3. As discussed at
the end of this section, we also experimented
with parallelizing the split operation itself.
After D is split into two nodes D and D’, node
D’ becomes the right sibling of D and we need
to update the right sibling links accordingly.
Furthermore, the time stamps of D and D’ will
be set such that D’ receives the old time stamp
of D (before the split) and D receives a new
time stamp representing the current update. As
discussed in the following Section “Algorithm

Figure 4. Extended structure of a directory node for the Parallel DC-Tree. DC-Tree entries (blue):
MDS (minimum describing set), M (measure), link to each child node. Additional entries for the
parallel DC-Tree (red): TS (time stamp), link to sibling, MDS and TS for each child node link.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

30 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

PARALLEL OLAP QUERY”, this will be im-
portant for concurrent OLAP queries.

At any point in time, our PDC-tree data
structure will be performing multiple concur-
rent PARALLEL OLAP INSERT operations
executed by different threads of the multi-core
processor. Any two such PARALLEL OLAP
INSERT operations will not interfere unless
they are attempting to perform a node split on
the same directory node at the same time. This is

our minimal node locking condition. Otherwise,
there are no locks. In particular, at any point in
time there can be multiple concurrent node split
operations happening in the PDC-tree.

While the PARALLEL OLAP QUERY
operations presented in the following section
are also individually parallelized by applying
multiple threads to each OLAP query operation,
each individual PARALLEL OLAP INSERT
operation as outlined above is single threaded.

INPUT: N (new data item).
 1: Set D=root.
REPEAT
 2: IFN is contained in the MDS of only one of the children
 of D THEN set D equal to the directory node for that child.
 3: IFN is contained in the MDS of more than one of the
 entries of D THEN set D equal to the root of the child
 subtree with minimum number of data nodes.
 4: IFN is not contained in any MDS of a child of D THEN
 4.1: Make a copy D’ of D. Note that this also copies the
 MDS and TS values of the children because of our
 extended directory node structure.
 4.2: For each child C of D’: Add the new data item N to C
 and calculate the MDS enlargement and overlap caused.
 4.3: Set D = the child which causes minimal overlap.
UNTILD is a leaf node.
 5: Acquire a LOCK for D.
REPEAT
 6: Insert data item N into D and update the measure, MDS,
 and time stamp (TS) of D.
 7: Acquire a LOCK for the parent of D.
 8: IF capacity of D is exceeded THEN
 8.1: Split D into two directory nodes D and D’ as
 outlined in Ester (2000), Sections
 4.2 and 4.3.
 8.2: Make D’ the right sibling of D and update the right
 sibling links accordingly.
 8.3: Set the time stamp TS of D’ equal to the old TS
 value for D and assign D a new time stamp TS
 representing the current update.
 9: Update the Measure and MDS fields for the parent of D.
10: Release the LOCK for D.
11: Set D = parent of D.
UNTIL no further update required OR D=root.

Algorithm 1. PARALLEL OLAP INSERT

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 31

We experimented with parallelizing the node
split operation (Step 8) in Algorithm 1 which
is the most time consuming part. As outlined in
Ester (2000), Sections 4.2 and 4.3, a node split
for a directory node D considers all “seed” pairs
of entries in D, computes for each pair of seeds
a node split by assigning all remaining entries
to the closest seed element, and then chooses
the best split of D with minimum overlap and
volume. Clearly, one can also perform this
operation in parallel using multiple threads.
We experimented with this and it turns out that
parallelizing the split operations is usually not
beneficial for current multi-core processors.
The reason is that a benefit would only occur
if there are free compute resources available
for additional threads. However, for a typical
OLAP workload, such as the TPCDS benchmark
used in our experiments (Section “Experimen-
tal Evaluations”), the number of concurrent
transactions on the PDC-tree data structure
usually exceeds the number of hardware threads
available on current multi-core processors. In
fact, parallelizing the split operations created
additional context switching overheads in our
experiments and we therefore switched the node
split back to the sequential code. However, for
future multi-core processors with many more
processor cores, switching on the internal OLAP
query parallelization described above could
bring further performance benefits.

3.3. Algorithm PARALLEL
OLAP QUERY

Our PARALLEL OLAP QUERY method shown
in Algorithm 2 answers OLAP aggregate range
queries. For a query range R (hyper rectangle
on a cuboid/aggregate), it reports the aggregate
measure value of all data items contained in
R(e.g. total value of sales). In addition to the
extended directory nodes outlined in Section
“Extension of the DC-Tree Data Structure”, we
add a stack S to each query in order to ensure
proper execution. Stack S controls the tree
traversal as well as the error recovery from a
detected interference with a parallel insert. The
query process starts at the root and proceeds

downwards. At each directory node, all children
are evaluated for possible overlap with the query
range R (Step 4.3). For those dimensions where
the child MDS and query are at different levels
of the dimension hierarchy, the one with lower
level needs to be converted to the higher level
(Step 4.3.1). If a child MDS fully contains R,
then the entire subtree is part of the result (Step
4.3.2) and the query does not need to search
inside the subtree. If a child MDS overlaps R,
then that child is pushed into the stack S for
further examination (Step 4.3.3). This leads
to a branching off into multiple subtrees for
those directory nodes where multiple children
overlap R. The stack mechanism ensures that
these subtrees are traversed in depth first order.
For parallel transactions, the problem arising
is that while one subtree of a directory node is
being searched, the directory node itself could
be modified by a parallel insert operation (e.g. a
directory node split). This problem is addressed
in the IF statement at the beginning of Step 4
together with Steps 4.1 & 4.2. Assume that the
search branches off into a subtree of node D and
that, during that time, node D is modified by a
parallel insert. When the search returns to node
D, its “old” version D’ is on top of stack Sand
a comparison of the time stamp of D’ and the
current time stamp of D detects a difference,
indicating a parallel update. Figure 5 shows an
illustration. Directory node D1 is pushed into
stack Sand then directory nodes D2 and D3.
In the meantime, a concurrent insert causes a
directory node split for D1 that updates its time
stamp, creates a new sibling node D4 with the
old time stamp of node D1, and redistributes
the children. Node D3 is now a child of node
D4. The concurrent search query completes its
task and pops nodes D2 and D3 from the stack.
However, when the search query wants to pop
node D1 it detects that node D1 has been split.

In order for the search query to recover
and report the correct result, the list of siblings
maintained by the “Link to Sibling” pointers
shown in Figure 4 should be traversed and
added to stack S, thereby making sure that the
subtrees are revisited and the newly inserted
item is found. Note that, when a directory node

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

32 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

is split, its children are redistributed between
the original and the newly added directory
node. Therefore, we need to be careful when
revisiting subtrees to not “double count” items
by adding them twice to the aggregate measure
value R. For each item in a revisited subtree,
the time stamps recorded and contents of the
stack S are sufficient to determine whether this
item has already been counted or not.

As outlined in Section “Contributions”,
our system employs two types of parallelism:
executing multiple OLAP operations in paral-
lel and further speeding up individual OLAP
operations by assigning each of them multiple
parallel execution threads. For a directory node
D, if multiple children of D have an MDS that
overlaps the query range R, then these multiple
subtrees need to be traversed. If this happens
close to the root node then the sizes of these
subtrees can be substantial. Therefore, we
parallelize the search of the subtrees as shown
in Step 4.3.3 of Algorithm 2. More precisely,

for each child C of D that overlaps R but is
not contained in R we create a new thread that
executes Algorithm 2 with input parameters
Rand C.

We note that our PARALLEL OLAP
QUERY method creates no locks whatsoever
and therefore creates no slowdown between
parallel transactions. However, it can create
additional work during the recovery phase of
interfering parallel transactions. This could po-
tentially affect the scalability of our method. To
which degree this does actually happen will be
determined in our experimental evaluation in the
following Section “Experimental Evaluation”.

4. EXPERIMENTAL
EVALUATION

For our experimental evaluation, we used two
multi-core hardware platforms shown in Table 1:

Figure 5. Usage of stack and timestamp mechanism to detect updates on already counted nodes
in an OLAP query

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 33

•	 An Intel Sandy Bridge processor with
4 cores (8 hardware threads via hyper-
threading) and 16 GB memory;

•	 A dual socket Intel Westmere EX with
20 cores (40 hardware threads via hyper-
threading) and 256 GB memory.

The main goal of our experimental evalu-
ation is to determine how our DC-Tree paral-
lelization scales when we increase the number
of processor cores. As discussed in Section “A

Parallel DC-Tree (PDC-Tree) Data Structure
for Parallel Real-Time OLAP”, our PDC-tree
algorithms use a minimal locking scheme which
allows parallel transactions to execute inde-
pendently without concern about interference.
Should such interference occur, our algorithm
detects this and corrects the result during a
recovery step. How much overhead is created
during those recovery steps depends on the
actual data and queries. Clearly, using random
data and random queries does not provide a

INPUT: R (MDS of the given query range), D (root node).
OUTPUT: Result (aggregate measure of all data items contained in R).
Local Variable: Stack S.
 1: Push D into stack S.
REPEAT
 2: Pop top item D’ from stack S.
 3: Set D to the tree node corresponding to D’.
 4: IF the time stamp (TS) of D’ is smaller (earlier) than
 the time stamp (TS) of D THEN
4.1: Using the ”Link to Sibling” field in directory nodes, tra-
verse the list of siblings of D. Push all siblings with time
stamp (TS) larger (later) than the parent of D into stack S.
 4.2: Push D into stack S.
 ELSE
 4.3: FOR each child C of D DO
 4.3.1: For each dimension of C where C and R are at
 different level in the dimension hierarchy,
 convert the lower level entry to the higher level.
 4.3.2: IFMDS of C is contained in R THEN add C to Result.
 4.3.3: IFMDS of C overlaps R but is not contained in R
 THEN create a new thread that executes
 Algorithm 2 with input parameters R and C.
UNTIL all threads are completed and stack S is empty.

Table 1. The two hardware platforms used in our experiments

Processor Number of Cores Memory Size

Intel
Sandy Bridge

4 Cores
16 GB Memory

8 Hardware Threads (Hyper-threading)

Intel
Xeon Westmere
EX (2 Sockets)

20 Cores
256 GB Memory

40 Hardware Threads (Hyper-threading)

Algorithm 2. PARALLEL OLAP QUERY

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

34 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

correct estimate because one would expect it
to evenly distribute the parallel threads over the
PDC-tree which would be a best case scenario
for the amount of interference between concur-
rent transactions. What is needed is a realistic
set of data and queries that provides real life
scenarios. After discussions with members of
the data analytics team at IBM/Cognos Canada,
we selected the TPCDS “Decision Support”
benchmark by the Transaction Processing
Performance Council (TPCDS). The TPCDS
benchmark provides transactions that model
the decision support system of a retail product
supplier. It includes OLAP queries and data
insertions. (Decision support systems are based
on historic corporate data and usually do not
include data deletions.) The TPC benchmark and
its variants are the standard and most widely
used benchmarks for OLAP. As stated on the
TPC website, “although the underlying business
model of TPCDS is a retail product supplier, the
database schema, data population, queries, data
maintenance model and implementation rules
have been designed to be broadly representative
of modern decision support systems” (TPCDS).

Our PDC-tree algorithm was implemented
in C++ with OpenMP, and compiled/executed on
Linux kernel 2.6.38 using g++ 4.5.2. For each
experiment, we first built an initial PDC-tree
with TPCDS data and then tested our system
with a stream of TDCDS insert and query
transactions as shown in Figure 3. Another
important parameter influencing query time
(sequential or parallel) is the amount of data that
an OLAP query needs to aggregate. Clearly, a
query that computes an aggregate over 5% of
the database has a much smaller workload than
a query that computes an aggregate over 50%
of the database. We refer to this parameter as
query coverage, and we evaluate in our experi-
ments how our PDC-tree method performs for
different query coverages.

4.1. Experiments on Intel
Sandy Bridge (4 Cores)

Figures 6 (a & b) show the performance of
the initial PDC-tree building phase. Here we

show the average transaction response time
and throughput when 400,000 initial PARAL-
LEL OLAP INSERT operations (with TPCDS
data) are executed on 1, 2, 4, 8, and 16 threads,
respectively. Figures 6 (c & d) show the average
transaction response time and throughput for
a subsequent set of 1,000 PARALLEL OLAP
INSERT operations into an OLAP database
with 400,000 loaded items. The performance in
Figures 6(a & b) is lower because the fib) inserts
into an initially small tree data structure create
a relatively large number of expensive directory
node splits and have a very high probability of
query interference.

As shown in Figures 6(c & d), for a data-
base with 400,000 loaded items, performance
improves significantly. In general, we observed
that performance is better for larger data ware-
houses. The speedup shown in Figures 6(c & d)
is approx. 40% of the maximum theoretically
possible linear speedup. Considering that the
cores of the Sandy Bridge processor share
resources (e.g. memory bus), this is an en-
couraging result for a fully running system on
“real life” benchmark data. The Sandy Bridge
platform is clearly too small a platform with
insufficient memory for a sufficiently large
database. For larger data warehouses on a larger
platform, as discussed in Section “Experiments
on Intel Xeon Westmere EX (20 Cores)” below,
the performance results are considerably better.

Figures 7, 8 and 9 show the performance
(transaction response time and transaction
throughput) for a stream of PARALLEL OLAP
INSERT and PARALLEL OLAP QUERY
transactions (using TPCDS benchmark data)
executed on 1, 2, 4, 8, and 16 threads, respec-
tively. Note that the single thread code on one
processor core is the sequential code only with
all parallelization code (and possibly resulting
overhead) removed. The different curves cor-
respond to different ratios between the number
of insertions and queries (IOLAP insertions and
QOLAP queries). Since the performance of a
(sequential or parallel) OLAP query is strongly
influenced by the query coverage, we provide
three different graphs, Figure 7, Figure 8 and
Figure 9 for queries that aggregate 1%, 5% and

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 35

25% of the entire database, respectively. In each
case, we show response time and throughput
for 1, 2, 4, 8, and 16 threads. In order to better
show the speedup achieved, we show each set of
curves in linear scale as well as in log-log scale.
Our main observation is that we achieve about
40% of optimal linear speedup. Considering that
the cores of the Sandy Bridge processor share
resources (e.g. memory bus), this is an encour-
aging result for a fully running system on such
a small platform. We also observe that query
transactions are considerably slower than insert
transactions. This is typical (also for sequential
transactions) since an insert corresponds to just
one path down and back up the tree whereas
query transactions may need to search multiple

subtrees and may need to aggregate a sizeable
portion of the database. In the mix of parallel
insert and query transactions on the same da-
tabase, the speedup observed was best for the
hardest case of queries only, which is where
speedup is most needed in practice.

In addition to the speedup observed, we also
compared the runtimes of our PDC-tree imple-
mentation with those of a current multithreaded
database system. We chose MySQL (MySQL), a
well-known open source database system which
has been optimized for multi-core parallelism.
On the same Intel Sandy Bridge architecture,
we ran our PDC-tree implementation against
MySQL with its multithreading option set to
“maximum” parallelism, i.e. its fastest setting.

Figure 6. Parallel OLAP insertion performance of the PDC-tree as a function of the number of
parallel threads for Intel Sandy Bridge. (a) & (b) Average transaction response time & throughput
for 400,000 OLAP insertions to build an initial database. (c) & (d) Average transaction response
time & throughput for a subsequent 1,000 OLAP insertions into the built database.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

36 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

For both, the PDC-tree and MySQL, we first
executed the same sequence of 400,000 data
insertions from the TPCDS data set and then,
for query coverages 1%, 25%, 75% and 100%,
the same sequences of queries. Table 2 sum-
marizes the results. For 1% query coverage,
multithreaded MySQL performs essentially at
the same speed as the PDC-tree. Such queries
aggregate only a very small portion of the data-
base and are easy to answer directly in standard
database systems like MySQL. However, as we
increase query coverage, the queries become
much more time consuming for MySQL and
the PDC-tree starts outperforming MySQL by
a wide margin. For the extreme case of 100%
query coverage, the PDC-tree can pick up the

aggregated result at nodes very close to the
root and performs extremely fast, two orders
of magnitude faster than MySQL. For 25% and
75% query coverage, our PDC-tree implemen-
tation outperforms multithreaded MySQL by
approximately a factor five.

We also observe that in Table 2, for 25%
and 75% query coverage, the single thread
performance of our PDC-tree implementation
approximately matches the performance of
multithreaded MySQL. If we compare that
with e.g. Figure 9a, this means that the baseline
for the speedup observed for our PDC-tree
Figure 9a (i.e. it’s single thread performance)
is similar to the performance of multithreaded
MySQL. We are highlighting this because

Figure 7. Parallel OLAP transaction performance of the PDC-tree as a function of the number of
parallel threads for Intel Sandy Bridge. Mixed input of I OLAP insertions and Q OLAP queries.
Queries aggregate 1% of database. (a) Average response time, linear scale. (b) Average response
time, log-log scale. (c) Throughput, linear scale. (d) Throughput, log-log scale.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 37

speedup is easy to achieve with respect to a
slow sequential performance but in our case,
the PDC-tree achieves a good speedup relative
to a highly optimized and widely used public
domain system.

4.2. Experiments on Intel Xeon
Westmere EX (20 Cores)

As discussed in the previous section, the Intel
Sandy Bridge platform is very limited in terms
of memory (i.e. database size) and number of
cores available. In order to test our PDC-tree
on an architecture that would be more typical
for commercial in-memory OLAP systems,
IBM provided us access to one of their com-
mercial servers, a 20 core Xeon Westmere EX

with 256 GB memory. This allowed us to use
a more realistic database size and also test the
speedup achieved by our PDC-tree method for
a larger number of processor cores. The latter
is critical since achieving good speedup is typi-
cally easier for a smaller number of processors
and becomes harder as the number of processor
cores increases. We performed the following
experiments:

1. 	 Measuring the performance of 14 million
OLAP inserts into a PDC-tree with 1 mil-
lion data items (PDC-tree loading);

2. 	 Measuring the performance of a mixed
stream of OLAP insert and query transac-
tions on a PDC-tree with 1 million data
items;

Figure 8. Parallel OLAP transaction performance of the PDC-tree as a function of the number of
parallel threads for Intel Sandy Bridge. Mixed input of I OLAP insertions and Q OLAP queries.
Queries aggregate 5% of database. (a) Average response time, linear scale. (b) Average response
time, log-log scale. (c) Throughput, linear scale. (d) Throughput, log-log scale.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

Figure 9. Parallel OLAP transaction performance of the PDC-tree as a function of the number
of parallel threads for Intel Sandy Bridge. Mixed input of I OLAP insertions and Q OLAP que-
ries. Queries aggregate 25% of database. (a) Average response time, linear scale. (b) Average
response time, log-log scale. (c) Throughput, linear scale. (d) Throughput, log-log scale.

Table 2. Runtime comparison between PDC-tree and multithreaded MySQL. Times shown are
the total runtimes for the same sequences of 1,000 OLAP queries, with varied query coverages,
on the same databases with 400,000 items. All data and queries are from the TPCDS benchmark.

PDC-Tree

Threads: 1% Coverage 25% Coverage 75% Coverage 100% Coverage

1 26.894 sec 197.745 sec 274.416 sec 9.136 sec

2 15.395 sec 112.229 sec 156.912 sec 6.824 sec

4 9.433 sec 72.014 sec 100.114 sec 5.433 sec

8 5.942 sec 51.634 sec 72.265 sec 4.961 sec

16 4.220 sec 37.892 sec 53.091 sec 4.788 sec

MySQL

Threads: 1% Coverage 25% Coverage 75% Coverage 100% Coverage

“maximum” 5 sec 161 sec 245 sec 415 sec

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 39

3. 	 Measuring the performance of a mixed
stream of OLAP insert and query transac-
tions on a PDC-tree with 10 million data
items (100 GB).

The first experiment tests the performance
of our PDC-tree implementation during the
initial loading of a database. We built an initial
PDC-tree with 1 million TPCDS data items and
then executed a stream of 14 million TPCDS
data insertions. The measured throughput and
transaction response times for the 14 million
insertions are shown in Figure 10. The speedup
shown for up to 20 threads (on 20 processor
cores) is very close to optimal linear speedup.
As outlined in Section “A Parallel DC-Tree
(PDC-Tree) Data Structure for Parallel Real-

Time OLAP”, at any point in time, a PARALLEL
OLAP INSERT operation only locks a most two
PDC-tree directory nodes (e.g. for a node split).
When the PDC-tree is large, there is close to
no interference and parallel PARALLEL OLAP
INSERT threads can operate independently on
the tree data structure. This explains the very
close to optimal speedup. As shown in Figure
10, when the number of threads is between
20 and 40, the additional speedup decreases
significantly because these additional threads
are supported by hyper-threading rather than
actual cores.

The second experiment tests the perfor-
mance of our PDC-tree implementation for
a mixed stream of OLAP insert and query
operations on a PDC-tree for a smaller size

Figure 10. PDC-tree insertions only performance as a function of the number of parallel threads
for Intel Xeon Westmere EX. Stream of 14 million insertions into an initial PDC-tree with 1 mil-
lion data items. (a) Throughput in log-log scale. (b) Average transaction response time in loglog
scale. (c) Throughput in linear scale. (d) Average transaction response time in linear scale.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

40 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

database (but larger than the database on the
Intel Sandy Bridge). We first built an initial
PDC-tree by inserting 1 million rows of the
TPCDS data set and then executed a stream of
TPCDS transactions that consists of a mix of
1,000 query and 100 insert operations. Figure
11 shows throughput and response time of our
PDC-tree implementation as we increase the
number of threads. The red and green curves
show the performance for OLAP queries with
5% and 25% query coverage, respectively. As
shown in Figure 11, performance increases with
close to optimal linear speedup for the range of
1 to 20 threads (on 20 processor cores). For the
range of 20 to 40 threads, we obtain another 18%
performance increase through hyper-threading

which is within the typical 15%30% interval
reported by Intel (D., 2002). Performance
peaks at around 40 threads. For more than 40
threads, performance stays flbu (no more gains
via latency hiding compared to overhead from
context switching between threads).

The third experiment tests the performance
of our PDC-tree implementation for a mixed
stream of OLAP insert and query transactions
on a PDC-tree for a larger size database. We
first built an initial PDC-tree by inserting 10
million rows (100 GB) of the TPCDS data set
and then executed a stream of TPCDS transac-
tions that consists of a mix of 10,000 query and
1,000 insertion operations. Figure 12 shows
throughput and response time of our PDC-tree

Figure 11. Parallel OLAP insertion and query performance of the PDC-tree as a function of the
number of parallel threads for two query coverages, 5% & 25%, on a PDC-tree with 1 million
data items for Intel Xeon Westmere EX. Number of queries and insertions are 1000 and 100,
respectively. (a) Throughput in log-log scale. (b) Average transaction response time in log-log
scale. (c) Throughput in linear scale. (d) Average transaction response time in linear scale.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 41

implementation as we increase the number of
threads. The red and green curves show the
performance for OLAP queries with 5% and
25% query coverage, respectively. Note that,
the response times in Figure 12 are approxi-
mately ten times the response times in Figure
11 because on the PDC-tree with 10 million data
items, OLAP queries with 5% and 25% query
coverage aggregate ten times as much data as
OLAP queries with 5% and 25% query coverage
on a PDC-tree with 10 million data items. As
discussed earlier, query times are significantly
larger than insertion times and dominate the
average transaction performance. As shown
in Figure 12, performance on the larger size
database increases with close to optimal linear

speedup for the range of 1 to 20 threads (on
20 processor cores). For the range of 20 to 40
threads, we obtain again a smaller performance
increase through hyper-threading that is within
the typical range reported by Intel (D., 2002).
Performance peaks again at around 40 threads.
For more than 40 threads, performance stays
flla. The speedup obtained is further elucidated
in Table 3 (same data is in Figure 12) which
shows for our mixed stream of 10,000 queries
and 1,000 insertions the average transaction
response times and speedup for 5% and 25%
query coverage. In both cases, we measure an
optimal linear speedup of 20 for a machine with
20 processor cores. We also observe that our
multi-core parallelization enables us to achieve

Figure 12. Parallel OLAP insertion and query performance of the PDC-tree as a function of the
number of parallel threads for two query coverages, 5% & 25%, on a PDC-tree with 10 million
data items for Intel Xeon Westmere EX. Number of queries and insertions are 10,000 and 1000,
respectively. (a) Throughput in log-log scale. (b) Average transaction response time in log-log
scale. (c) Throughput in linear scale. (d) Average transaction response time in linear scale.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

42 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

a better than 0.25 second response time for
real-time OLAP queries that aggregate 25%
of a 100 GB database.

5. CONCLUSION

In this paper, we presented a parallel real-time
OLAP system for multi-core processors. We
evaluated our method on an Intel Sandy Bridge
processor with 4 cores and an Intel Xeon West-
mere processor with 20 cores, using the TPCDS
“Decision Support” benchmark data set. The
tests demonstrate that, with increasing number
of processor cores, our parallel system achieves
close to optimal linear speedup in transaction
response time and transaction throughput. On
the 20 core architecture we achieved, for a 100
GB database, a better than 0.25 second query
response time for real-time OLAP queries that
aggregate 25% of the database. Since hardware
performance improvements are currently, and
in the foreseeable future, achieved not by faster
processors but by increasing the number of
processor cores, our new parallel-real-time
OLAP method has the potential to enable

OLAP systems that operate in real-time on
large databases.

ACKNOWLEDGMENT

Research partially funded by the IBM Center for
Advanced Studies Canada. We’d like to thank
in particular Stephan Jou, Mikhail Genkin and
Robin Grosset for their support and helpful
discussions. We also acknowledge the help of
H.P. Kriegel and his group at Univ. Munich who
provided us with code segments for sequential
DC-Tree operations (Ester, 2000).

REFERENCES

Ahmed, U., Tchounikine, A., Miquel, M., & Servi-
gne, S. Realtime temporal data warehouse cubing.
In: Proceedings of the 21st international conference
on Database and expert systems applications: Part
II (2010)

Banks, D. (1995). HighConcurrency Locking in
RTrees (pp. 1–12). VLDB.

Table 3. Parallel OLAP insertion and query performance of the PDC-tree as a function of the
number of parallel threads for two query coverages, 5% & 25%, on a PDC-tree with 10 million
data items for Intel Xeon Westmere EX. Number of queries and insertions are 10,000 and 1000,
respectively. Same data as in Figure 12. Average transaction response times and associated
speedup.

Thread # Response Time
(sec) for 5% Query

Coverage

Speedup for 5%
Query Coverage

Response Time (sec)
for 25% Query

Coverage

Speedup for 25%
Query Coverage

1 2.47 1.00 4.57 1.00

2 1.27 1.93 2.35 1.94

5 0.51 4.77 0.94 4.82

10 0.27 9.02 0.50 9.09

20 0.14 16.80 0.28 16.25

40 0.12 20.06 0.22 19.90

80 0.12 20.48 0.22 20.05

160 0.12 20.63 0.22 20.07

320 0.12 20.39 0.22 19.95

640 0.12 20.40 0.22 19.92

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015 43

Berchtold, S., Keim, D. A., & Kriegel, H. P. (1996).
The Xtree: An index structure for highdimensional
data (pp. 28–39). VLDB.

Bruckner, R., List, B., & Schiefer, J. (2002). Striv-
ing towards near real-time data integration for data
warehouses. DaWaK, LNCS2454, 173–182.

Chakrabarti, K. (1999). Efficient Concurrency
Control in Multidimensional Access Methods (pp.
25–36). ACM SIGMOD.

Chen, Y., Dehne, F., Eavis, T., & Rau-Chaplin, A.
(2008). RauChaplin, A.: PnP: sequential, external
memory, and parallel iceberg cube computation.
Distributed and Parallel Databases, 23(2), 99–126.
doi:10.1007/s10619-007-7023-y

D. L. (2002). H. G., H. D., A. K., J. A., M. M., U.
Deborah, T. Marr, F.B.: Hyperthreading technology
architecture and microarchitecture. Intel Technology
Journal, 6, 4–15.

Dai, J. Efficient Concurrent Operations in Spatial
Databases. PhD Thesis, Virginia Polytechnic (2009)

Dehne, F., Eavis, T., & Hambrusch, S. (2002). Par-
allelizing the data cube. Distributed and Parallel
Databases, 11, 181–201.

Ester, M., Kohlhammer, J., & Kriegel, H. P. The
DC-Tree: a fully dynamic index structure for data
warehouses. 16th International Conference on
Data Engineering (ICDE) pp. 379–388 (2000)
doi:10.1109/ICDE.2000.839438

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A.,
Reichart, D., & Venkatrao, M. et al. (1997). Data
Cube: A Relational Aggregation Operator Gener-
alizing GroupBy, CrossTab, and SubTotals. Data
Mining and Knowledge Discovery, 1(1), 29–53.
doi:10.1023/A:1009726021843

Guttman, A. (1984). Rtrees: a dynamic index structure
for spatial searching (pp. 47–57). ACM SIGMOD.

Han, J., & Kamber, M. (2000). Data Mining: Con-
cepts and Techniques. Morgan Kaufmann Publishers.

Haritsa, J. R., Member, S., & Seshadri, S. (2000).
RealTime Index Concurrency Control. IEEE Trans-
actions on Knowledge and Data Engineering, 12(3),
429–447. doi:10.1109/69.846294

Jin, D., Tsuji, T., & Higuchi, K. (2008). An Incre-
mental Maintenance Scheme of Data Cubes and Its
Evaluation. DASFAA, LNCS4947, 36–48.

Kornacker, M., & Banks, D. Highconcurrency
locking in rtrees. VLDB ’95 Proceedings of the
21th International Conference on Very Large Data
Bases (1995)

K.V. R.K., D., S., A.K., S.: Improved concurrency
control techniques for multidimensional index struc-
tures. Parallel Processing Symposium, 1998. IPPS/
SPDP 1998. (1998)

Lee, M. L., Hsu, W., Jensen, C. S., Cui, B., & Teo, K.
L. (2003). Supporting Frequent Updates in RTrees:
A BottomUp Approach. VLDB.

Mysql database management system, http://www.
mysql.com

Ng, R. T., Wagner, A., & Yin, Y. (2001). Icebergcube
computation with PC clusters. ACM SIGMOD, 30(2),
25–36. doi:10.1145/376284.375666

Plattner, H., & Zeier, A. (2012). InMemory Data
Management An Inflection Point for Enterprise
Applications. Springer.

Santos, R., & Bernardino, J. (2008). Realtime
data warehouse loading methodology (pp. 49–58).
IDEAS.

Santos, R. J., & Bernardino, J. (2009). Optimizing
data warehouse loading procedures for enabling
usefultime data warehousing (pp. 292–299). IDEAS.

Song, S. I., Kim, Y. H., & Yoo, J. S. (2004). An
enhanced concurrency control scheme for multidi-
mensional index structures. IEEE Transactions on
Knowledge and Data Engineering Archive, 16(1).

The OLAP Report. Http://www.olapreport.com

TPCDS. Transaction Processing Performance Coun-
cil: (Decision Support) Benchmark. http://www.tpc.
org/tpcds/tpcds.asp

You, J., Xi, J., Zhang, P., & Chen, H. A Parallel
Algorithm for Closed Cube Computation. IEEE/
ACIS International Conference on Computer and
Information Science pp. 95–99 (2008) doi:10.1109/
ICIS.2008.63

Zhou, G.-L., Chen, H., Li, C.-P., Wang, S., & Zheng,
T.GuoLiang. (2010). Z., Hong, C., CuiPing, L.,
Shan, W., Tao, Z.: Parallel Data Cube Computa-
tion on Graphic Processing Units. Chines Journal
of Computers, 33(10), 1788–1798. doi:10.3724/
SP.J.1016.2010.01788

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

44 International Journal of Data Warehousing and Mining, 11(1), 22-44, January-March 2015

Frank Dehne received a MCS (Dipl. Inform.) from RWTH Aachen University, Germany and a PhD from
the University of Würzburg, Germany. He is currently Chancellor’s Professor of Computer Science at
Carleton University in Ottawa, Canada. His research program is focused on parallel algorithms engineering
for current parallel architectures (multi-core, cluster, cloud, GPU) with the goal of improving the perfor-
mance of large-scale data science systems, in particular for computational biology and big data analytics.
Dr. Dehne is a Fellow of the IBM Centre for Advanced Studies Canada, member and former vice-chair
of the IEEE Technical Committee on Parallel Processing, member of the ACM Symposium on Parallel
Algorithms & Architectures Steering Committee, and co-founder of the Algorithms and Data Structures
Symposium (WADS).

Hamidreza Zaboli received his M.Sc. from Amirkabir University of Technology (Tehran Polytechnic). He
is currently a PhD candidate in the School of Computer Science at Carleton University. From 2010 to 2013,
he had been a PhD fellow student at IBM Centre for Advanced Studies (CAS) Canada. His current research
interest is in the application of parallel methods to enable real-time OLAP on multi-core and cloud platforms.

	Instructions

	Masthead
	Table of Contents
	Parallel Real-Time OLAP on Multi-Core Processors

