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Abstract—This paper presents VelocityOLAP (VOLAP), a dis-
tributed real-time OLAP system for high-velocity data. VOLAP
makes use of dimension hierarchies, is highly scalable, exploits
both multi-core and multi-processor parallelism, and can guar-
antee serializable execution of insert and query operations. In
contrast to other high performance OLAP systems such as SAP
HANA or IBM Netezza that rely on vertical scaling or special pur-
pose hardware, VOLAP supports cost-efficient horizontal scaling
on commodity hardware or modest cloud instances. Experiments
on 20 Amazon EC2 nodes with TPC-DS data show that VOLAP
is capable of bulk ingesting data at over 600 thousand items
per second, and processing streams of interspersed insertions
and aggregate queries at a rate of approximately 50 thousand
insertions and 20 thousand aggregate queries per second with
a database of 1 billion items. VOLAP is designed to support
applications that perform large aggregate queries, and provides
similar high performance for aggregations ranging from a few
items to nearly the entire database.

I. INTRODUCTION

On-Line Analytical Processing (OLAP) is a widespread ap-
proach to knowledge discovery in large database systems. Many
essential business applications rely on OLAP for structured
data analysis [11]. OLAP queries often aggregate large portions
of the database, which can lead to performance issues with
very large databases. Many traditional OLAP systems address
this problem by taking the static data cube approach [22] and
materializing multi-dimensional views to ensure high query
performance. However, such systems can only be updated
periodically, e.g. once every week, which prevents queries from
including the most recent data. More modern systems avoid
materialization, but still incur a delay between new data being
ingested and that data being available for analysis. Stale results
become increasingly problematic for applications which have
a high rate of change, or velocity. Applications that monitor
high-velocity data streams require the ability to analyze new
data as it arrives, in real-time.

This paper presents VelocityOLAP (VOLAP)11, a scalable
real-time OLAP system that supports up-to-date querying
of high-velocity data in an elastic cloud environment. As
is increasingly typical for high performance OLAP systems,
VOLAP is an in-memory system that supports ingestion of new
data, but not deletion. Unlike some other distributed OLAP
systems, such as Druid [44], VOLAP does not use a special

1This paper is an extended version of an earlier presentation [33] with new
results on replication, data skew, and fault tolerance.

partitioning dimension. Such systems typically require queries
to “slice” along that dimension to see good performance. In
VOLAP, all dimensions are treated equally, and the system
scales to many dimensions thanks to the properties of its
underlying data structure. VOLAP is designed to support
horizontal scaling on commodity hardware, which is more
cost-efficient than systems like SAP HANA [55], which rely on
vertical scaling (the use of a small number of very powerful
compute nodes), or special purpose hardware such as an IBM
Netezza data warehouse appliance [66]. Compute nodes can be
added or removed as necessary to adapt to the current workload,
and no single node acts as a performance bottleneck or point
of failure for the entire system.

VOLAP partitions data into shards stored on worker nodes.
Shards are stored using the novel Hilbert PDC tree [77],
which supports multi-threaded insert and aggregate query
operations on many hierarchical dimensions without any need
for materialization or auxiliary index structures. Compared
to its predecessors, the Hilbert PDC tree can sustain a much
higher rate of data ingestion.

Clients interact with VOLAP via server nodes, which handle
incoming streams of insertions and aggregate queries, and route
them to the appropriate workers. Zookeeper [88] is used for
managing global state information. A manager background
process monitors the system and coordinates global real-
time load balancing operations as necessary. Automatic load
balancing allows VOLAP to adapt to changes in the data
distribution or network topology, such as the addition of new
worker nodes to accommodate increased load.

Experiments with 1 billion TPC-DS [99] items using the
dimension hierarchies shown in Figure 11 show that VOLAP is
able to ingest over 600 thousand items per second, and process
streams of interspersed insertions and aggregate queries at
approximately 50 thousand insertions and 20 thousand aggre-
gate queries per second using 20 Amazon EC2 c3.4xlarge
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worker instances. These experiments include a wide range of
queries ranging from small queries, to average size queries
that need to aggregate several hundred million data items, up
to queries that need to aggregate nearly the entire database.

Serializable [1010] execution is particularly challenging in a
highly parallel distributed system. In order to accommodate
many clients, VOLAP provides different guarantees in different
contexts. Each client session is attached to one of the server
nodes, as illustrated in Figure 22. VOLAP can guarantee that
the execution of an individual client stream is serializable, so
that queries includes all relevant results from any insertion
issued earlier in the stream, and none issued later. However, if
an application does not require serializable execution, this can
be disabled to improve performance.

Between client sessions, VOLAP provides best-effort fresh-
ness and aims to minimize the time required for an insertion
to be included in later queries. Clients attached to the same
server observe a smaller delay than those attached to different
servers since inter-server synchronization is not required for one
client’s requests to be affected by the other. In the experiments
presented here, over hundreds of billions of tests, consistency
between insertions and queries on different servers was always
observed in under 3 seconds, but typically in under 0.25
seconds.

In summary, VOLAP introduces novel index and worker data
structures, a decentralized elastic architecture, a synchronization
scheme with configurable freshness, a low-overhead implemen-
tation of serializable execution, and load balancing algorithms
suitable for a fully decentralized real-time environment.

II. RELATED WORK

Many published systems store and query large data sets
in distributed environments. Hadoop [1111] and its file system
HDFS are popular examples, with applications typically built
on MapReduce [1212]. However, these systems are not designed
for real-time operation. Instead, they are based on batch
processing or “quasi real-time” operations [1313], [1414], [1515],
[1616]. The situation is similar for Hive [1717], HadoopDB [1818],
BigTable [1919], BigQuery [2020], and Dremel [2121].

To overcome the batch processing in Hadoop based systems,
Storm [2222] introduced a distributed computing model that
processes in-flight Twitter data. However, Storm assumes small
data packets that can quickly migrate between different comput-
ing resources. This is not the case for large data warehouses.
Several more recent cloud-based OLAP systems [2323], [2424],
[2525], [2626] are also based on MapReduce and do not support
full real-time operation.

For peer-to-peer networks, related work includes distributed
methods for querying concept hierarchies [2727], [2828], [2929], [3030].
However, none of these methods provide real-time OLAP
functionality.

Various publications on distributed B-trees for cloud plat-
forms exist [3131], however these only support 1-dimensional
indices which are insufficient for OLAP. There have been
efforts to build distributed multi-dimensional indices based
on R-trees or related multi-dimensional tree structures [3232],
[3333], [3434]. However, these methods do not support dimension

hierarchies which are essential for OLAP applications, and do
not scale well to a large number of dimensions.

The systems closest to VOLAP are Druid [44], Brown
Dwarf [3535], SAP HANA [55], IBM Netezza data warehouse
appliance [66], HyPer [3636], and CR-OLAP [3737].

Druid [44] is an open-source distributed OLAP store designed
for real-time exploratory queries on large quantities of trans-
actional events. Druid is specialized to operate on data items
that have timestamps, such as network event logs. In particular,
it partitions data based on these timestamps and queries are
expected to apply to a particular range of time. This is not
applicable to general OLAP where all dimensions may have
equal importance. Data sets with dimension hierarchies that
lack a time dimension cannot be used on Druid.

Brown Dwarf [3535] is a real-time, distributed, fault tolerant
OLAP store intended to be used on commodity hardware
which uses a decentralized graph to quickly retrieve pre-
computed aggregations. However, Brown Dwarf does not
support dimension hierarchies, and individual queries must
specify either a single point in a dimension, or all points in a
dimension, which is too restrictive for general purpose OLAP.

SAP HANA [55] is a real-time in-memory database system
that also supports aggregate queries. SAP HANA relies mainly
on vertical scaling. A basic HANA installation uses a single,
special purpose, very large multi-core compute node. A limited
scale-out version for multiple compute nodes is available, using
a distributed file system that provides a single shared data
view to all compute nodes. Horizontal scalability is restricted,
however, because the system has a single master node for
maintaining the shared data view, which becomes a bottleneck
as the system size increases.

The IBM Netezza data warehouse appliance [66] relies
on special purpose FPGA boards that provide a hardware
implementation of OLAP functionality.

HyPer [3636] is an in-memory database system that supports
fast transactions alongside a facility for creating lightweight
snapshots for OLAP sessions. HyPer makes use of the operating
system’s virtual memory facilities to quickly create snapshots
for analysis without copying data unnecessarily. Conceptually,
HyPer provides a lightweight on-demand data warehouse,
which supports read-only OLAP access to a consistent snapshot
of the database at a particular point in time. This is ideal for
some applications, but less well-suited to those that process a
high-velocity stream of mixed insertions and aggregate queries.
HyPer is a single-server system, though the snapshot technique
it uses may be applicable to distributed systems.

VOLAP’s predecessor, CR-OLAP [3737], is similar to HANA
in that it is also a centralized system with a single master
server node. As in HANA, this becomes a bottleneck in larger
systems and restricts horizontal scalability. CR-OLAP uses the
PDC tree [3838] as a building block, but as one large conceptual
tree, where the top few levels are stored on the master node and
subtrees are stored in memory on worker nodes. This design
scales well to a point, but has high insertion overhead and does
not allow for a distributed index.
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III. VOLAP ARCHITECTURE

VOLAP represents a d-dimensional database with Ni data
items and d dimension hierarchies. Clients send an ordered
stream of insert and aggregate query operations, and receive
an acknowledgement or result when the operation is complete.

Each query specifies, for each dimension, a set of values at
any level of the respective dimension hierarchy, or a wildcard
indicating that the entire range of the dimension should be
included. The query result is the aggregate of the specified
items. The coverage of a query is the percentage of items that
are included in the result. For example, on a database with
the Store, Item, Date, and Time dimensions as in Figure 11,
the query ({Canada.Ontario},{Books,Music},*,*)
would aggregate all sales of books or music in Ontario, Canada.

A. Architecture Overview

The VOLAP architecture, shown in Figure 22, consists of:
• m servers S1...m for handling client requests.
• p workers W1...p for storing data.
• A Zookeeper [3939] cluster for global system state.
• A manager background process for analyzing global state

and initiating load balancing operations.
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Fig. 2. System architecture. Arrows illustrate a possible path for an insertion
or query through the system.

Workers and servers are multi-core machines which execute
up to k parallel threads and store all data in main memory.
VOLAP is elastic in that more workers and servers can be added
if necessary. With increasing database size and/or changing
network topology, data is reorganized to make the best use of
the currently available resources.

Workers are used for storing data and processing OLAP
operations. The global data set is partitioned into data shards
D1, . . . , Dn. Each shard Di has a bounding box Bi which is a
spatial region containing Di, represented by either a Minimum
Bounding Rectangle (MBR, one box) or Minimum Describing
Set (MDS, multiple boxes) [4040]. Bounding boxes may overlap,
though an individual data item is stored in only one shard.
Each worker typically stores several shards.

Servers receive OLAP operations from clients, determine the
shards relevant to each operation, and forward the operations

to the worker(s) responsible for those shards. Once the workers
respond, the server reports the result to the originating client.

All nodes communicate using ZeroMQ [4141], a high-
performance asynchronous messaging library designed for
scalable distributed applications.

B. System Image

The system image represents the global system state, and
is stored in Zookeeper [3939], a fault tolerant distributed coor-
dination service. The image contains the global information
required by servers and the manager, including lists of all nodes,
configuration parameters, and each shard’s size, bounding box,
and worker addresses.

Each server maintains a local image which serves as an
in-memory cache to prevent Zookeeper from becoming a
bottleneck. Given an insertion or query, the server uses the
local image to find the relevant shards as well as the address
of their corresponding worker(s).

The server updates the global image in Zookeeper at a
configurable rate if the local image has changed due to insertion,
for example every 3 seconds as in the experiments below.
Servers make use of Zookeeper’s watch facility to be notified
of changes, and update their local image as necessary. Workers
update shard statistics in Zookeeper periodically as well, to
allow the manager to plan load balancing operations.

C. Index Data Structure

Since the local image is responsible for finding the shards
relevant to each insertion or query, a fast index structure is
crucial for high performance. Two key aspects of the index
affect performance: search speed, and the global structure
that results from choosing a given shard for an insertion.
In particular, overlapping shards increase the likelihood that
queries must be sent to many workers.

VOLAP uses a modified PDC tree [3838] to serve this purpose.
The basic structure of the tree is conventional: nodes have a
bounding box which encompasses those of all its children. The
index tree has exactly n leaves which correspond to the data
shards in the system. Each leaf has the bounding box Bi of
the corresponding shard Di, and contains the ID Di which is
used by the server to locate the shard on a remote worker.
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Fig. 3. Server index data structure

The server tree exploits the PDC tree cached aggregate
values by storing a set of shard IDs in each node, and using
set union as the aggregation function. Directory nodes higher
in the tree thus contain the set of all shard IDs in the subtree
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rooted at that node, as illustrated in Figure 33. For example,
if the system receives a query for a large box that contains
the entire database, only the root node is accessed and no tree
traversal is necessary, since the root node contains the set of
all shard IDs in the system.

Insertions, however, differ from those in a conventional tree,
since the leaves are fixed. When a leaf is reached, its bounding
box is expanded but children are not added. Consequently,
an insertion never results in a node split. There are many
algorithms for choosing the best subtree for insertions in an
R-tree-like structure, with various trade-offs. The server index
chooses the child which results in the least overlap, since the
high global cost of overlap dominates the cost of performing
overlap calculations in the index.

Synchronization with the global image in Zookeeper may
require structural modifications to the index tree. Adding a new
shard to the system inserts a new leaf, expanding and possibly
splitting internal nodes in the process. When a bounding box
in Zookeeper expands, the corresponding leaf’s bounding box
is expanded accordingly, as well as those of all nodes on the
path from the leaf to the root as necessary. If a shard is split,
the corresponding leaf is removed and replaced with two leaves
which correspond to each side of the split.

As a PDC tree, the index is thread-safe and uses minimal
locking to allow for parallelism. Servers use many threads, all
using the same index in parallel, to be able to maintain a high
throughput to fully utilize workers.

D. Initialization and Skew Tolerance

VOLAP is designed to ingest data exclusively from clients in
real-time. This introduces challenges for a new empty system
since it is not possible to initially analyze the data set to
determine an optimal data distribution. However, the range of
the dimension hierarchies is known at system startup, which
provides coarse bounds for the keys which may be inserted.

The system is initialized using the dimension hierarchy
ranges as well as the initial number of workers and shards.
To prepare for data ingestion, the manager retrieves this
information from Zookeeper and derives the minimal box which
encompasses all possible keys. This box is then recursively
split along each dimension in decreasing breadth order until
a box has been produced for each initial shard. The resulting
boxes are ordered such that boxes which were produced by
splitting a larger box are adjacent. For example, if B is split
into Bl and Br, then the resulting array contains [Bl, Br]. If Bl

is then further split into Bll and Blr, then the resulting array
contains [Bll, Blr, Br]. A shard is created for each box, and
these are distributed among the initial workers in a round-robin
fashion with replication.

The initial number of shards thus provides a degree of
control over load balancing agility and skew tolerance. If the
initial number of shards is much greater than the initial number
of workers, then a given spatial region is initially distributed
among many workers. For example, if it is likely that the
majority of inserts will be within one quarter of the key space,
choosing at least four times as many initial shards as workers
will balance this load evenly. Note, however, that this initial

configuration is not fixed, skew will be adusted for over time by
the real-time load balancing scheme described in Section IVIV. An
appropriately fine-grained initial distribution allows VOLAP to
handle the initial loading of the system efficiently, and increases
load balancing agility since smaller shards allow the load to
be more easily balanced among workers without splitting.

E. Shard Data Structure: Hilbert PDC Tree

Each shard is stored in an in-memory multi-threaded data
structure that handles a stream of insertion and aggregate query
operations. VOLAP includes four data structures for shards:
the PDC tree [3838], the Hilbert PDC tree [77], and an R-tree and
Hilbert R-tree [4242] variant based on the same underlying tree
implementations but using MBR rather than MDS keys.

High-velocity OLAP applications are generally best served
by the Hilbert PDC tree, which is designed to suit the needs of
VOLAP. The Hilbert PDC tree is, like its predecessors, a multi-
dimensional index where each node has a bounding box which
encompasses those of all its children. The key improvements
are a much higher rate of data ingestion than the PDC tree,
and support for many more dimensions than an R-tree.

This is achieved by ordering nodes based on their Hilbert
index, rather than performing geometric calculations at every
level of the tree to determine an insert position. The Hilbert
curve is a fractal space-filling curve with locality-preserving
properties, and a Hilbert index is the distance along a discrete
approximation of the Hilbert curve. For example, Figure 44
shows the third approximation of a 2D Hilbert curve with
labelled indices. Here, (3, 1)⇒ 12 and (2, 0)⇒ 14, with the
two nearby points mapping to nearby Hilbert indices.
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Fig. 4. The third approximation of a 2D Hilbert curve with discrete
coordinates and indices

The locality-preserving nature of the Hilbert curve is not
perfect, for example, (4, 0)⇒ 16 above, which is further from
(3, 1) ⇒ 12 despite having the same geometric distance as
(2, 0)⇒ 14. However, in general, geometrically nearby points
map to nearby Hilbert indices.

Insertion into The Hilbert PDC tree works by first mapping
multi-dimensional points to their Hilbert index, then exploiting
this linear ordering to use essentially the same insertion
algorithm as a B+-tree. Since linear comparison is much faster
than R-tree-like geometric calculations, particularly with MDS
keys, ingestion throughput increases dramatically. Querying
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works much like any R-tree-like structure, that is, querying
does not directly make use of Hilbert indices. The locality-
preserving nature of the Hilbert curve indirectly ensures that
the tree is well-structured for efficient geometric queries.

The hierarchical nature of OLAP data introduces issues with
Hilbert ordering that are not addressed by structures designed
for flat dimensions like the Hilbert R-tree. In particular, keys
in the tree are expressed at various levels, where nodes higher
in the tree tend to have coarser keys. Keys are therefore often
compared at different levels than the leaf level for which the
Hilbert ordering was calculated. Since the breadth of levels
may vary across dimensions, the Hilbert order for leaves may
not provide ideal locality for keys higher in the tree which are
expressed at higher levels in the dimension hierarchy.

To improve this situation, IDs are first expanded such that a
given level in any dimension spans the same numeric range.
This is achieved by shifting the associated bits left to match
the maximum possible value of an ID in that level for any
dimension. As a result, the Hilbert index for leaf-level keys will
still have a good distribution at higher levels in the tree. The
dimension number at the start of each ID is removed entirely,
since this is implicit in the Hilbert mapping.

Figure 55 shows a simple example for an ID with two
dimensions. At level 4, dimension 2 uses only two bits, but
dimension 1 uses four. To compensate, level 4 in dimension 2
is shifted left two bits, causing values to span roughly the same
numerical range as those in dimension 1. This transformation is
only performed in order to calculate the corresponding Hilbert
index, the keys in the tree used for querying are unmodified.
To minimize space overhead, compact Hilbert indices [4343] are
stored, which use the minimum number of bits necessary given
the span of each dimension.

Dim L1 L2 L3 L4

ID 01 xx11 xx11 x111 1111
10 1111 xxx1 xxx1 xx11

Expansion xx 11xx 11xx 111x 1111
xx 1111 1xxx 1xxx 11xx

Fig. 5. Transforming hierarchical IDs for Hilbert mapping

Since the ordering of child nodes is fixed, the node splitting
algorithms of the PDC tree or other R-tree-like structures are
not applicable to the Hilbert PDC tree. Instead, the overlap that
would result from splitting a node at each index is calculated
in linear time, and the node is split at the index that causes
the least overlap between the resulting children.

F. Fault Tolerance

VOLAP uses redundant replication of shards to ensure that
the system is able to operate without interruption or loss of
data in the event of worker node failures. When replication
is enabled, each shard is stored on Nr different workers. If
a worker fails or stops responding, Nr − 1 workers remain
available to handle queries on that shard. Shard replicas are
kept up to date by sending each insertion from the server to
all Nr workers replicating the relevant shard. Since insertions
will invariably arrive at different workers at different times,
shard replicas will rarely be identical at any one point in time.

To mitigate this, quorum consensus is used for insertions and
queries. As illustrated in Figure 66, the write quorum parameter
W dictates the number of worker replies the server must
receive before notifying the client that the insert is considered
complete. This is similar to how write quorums work in many
fault tolerant key-value stores [4444], [4545]. Similarly, queries
are sent from the server to all workers storing replicas of
each relevant shard, and R read quorum responses must be
received from each relevant shard before the server performs
the intermediary aggregation.

Di

SC
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Wz

Di

Di

Fig. 6. An insertion with Nr = 3, W = 2

Once a server receives R query responses from a set of shard
replicas, it must decide which shard aggregation is the best
or “most correct” representation of the true result. Since each
result is the aggregation of any number of points, timestamps
of individual insertions or points can not be used to solve this
problem, unlike in key-value stores. VOLAP uses different
methods based on the aggregation function of the query to
determine which shard replica’s result is closest to the true
result. For example, assuming points are never deleted from
the system as is typical in OLAP, for monotonically increasing
aggregation functions like max or count, the best query
replica result is always the greatest. Likewise, for monotonically
decreasing functions like min, the best result is the smallest.
For non-monotonic functions like sum and mean, the result
with the largest count value is likely the most accurate.

When worker nodes die or become unresponsive in VOLAP,
the manager removes the worker from the system image and
alerts servers not to send messages to the unresponsive worker.
Periodically, the manager checks the system image to ensure
that each shard is replicated on Nr workers. If a shard has
fewer than Nr replicas, the manager coordinates a copy to a
new worker in order to create another replica of the shard. Since
VOLAP currently does not have any anti-entropy mechanisms
to recover insertions lost during worker downtime, if a worker
“comes back from the dead”, its memory is wiped and it is
treated as a new worker which has been added to the system.

Server threads always monitor a local command socket which
broadcasts system changes like worker death. If a worker dies
while a server is waiting for a reply from that worker, the server
adjusts accordingly to ensure execution proceeds. If the worker
is a redundant replica, the server removes the worker from its
pool of expected responses, and completes the operation and
responds to the client if all other workers have responded. If
the operation can no longer be completed successfully because
too many workers have died, the server aborts the operation
and responds with an error.

Higher values of Nr increases the number of workers the
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system can lose while still maintaining correct operation.
Increasing Nr also consumes more resources, as each insertion
and query must be executed on Nr different workers. The
quorum parameters W and R thus give the user a level of
control over the consistency of their queries. Lower values of
W and R decrease latency at the cost of decreased consistency,
while high values of W and R tune the system for high data
consistency at the cost of insert and query latency.

G. Multi-Threaded Message Handling

Careful handling of messages is necessary to maintain high
performance while ensuring correctness in a highly parallel
system like VOLAP. Servers and workers have a similar design
for handling incoming requests: a single receiver thread reads
messages from the network socket, and several processing
threads handle requests. The receiver thread distributes requests
to processing threads via local sockets. All sockets are ZeroMQ
sockets, using the appropriate transport backend (tcp or
inproc). Using sockets for inter-thread communication avoids
many synchronization issues and allows for a high degree of
parallelism.

The receiver thread balances requests among processing
threads by maintaining a list of currently idle threads. When a
request is received, an idle thread is popped off the list, and the
request is forwarded to the corresponding local socket. When
the thread has finished processing the request, it sends the
reply back to the receiver (and ultimately the client) via the
same socket, followed by a special message to indicate that
the thread is once again idle. The processing thread is then
placed back on the list of free threads.

In the server, requests typically require sending further
requests to workers. One of two possible configurations can
be chosen by the user:
• Thread sockets: Each processing thread has its own

network socket for sending messages directly to workers.
• Single socket: Each processing thread has a local socket

that forwards to a sender thread, which uses a single
network socket to send all messages to workers.

Thread sockets eliminate the hop through the sender thread,
and thus can achieve slightly higher throughput. However,
the lack of a single ordered stream of messages to workers
precludes serializable execution, which requires a single
network socket.

H. Serializability

A serializable execution guarantees the same results as a
serial execution of the operation stream [1010]. In the context
of VOLAP, this requires that any queries include all relevant
results from insertions issued prior in the stream, and none
issued later. Note that this guarantee does not impose an
execution order for a series of successive insertions or queries:
insertions only affect the outcome of queries, so successive
insertions can safely be executed in parallel until a query arrives.
Similarly, queries do not affect the database state, so successive
queries can be executed in parallel until an insertion arrives.
Synchronization is therefore required at any transition from
query to insertion or vice-versa, as illustrated in Figure 77.

A naı̈ve implementation could simply block processing of
the stream entirely at each transition, but this would severely
restrict throughput for streams with interspersed insertions
and queries. Instead, VOLAP uses a parallel pipeline model
where synchronization occurs at various stages throughout
the processing of a request, allowing insertions and queries
to be executed in parallel at different stages in the pipeline.
There are several stages in the execution of a request where
the correct order must be ensured. At each such stage, if a
synchronization point in the stream is encountered, processing
must be blocked until the previous operation has completed
execution of that stage. This is achieved with a series of barriers
which allow any number of insertions, or any number of queries,
to execute in parallel, but block processing if an insertion is
encountered while queries are being executed or vice-versa.
The synchronization barriers encountered while processing a
request, as illustrated in Figure 88, are:

1) Server Receive: When the request arrives at the server’s
receive socket, the first barrier is reached by the (single)
receiver thread. Then, the request is forwarded to a server
thread for processing via an internal socket.

2) Server Prepare: When a server thread receives the request,
it deserializes the request and applies it to the index.

3) Index: After the request is applied to the index, the
corresponding worker request(s) is/are enqueued for
sending to the relevant worker(s).

4) Enqueue: After all messages have been enqueued to be
sent to workers, a special message is also enqueued to
signal the sender thread to trigger the next barrier.

5) Send: When the sender thread receives the special
synchronization message, it knows all worker messages
for this request have been enqueued, so serializable
delivery of requests to workers has been ensured.

6) Worker Receive: Identical to step 1 in the server.
7) Worker Prepare: Identical to step 2 in the server.
8) Commit: After the request has been applied to all relevant

shards, serializable execution has been completed.
In order to maximize throughput, more barriers are used than

are strictly necessary to ensure correctness. For example, barrier
2 could be omitted, but its inclusion allows following events to
be distributed to server threads and prepared in parallel while
the current operation is being committed to the index. This
design allows many requests to execute in parallel at different
stages, so serializable execution has only a moderate impact
on performance, as demonstrated in Section V-BV-B.

IV. LOAD BALANCING

Effective load balancing is crucial for scalable distributed
systems. When the workload of the system is unevenly parti-
tioned among its resources, some portion goes underutilized
while the remainder struggles to pick up the slack. This has
a negative impact on throughput, response time, and stability
which tends to get further compounded as the system scales
up in size. However, the load balancing operations themselves
can also incur significant costs due to the overhead of moving
potentially large amounts of data over the network. Maintaining
consistently high performance requires a load balancing scheme
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Fig. 8. Path of a request through the system with serialization barriers

which offers a good trade-off between load balancing overhead
and effectiveness.

VOLAP uses a real-time load balancing scheme which allows
workers to be added, removed, or replaced dynamically in
order to maintain performance in the face of changing system
load. The operations performed during load balancing are
carefully designed to not interrupt processing, so insertions and
aggregate queries can continue to execute while load balancing
is performed.

A separate background process called the manager initiates
load balancing operations. The manager periodically analyzes
the system state stored in Zookeeper and decides on suitable
load balancing operations. It then initiates these operations,
coordinating the necessary actions between workers and servers.
For example, the manager may identify a worker that is
overloaded and about to run out of memory, then send messages
to workers instructing them to perform the appropriate splits
and/or migrations. The manager is not a bottleneck for insertion
or query performance, and can reside anywhere in the system.

A. Shard Operations

A shard Di stored on a source worker Ws can be migrated
to a destination worker Wd if, for example, Ws is running
out of memory or Wd is a new worker allocated for spreading
the load. A shard can also be split if load balancing requires
smaller shards to migrate. The shard data structures provide
four operations in order to support these scenarios:
• SplitQuery(Di, Bi) which returns a hyperplane h that

partitions Di into D1
i and D2

i with bounding boxes
B1

i and B2
i , respectively, such that D1

i and D2
i are of

approximately equal size.
• Split(Di, Bi, h) which returns (D1

i , B
1
i , D

2
i , B

2
i ) where

Di is partitioned into D1
i and D2

i with bounding boxes B1
i

and B2
i , respectively, such that D1

i and D2
i are spatially

separated by hyperplane h.
• SerializeShard() which returns a flat binary blob b con-

taining the data in Di (suitable for network transmission).
• DeserializeShard(b) which builds the data structure from

such a blob.

B. Processing Requests During Load Balancing

Correctly performing a split or migration requires a con-
sistent snapshot of the relevant shard. However, real-time
operation requires that operations can be processed at any
time, including when shards are being split or migrated. For
example, if a shard is being serialized for migration, but data
items are inserted during this process, it is unknown which

insertions are included in the serialized shard and which have
been missed.

To avoid such problems, workers create insertion queues for
shards during load balancing operations. During the operation,
insertions for the shard are inserted into a queue rather than the
shard itself, as illustrated in Figure 99. A single queue is used
for split queries and migrations, and two are used during a split
with inserts directed according to the split hyperplane. Queries
are directed to both the shard and the queue(s) to ensure results
are up to date. The insertion queue uses the same data structure
as shards, allowing insertions and queries to be processed with
the same performance as shards themselves.

Di

I1
I2
Q1
Q2

Q1
Q2

I1
I2
Q1
Q2

q

(a) Split query and migration

Di

I1
I2
Q1
Q2

Q1
Q2

I1
Q1
Q2

qr

I2

ql

Q1
Q2

(b) Split

Fig. 9. Distribution of inserts and queries to a shard Di and its insertion
queue(s) during load balancing.

When a migration is finished, the shard on the source
worker is no longer necessary and is destroyed along with the
corresponding queue. When a split query is finished, the queue
is drained into the shard. When a split is finished, for each
replica, the two queues are drained into their corresponding
shard.

C. Migration

The basic strategy for maintaining responsiveness during
migration is to have the source worker continue to serve
requests while the shard is migrating. Once the destination
worker receives the shard from source worker, it is activated
there and removed from the source worker. The process of
migrating a shard from a source worker to a destination worker
is initiated and coordinated by the manager.

The migration process consists of several stages, each
associated with a message delivery as illustrated in Figure 1010:

1) MigratePrepDest(Ws, s):
To begin a migration, the manager notifies the destination
worker that it will be receiving a new shard s. The
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Fig. 10. Migration process

destination worker begins queuing up any insertions for
s that may arrive during the migration.

2) MigratePrepServ(Ws, Wd, s):
Once the destination worker is ready, the manager notifies
all servers that shard s is about to migrate from Ws to
Wd. The servers begin sending any insertions for s to
both the source and destination workers.

3) MigrateBegin(Wd, s):
Once all servers are aware of the migration, the manager
instructs the source worker to send shard s to Wd.

4) MigrateData(s, Wd, d):
The source worker serializes shard s into a blob b and
sends it to Wd.

5) MigrateDone(s):
When the destination worker receives s, it adds it to its
set of data structures, applies all pending queued inserts,
and notifies the manager that it has received the shard.

6) MigrateDone(s):
When the migration is complete, the manager notifies
all servers, which cease sending messages for s to the
source worker.

7) DeleteTree(s):
Now that s is no longer considered to reside at the
source worker by servers, the manager instructs the
source worker to delete it.

8) Finally, the manager updates Zookeeper to reflect the
new location of s, and the migration is complete.

Note that all servers are informed of the migration of a
shard before starting the migration process. Thus, when shards
are migrating, correct query results can be guaranteed by
forwarding queries to all relevant workers.

D. Split

ManagerServer

Worker

1,2

2

2

3

3

3

4

5

Worker

WorkerZookeeper

Fig. 11. Split process

Like migration, the process of splitting a shard is initiated
and coordinated by the manager, and transaction processing can

proceed normally while shards are being split. Unlike migration,
splitting requires coordination from all workers replicating the
shard. The split process consist of 5 stages, each associated
with a message delivery as illustrated in Figure 1111:

1) SplitQuery(s):
To begin the split, the manager arbitrarily selects one
of the workers replicating the shard and requests that it
return a hyperplane with which to split the shard.

2) SplitRequest(s):
Once the manager receives the split hyperplane, it sends a
split request with the hyperplane to all workers replicating
the shard. The workers then begin the split process.

3) SplitComplete(s, s′, s′′):
Once a replica split completes, the worker notifies the
manager that s is split into s′ and s′′.

4) SplitUpdate(s):
When the manager receives the SplitComplete mes-
sage from each worker, it notifies all servers that s has
been split into s′ and s′′. The servers begin sending
insertions and queries to s′ and s′′.

5) Finally, the manager updates Zookeeper to remove the
old shard s and add the two new “sides” s′ and s′′.

In order to handle queries after shards have been split, each
worker Wk stores a mapping table Mj . If a shard Di is split
into D1

i and D2
i , then Mj stores an entry with key Di and

value pointing to the two data structures for D1
i and D2

i . Thus,
any queries in the queue which were initiated before the split
can be applied to the two new shards that contain the data
originally stored in the query shard.

E. Replication

When a server notices that messages being sent to a worker
are timing out, the server records in the system image that the
worker node has died and its shards have been lost. This
triggers the manager, who periodically checks the system
image for any shards that have less than Nr copies, to initiate
a replication operation of the shard to another worker. The
replication process is essentially a migration without deletion.
The source worker begins queuing insertions for the relevant
shard, and instructs servers to send insertions to both the source
and destination worker. The source worker then sends a copy
of the shard to the destination worker, followed by a copy of
the queued inserts. Finally, the manager updates Zookeeper to
reflect that the destination worker now replicates the shard.

F. Load Balancing Algorithm

VOLAP has a modular design that allows for various optimiz-
ers which implement load balancing algorithms. The manager
provides access to the system state as stored in Zookeeper,
and periodically requests load balancing operations from the
optimizer. If the optimizer returns a set of operations, the
manager initiates them, and, once all operations are complete,
resumes periodically requesting load balancing operations from
the optimizer.

The experiments below use an optimizer that balances the
memory load of workers, so if a single worker becomes too
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full, data will be migrated to a worker with more free memory.
The improvement I for a migration of a shard s from worker
Ws to Wd is the difference between the current imbalance of
the workers and the imbalance if the migration were performed.
If we denote the size of a worker or shard X as X , then:

I = |Ws −Wd| − |(Ws − s)− (Wd + s)| (1)

For example, if Ws = 1000, Wd = 500, and s = 250, then

I = |Ws −Wd| − |(Ws − s)− (Wd + s)|
= |1000− 500| − |(1000− 250)− (500 + 250)|
= |500| − |750− 750|
= 500

In this case, migrating s results in the two workers being
completely balanced, so the maximum possible improvement
(their original difference in size) is achieved.

The algorithm proceeds by evaluating every possible mi-
gration and ranking them by improvement. In order to avoid
migrations that do not result in a significant enough improve-
ment to justify their expense, the user can specify a migration
threshold parameter Tm. For a migration to be considered,
the improvement must exceed the shard size scaled by the
migration threshold, that is:

I ≥ Tm ∗ s (2)

Then, potential splits are considered by evaluating the
migrations they would enable. For each shard, the optimizer
considers the migrations that would be possible if the shard
were split in half, and adds the split to the list of potential
operations using the same criteria as migrations.

The optimizer then chooses operations in order of decreasing
improvement. The user can control the aggressiveness of load
balancing by configuring the minimum improvement which
an operation must exceed in order to be selected. To prevent
a worker from being too heavily loaded by load balancing
operations, at most one migration to or from a given worker,
and at most one split on a given worker, is chosen in a single
optimization round. When an operation is chosen, the relevant
workers are flagged, and subsequent potential operations that
involve those workers are skipped. Any such skipped operations
will likely be chosen in the next optimization round if they
remain worthwhile.

V. EXPERIMENTAL EVALUATION

VOLAP performance is evaluated with respect to the system
size, workload mix (percentage of insertions in the operation
stream), and query coverage (percentage of the database that
needs to be aggregated for a query). Data sets are either from
TPC-DS with d = 8 hierarchical dimensions as shown in
Figure 11, or a synthetic Zipf distribution with skew s = 1
except where otherwise noted. Experiments were performed
on Amazon EC2, using c3.8xlarge, c3.4xlarge, and
c3.2xlarge instances for servers, workers, and all other
nodes, respectively. At the time of writing, these instances are
based on Intel Xeon E5-2680 processors, running Amazon
Linux with Linux 3.14.35, ZeroMQ 4.0.5 and Zookeeper 3.4.6.

Queries are randomly generated to span a wide range of
coverages, and specify values at various levels in all dimensions.
Generated queries are tested against the database and binned
according to their true coverage. During benchmarking, queries
are chosen uniformly at random from the appropriate bin.
Except where otherwise noted, Nr = 1 replicas are used.

A. Data Structure Performance

The Hilbert PDC tree is designed for high-velocity envi-
ronments, and supports a dramatically higher rate of insertion
than its predecessor the PDC tree, as shown in Figure 12a12a. In
this experiment, using TPC-DS data with 8 threads on a single
quad-core machine, the Hilbert PDC tree ingests data over 10
times faster than the PDC tree.

Figure 12b12b compares the performance of the Hilbert PDC
tree and the PDC tree for queries with varying coverage. Both
trees perform relatively well with high coverage, since these
queries tend to completely cover high-level tree nodes. This
allows the cached aggregate values in the tree to be used,
avoiding the need to traverse more deeply. The performance
gain of the Hilbert PDC tree for low and medium coverage
queries highlights the improved tree structure obtained by
using Hilbert ordering. For both low (below 33%) and medium
(33% to 66%) coverage queries, the Hilbert PDC tree performs
significantly better than the PDC tree. The fractal nature of
Hilbert ordering combined with careful mapping of MDSs
(as described in Section III-EIII-E) produces less overlap at lower
levels in the tree than the R-tree-like PDC tree algorithm. This
increases the likelihood that cached aggregate values are used
for lower coverage queries.

The benefits of the PDC tree are most apparent with a high
number of dimensions. In particular, PDC trees handle many
dimensions much more efficient than R trees, as can be clearly
seen in Figure 13b13b. Above 16 dimensions, the R tree variants
become effectively unusable, but the PDC tree variants scale
gracefully to many more dimensions.

The Hilbert PDC tree preserves this scalability in query
performance, and significantly improves it for insertion, as
shown in Figure 13a13a. With over 16 dimensions, the query
performance of the R tree variants degrades dramatically,
but both PDC trees retain their speed. Since insertion in
the Hilbert PDC tree is based on a simple linear ordering
rather than geometric calculations as in the PDC tree, the cost
of additional dimensions is significantly lower. As a result,
insert latency is nearly flat compared to the PDC tree where
insertion gets significantly more expensive as the number of
dimensions increases. Accordingly, all subsequent experiments
in this section use the Hilbert PDC tree as the underlying data
structure.

B. Serializable Execution Impact

The performance impact of serializable execution is shown
in Figure 1414. The socket configurations refer to the different
architectures described in Section III-GIII-G. All three experiments
use the same TPC-DS data and queries. The effects of
serializability can be seen by comparing “serializable” with
“single socket”, which both have the same socket configuration.
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Fig. 13. Performance of tree variants with increasing number of dimensions, Ni = 50, 000, 000

The impact is greater when there is a mix of insertions and
queries, as expected, since synchronization is required only
when an insertion is followed by a query, or vice-versa. In the
worst case, at a 50% mix, serializability comes at a cost of
approximately 20 thousand operations per second. A significant
cost, but one that only affects the client with serializable
execution enabled. Note that a 50% mix here results in a stream
that is often an insertion followed by a query, then another
insertion, and so on; the worst case scenario for serializable
execution overhead.

C. Real-Time Load Balancing

The real-time load balancer coordinates the elasticity of the
system. As workers are added, the load balancer automatically
moves data items to the new workers to balance the workload.
Figure 1515 shows the impact of real-time load balancing during a
horizontal scale-up experiment. In this experiment, load phases
are interleaved with insert and query benchmarking phases. At
the start of each load phase, two additional workers are added to
account for the increase in database size. The red region shows
the minimum and maximum number of data elements stored

on a worker. When new workers are introduced they are empty,
causing the minimum to go to zero. The effects of the load
balancer are clearly visible as the gap between minimum and
maximum worker size is reduced by moving data to the newly
introduced workers. The number of migration operations for
this process are shown as a dotted purple line associated with
the right y-axis. Once balance is achieved, loading proceeds,
increasing the minimum and maximum size per worker as
new elements are inserted. Note that this experiment uses
discrete phases to ensure a stable benchmarking environment,
but in general, load balancing is performed concurrently with
insertions and aggregate queries whenever the manager decides
an adjustment is necessary.

D. Horizontal Scale-Up Performance

Figure 1616 shows the insert and aggregate query performance
for various workloads as the system size increases. This data
is from the same experiment as shown in Figure 1515, where
two new empty workers are added at each scale-up step. For
each system size with p workers and Ni ≈ p×50 million data
elements, benchmarks are performed for insertions as well as
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queries with low (below 33%), medium (between 33% and
66%), and high (above 66%) coverage. The throughput and
corresponding latency are shown in Figure 1616.

Figure 1616 shows that VOLAP scales well in an elastic
environment. As the database size increases and workers are
added to compensate, VOLAP maintains its performance over
the entire range of database sizes. The insertion curve is nearly
flat at approximately 50 thousand inserts per second. Query
performance is unsurprisingly more affected by increasing
database size, but the gentle slope averaging approximately
20 thousand per second shows that VOLAP can sustain high
throughput and sub-second aggregate queries for very large
databases.

VOLAP also supports bulk ingestion which allows data to be
loaded at a much higher rate than point insertion. When many
records are available to be bulk inserted at once, experiments
on the same system show VOLAP to be capable of ingesting
data at over 600 thousand items per second for TPC-DS data
loaded from disk, and over 1 million items per second for
synthetic data generated by the client on the fly.

E. Insert and Query Performance

Figure 1717 shows the throughput and latency for insertions
and queries with a database of 1 billion items. Performance
is measured for various workload mixes and query coverages.
Workload mix has a significant impact on throughput because
the time spent for insertions and queries may vary considerably.

Figure 1717 shows that the “coverage resilience” of the
Hilbert PDC tree carries through to VOLAP as a whole:
query performance is nearly identical regardless of coverage.
The cached aggregate values discussed in Sections III-EIII-E and
V-AV-A speed up large aggregate queries on the trees, and the
parallelism of workers mitigates the impact of sending a large
query to many shards.

In these experiments, insertion was approximately three
times faster than querying, with a predictable linear relation-
ship between workload mix and overall performance. This
also demonstrates that insertions do not significantly impact
concurrent query performance.

F. Coverage Impact

A more detailed analysis of the impact of query coverage
on performance is shown in Figure 1818. Both the impact on
individual query time and the number of shards searched are
shown as a heat map.

As shown in Figure 18a18a, the majority of queries are executed
very quickly, with a few outliers at low coverage. This reflects
the behaviour of the Hilbert PDC tree: with high coverage
it is likely that aggregates will be found at higher levels in
the tree, making deeper traversal unnecessary. However, with
low coverage it may be necessary to walk to the leaf level
several times to find individual values, if none of the higher
level directory nodes completely cover the query region.

As shown in Figure 18b18b, the relationship between coverage
and number of shards searched is approximately linear, where
increasing coverage requires an increasing number of shards
to be searched. There are some outlying points at around 50%
coverage where many more shards must be searched, however.
This is due to queries that intersect many boundaries of the
shard partitions, requiring a larger number of shards to be
queried.

G. Skew Tolerance

Figure 1919 shows the performance of VOLAP on Zipf
distributed data with increasing skew s. Hierarchical data is
generated such that the overall distribution is close to a Zipf
distribution within the contraints of the dimension hierarchies.
The system is configured to maintain ingestion performance,
with 80 initial shards, a minimum balance improvement of
2 million, and worker statistics updated every second. Query
times shown are for the maximum database size of 1 billion
items.

Because of the multi-dimensional nature of the data and the
distribution algorithm described in Section III-DIII-D, skew and
performance do not have a straightforward linear relationship,
but as Figure 1919 shows, more load-balancing operations are
necessary to maintain performance as skew increases. Splits
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Fig. 16. Query and insert performance with increasing system size. Database size Ni and number of workers p = Ni/50 million (4 ≤ p ≤ 20) both
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Fig. 17. Performance for various workload mixes and query coverages. TPC-DS; Ni = 1 billion; p = 20; m = 2; low coverage: below 33%; medium
coverage: between 33% and 66%; high coverage: above 66%.

tend to impact performance most significantly, since they only
occur when migration of existing shards can not address the
imbalance. Worker threads are thus kept busy for longer before
the migration can occur and balance be improved. This is
particularly visible in this experiment with a skew of 2.0, where
ingestion performance drops to just above 800 thousand inserts
per second. However, in general, VOLAP maintains relatively
stable performance over a wide range of skew, sustaining well
over a million inserts per second on average. This is because
once heavily loaded shards are split and/or migrated, their load
is more evenly distributed amongst workers, so the skew of
the data contributes less to skew between workers as time
progresses.

The effect of load balancing over time for a run with a high
skew of 8.0 can be seen in Figure 2020 which shows the number
of items stored on each worker over time.

H. Replication Impact
Figure 2121 shows the operation latency with varying values

of Nr, W and R, with Ni = 300,000,000 items. The number

of worker nodes is the same regardless of the value of Nr,
and consequently the amount of load on the set of workers
is proportional to Nr. As a result, increasing Nr with this
configuration has a negative impact on performance.

The addition of replicas increases latency by approximately
0.1 to 0.2 seconds in this configuration, as shown in Figure 2121.
Since all of the compute nodes in this experiment communicate
over a low latency local network, there is little variance in
the time it takes each worker to return a response to a server.
Because of this, the value of the read and write quorum has a
minimal effect on operation latency with this configuration.

I. Query Freshness

Without shard replication, user sessions attached to the same
server will observe a very low time between an insert being
issued and its effect being visible in subsequent queries, since
no global synchronization is required. To synchronize sessions
across servers, VOLAP periodically initiates a synchronization
of the servers through Zookeeper at a configurable rate, set to
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Fig. 18. Effect of coverage on query performance; Ni = 1 billion; p = 20.
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Fig. 19. Performance and load balancing with increasing data skew; Ni = 1 billion; p = 20.
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3 seconds in these experiments. The time between an aggregate
query issued on one server and a prior insert operation issued
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Fig. 21. Latency for a stream with 50% workload mix for various replication
factors; Ni=300,000,000; p = 20; m = 2

on a different server is referred to as the elapsed time. In these
experiments the number of missed insertions drops very close
to zero after only 7 ms, and, on average, to zero after 20 ms.
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These figures represent typical behaviour, though it is possible
for consistency to take longer in some edge cases. In the many
experiments performed with VOLAP, consistency between
insert and query operations executed on different servers was
always observed in under 3 seconds. When shard replication
is enabled, measuring consistency is more complex, and is
outside the scope of this paper.

VI. CONCLUSION

VelocityOLAP (VOLAP) is a scalable OLAP system which
allows high-velocity data to be queried in real-time. A novel
underlying data structure exploits dimension hierarchies at a
low level to allow aggregating large portions of the database
quickly without materializing multi-dimensional views, and
supports a very high rate of data ingestion. A fully decentralized
architecture supports horizontal scaling, allowing VOLAP to
scale up to very large sizes using only commodity hardware
or modest cloud instances.
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