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Abstract—This paper presents VelocityOLAP (VOLAP), a distributed real-time OLAP system for high-velocity data. VOLAP makes use

of dimension hierarchies, is highly scalable, exploits both multi-core and multi-processor parallelism, and can guarantee serializable

execution of insert and query operations. In contrast to other high performance OLAP systems such as SAP HANA or IBM Netezza that

rely on vertical scaling or special purpose hardware, VOLAP supports cost-efficient horizontal scaling on commodity hardware or

modest cloud instances. Experiments on 20 Amazon EC2 nodes with TPC-DS data show that VOLAP is capable of bulk ingesting data

at over 600 thousand items per second, and processing streams of interspersed insertions and aggregate queries at a rate of

approximately 50 thousand insertions and 20 thousand aggregate queries per second with a database of 1 billion items. VOLAP is

designed to support applications that perform large aggregate queries, and provides similar high performance for aggregations ranging

from a few items to nearly the entire database.

Ç

1 INTRODUCTION

ON-LINE Analytical Processing (OLAP) is a widespread
approach to knowledge discovery in large database

systems. Many essential business applications rely on
OLAP for structured data analysis [1]. OLAP queries often
aggregate large portions of the database, which can lead to
performance issues with very large databases. Many tradi-
tional OLAP systems address this problem by taking the
static data cube approach [2] and materializing multi-
dimensional views to ensure high query performance. How-
ever, such systems can only be updated periodically, e.g.,
once every week, which prevents queries from including
the most recent data. More modern systems avoid materiali-
zation, but still incur a delay between new data being
ingested and that data being available for analysis. Stale
results become increasingly problematic for applications
which have a high rate of change, or velocity. Applications
that monitor high-velocity data streams require the ability
to analyze new data as it arrives, in real-time.

This paper presents VelocityOLAP (VOLAP),1 a scalable
real-time OLAP system that supports up-to-date querying of
high-velocity data in an elastic cloud environment. As is
increasingly typical for high performance OLAP systems,

VOLAP is an in-memory system that supports ingestion of
new data, but not deletion. Unlike some other distributed
OLAP systems, such as Druid [4], VOLAPdoes not use a spe-
cial partitioning dimension. Such systems typically require
queries to “slice” along that dimension to see good perfor-
mance. In VOLAP, all dimensions are treated equally, and
the system scales to many dimensions thanks to the proper-
ties of its underlying data structure. VOLAP is designed to
support horizontal scaling on commodity hardware, which
is more cost-efficient than systems like SAP HANA [5],
which rely on vertical scaling (the use of a small number of
very powerful compute nodes), or special purpose hardware
such as an IBMNetezza data warehouse appliance [6]. Com-
pute nodes can be added or removed as necessary to adapt
to the current workload, and no single node acts as a perfor-
mance bottleneck or point of failure for the entire system.

VOLAP partitions data into shards stored on worker
nodes. Shards are stored using the novel Hilbert PDC
tree [7], which supports multi-threaded insert and aggregate
query operations on many hierarchical dimensions without
any need for materialization or auxiliary index structures.
Compared to its predecessors, the Hilbert PDC tree can sus-
tain a much higher rate of data ingestion.

Clients interact with VOLAP via server nodes, which han-
dle incoming streams of insertions and aggregate queries,
and route them to the appropriate workers. Zookeeper [8] is
used for managing global state information. Amanager back-
ground process monitors the system and coordinates global
real-time load balancing operations as necessary. Automatic
load balancing allows VOLAP to adapt to changes in the
data distribution or network topology, such as the addition
of newworker nodes to accommodate increased load.

Experiments with 1 billion TPC-DS [9] items using the
dimension hierarchies shown in Fig. 1 show that VOLAP is
able to ingest over 600 thousand items per second, and pro-
cess streams of interspersed insertions and aggregate queries
at approximately 50 thousand insertions and 20 thousand

1. This paper is an extended version of an earlier presentation [3]
with new results on replication, data skew, and fault tolerance.
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aggregate queries per second using 20 Amazon EC2
c3.4xlarge worker instances. These experiments include
a wide range of queries ranging from small queries, to aver-
age size queries that need to aggregate several hundred mil-
lion data items, up to queries that need to aggregate nearly
the entire database.

Serializable [10] execution is particularly challenging in a
highly parallel distributed system. In order to accommodate
many clients, VOLAP provides different guarantees in dif-
ferent contexts. Each client session is attached to one of the
server nodes, as illustrated in Fig. 2. VOLAP can guarantee
that the execution of an individual client stream is serializ-
able, so that queries includes all relevant results from any
insertion issued earlier in the stream, and none issued later.
However, if an application does not require serializable exe-
cution, this can be disabled to improve performance.

Between client sessions, VOLAP provides best-effort
freshness and aims to minimize the time required for an
insertion to be included in later queries. Clients attached to
the same server observe a smaller delay than those attached
to different servers since inter-server synchronization is not
required for one client’s requests to be affected by the other.
In the experiments presented here, over hundreds of bil-
lions of tests, consistency between insertions and queries on
different servers was always observed in under 3 seconds,
but typically in under 0.25 seconds.

In summary, VOLAP introduces novel index and worker
data structures, a decentralized elastic architecture, a syn-
chronization scheme with configurable freshness, a low-
overhead implementation of serializable execution, and
load balancing algorithms suitable for a fully decentralized
real-time environment.

2 RELATED WORK

Many published systems store and query large data sets in
distributed environments. Hadoop [11] and its file system
HDFS are popular examples, with applications typically
built on MapReduce [12]. However, these systems are not
designed for real-time operation. Instead, they are based on
batch processing or “quasi real-time” operations [13], [14],
[15], [16]. The situation is similar for Hive [17], HadoopDB
[18], BigTable [19], BigQuery [20], and Dremel [21].

To overcome the batch processing in Hadoop based sys-
tems, Storm [22] introduced a distributed computing model
that processes in-flight Twitter data. However, Storm
assumes small data packets that can quickly migrate
between different computing resources. This is not the case
for large data warehouses. Several more recent cloud-based
OLAP systems [23], [24], [25], [26] are also based on MapRe-
duce and do not support full real-time operation.

For peer-to-peer networks, related work includes distrib-
uted methods for querying concept hierarchies [27], [28],

[29], [30]. However, none of these methods provide real-time
OLAP functionality.

Various publications on distributed B-trees for cloud plat-
forms exist [31], however these only support 1-dimensional
indices which are insufficient for OLAP. There have been
efforts to build distributed multi-dimensional indices based
on R-trees or related multi-dimensional tree structures [32],
[33], [34]. However, these methods do not support dimen-
sion hierarchies which are essential for OLAP applications,
and do not scale well to a large number of dimensions.

The systems closest to VOLAP are Druid [4], Brown
Dwarf [35], SAP HANA [5], IBM Netezza data warehouse
appliance [6], HyPer [36], and CR-OLAP [37].

Druid [4] is an open-source distributed OLAP store
designed for real-time exploratory queries on large quantities
of transactional events. Druid is specialized to operate on
data items that have timestamps, such as network event logs.
In particular, it partitions data based on these timestamps and
queries are expected to apply to a particular range of time.
This is not applicable to general OLAP where all dimensions
may have equal importance. Data sets with dimension hierar-
chies that lack a time dimension cannot be used onDruid.

Brown Dwarf [35] is a real-time, distributed, fault tolerant
OLAP store intended to be used on commodity hardware
which uses a decentralized graph to quickly retrieve pre-
computed aggregations. However, Brown Dwarf does not
support dimension hierarchies, and individual queries must
specify either a single point in a dimension, or all points in a
dimension,which is too restrictive for general purposeOLAP.

SAP HANA [5] is a real-time in-memory database system
that also supports aggregate queries. SAP HANA relies
mainly on vertical scaling. A basic HANA installation uses a
single, special purpose, very large multi-core compute node.
A limited scale-out version for multiple compute nodes is
available, using a distributed file system that provides a sin-
gle shared data view to all compute nodes. Horizontal scal-
ability is restricted, however, because the system has a single
master node for maintaining the shared data view, which
becomes a bottleneck as the system size increases.

The IBM Netezza data warehouse appliance [6] relies on
special purpose FPGA boards that provide a hardware
implementation of OLAP functionality.

Fig. 1. Dimension hierarchies for TPC-DS data.

Fig. 2. System architecture. Arrows illustrate a possible path for an inser-
tion or query through the system.
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HyPer [36] is an in-memory database system that sup-
ports fast transactions alongside a facility for creating light-
weight snapshots for OLAP sessions. HyPer makes use of
the operating system’s virtual memory facilities to quickly
create snapshots for analysis without copying data unneces-
sarily. Conceptually, HyPer provides a lightweight on-
demand data warehouse, which supports read-only OLAP
access to a consistent snapshot of the database at a particu-
lar point in time. This is ideal for some applications, but less
well-suited to those that process a high-velocity stream of
mixed insertions and aggregate queries. HyPer is a single-
server system, though the snapshot technique it uses may
be applicable to distributed systems.

VOLAP’s predecessor, CR-OLAP [37], is similar toHANA
in that it is also a centralized system with a single master
server node. As inHANA, this becomes a bottleneck in larger
systems and restricts horizontal scalability. CR-OLAP uses
the PDC tree [38] as a building block, but as one large con-
ceptual tree, where the top few levels are stored on the mas-
ter node and subtrees are stored in memory on worker
nodes. This design scales well to a point, but has high inser-
tion overhead and does not allow for a distributed index.

3 VOLAP ARCHITECTURE

VOLAP represents a d-dimensional database with Ni data
items and d dimension hierarchies. Clients send an ordered
stream of insert and aggregate query operations, and
receive an acknowledgement or result when the operation
is complete.

Each query specifies, for each dimension, a set of values at
any level of the respective dimension hierarchy, or a wild-
card indicating that the entire range of the dimension should
be included. The query result is the aggregate of the specified
items. The coverage of a query is the percentage of items that
are included in the result. For example, on a database with
the Store, Item, Date, and Time dimensions as in Fig. 1, the
query ({Canada.Ontario},{Books,Music},*,*)

would aggregate all sales of books or music in Ontario,
Canada.

3.1 Architecture Overview

The VOLAP architecture, shown in Fig. 2, consists of:

� m servers S1...m for handling client requests.
� p workersW1...p for storing data.
� A Zookeeper [39] cluster for global system state.
� A manager background process for analyzing global

state and initiating load balancing operations.
Workers and servers are multi-core machines which exe-

cute up to k parallel threads and store all data in main mem-
ory. VOLAP is elastic in that more workers and servers can
be added if necessary. With increasing database size and/or
changing network topology, data is reorganized to make
the best use of the currently available resources.

Workers are used for storing data and processing OLAP
operations. The global data set is partitioned into data shards
D1; . . . ; Dn. Each shard Di has a bounding box Bi which is a
spatial region containing Di, represented by either a Mini-
mum Bounding Rectangle (MBR, one box) or Minimum
Describing Set (MDS, multiple boxes) [40]. Bounding boxes

may overlap, though an individual data item is stored in
only one shard. Each worker typically stores several shards.

Servers receive OLAP operations from clients, determine
the shards relevant to each operation, and forward the oper-
ations to the worker(s) responsible for those shards. Once
the workers respond, the server reports the result to the
originating client.

All nodes communicate using ZeroMQ [41], a high-
performance asynchronous messaging library designed for
scalable distributed applications.

3.2 System Image

The system image represents the global system state, and is
stored in Zookeeper [39], a fault tolerant distributed coordi-
nation service. The image contains the global information
required by servers and the manager, including lists of all
nodes, configuration parameters, and each shard’s size,
bounding box, and worker addresses.

Each server maintains a local imagewhich serves as an in-
memory cache to prevent Zookeeper from becoming a bot-
tleneck. Given an insertion or query, the server uses the
local image to find the relevant shards as well as the address
of their corresponding worker(s).

The server updates the global image in Zookeeper at a con-
figurable rate if the local image has changed due to insertion,
for example every 3 seconds as in the experiments below.
Servers make use of Zookeeper’s watch facility to be notified
of changes, and update their local image as necessary. Work-
ers update shard statistics in Zookeeper periodically as well,
to allow themanager to plan load balancing operations.

3.3 Index Data Structure

Since the local image is responsible for finding the shards
relevant to each insertion or query, a fast index structure is
crucial for high performance. Two key aspects of the index
affect performance: search speed, and the global structure
that results from choosing a given shard for an insertion. In
particular, overlapping shards increase the likelihood that
queries must be sent to many workers.

VOLAP uses a modified PDC tree [38] to serve this pur-
pose. The basic structure of the tree is conventional: nodes
have a bounding box which encompasses those of all its
children. The index tree has exactly n leaves which corre-
spond to the data shards in the system. Each leaf has the
bounding box Bi of the corresponding shard Di, and con-
tains the ID Di which is used by the server to locate the
shard on a remote worker.

The server tree exploits the PDC tree cached aggregate
values by storing a set of shard IDs in each node, and using
set union as the aggregation function. Directory nodes
higher in the tree thus contain the set of all shard IDs in the
subtree rooted at that node, as illustrated in Fig. 3. For
example, if the system receives a query for a large box that
contains the entire database, only the root node is accessed
and no tree traversal is necessary, since the root node con-
tains the set of all shard IDs in the system.

Insertions, however, differ from those in a conventional
tree, since the leaves are fixed. When a leaf is reached, its
bounding box is expanded but children are not added. Con-
sequently, an insertion never results in a node split. There are
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many algorithms for choosing the best subtree for insertions
in an R-tree-like structure, with various trade-offs. The server
index chooses the child which results in the least overlap,
since the high global cost of overlap dominates the cost of
performing overlap calculations in the index.

Synchronization with the global image in Zookeeper may
require structural modifications to the index tree. Adding a
new shard to the system inserts a new leaf, expanding and
possibly splitting internal nodes in the process. When a
bounding box in Zookeeper expands, the corresponding
leaf’s bounding box is expanded accordingly, as well as
those of all nodes on the path from the leaf to the root as
necessary. If a shard is split, the corresponding leaf is
removed and replaced with two leaves which correspond to
each side of the split.

As a PDC tree, the index is thread-safe and uses minimal
locking to allow for parallelism. Servers use many threads,
all using the same index in parallel, to be able to maintain a
high throughput to fully utilize workers.

3.4 Initialization and Skew Tolerance

VOLAP is designed to ingest data exclusively from clients in
real-time. This introduces challenges for a new empty system
since it is not possible to initially analyze the data set to deter-
mine an optimal data distribution. However, the range of the
dimension hierarchies is known at system startup, which
provides coarse bounds for the keyswhichmay be inserted.

The system is initialized using the dimension hierarchy
ranges as well as the initial number of workers and shards.
To prepare for data ingestion, the manager retrieves this
information from Zookeeper and derives the minimal box
which encompasses all possible keys. This box is then recur-
sively split along each dimension in decreasing breadth
order until a box has been produced for each initial shard.
The resulting boxes are ordered such that boxes which were
produced by splitting a larger box are adjacent. For exam-
ple, if B is split into Bl and Br, then the resulting array con-
tains ½Bl;Br�. If Bl is then further split into Bll and Blr, then
the resulting array contains ½Bll; Blr; Br�. A shard is created
for each box, and these are distributed among the initial
workers in a round-robin fashion with replication.

The initial number of shards thus provides a degree of
control over load balancing agility and skew tolerance. If
the initial number of shards is much greater than the initial
number of workers, then a given spatial region is initially
distributed among many workers. For example, if it is likely
that the majority of inserts will be within one quarter of the
key space, choosing at least four times as many initial
shards as workers will balance this load evenly. Note,

however, that this initial configuration is not fixed, skew
will be adusted for over time by the real-time load balancing
scheme described in Section 4. An appropriately fine-
grained initial distribution allows VOLAP to handle the ini-
tial loading of the system efficiently, and increases load bal-
ancing agility since smaller shards allow the load to be
more easily balanced among workers without splitting.

3.5 Shard Data Structure: Hilbert PDC Tree

Each shard is stored in an in-memory multi-threaded data
structure that handles a stream of insertion and aggregate
query operations. VOLAP includes four data structures for
shards: the PDC tree [38], the Hilbert PDC tree [7], and an
R-tree and Hilbert R-tree [42] variant based on the same
underlying tree implementations but using MBR rather
than MDS keys.

High-velocity OLAP applications are generally best
served by the Hilbert PDC tree, which is designed to suit
the needs of VOLAP. The Hilbert PDC tree is, like its prede-
cessors, a multi-dimensional index where each node has a
bounding box which encompasses those of all its children.
The key improvements are a much higher rate of data inges-
tion than the PDC tree, and support for many more dimen-
sions than an R-tree.

This is achieved by ordering nodes based on their Hilbert
index, rather than performing geometric calculations at
every level of the tree to determine an insert position. The
Hilbert curve is a fractal space-filling curve with locality-
preserving properties, and a Hilbert index is the distance
along a discrete approximation of the Hilbert curve. For
example, Fig. 4 shows the third approximation of a 2D Hil-
bert curve with labelled indices. Here, ð3; 1Þ ) 12 and
ð2; 0Þ ) 14, with the two nearby points mapping to nearby
Hilbert indices.

The locality-preserving nature of the Hilbert curve is not
perfect, for example, ð4; 0Þ ) 16 above, which is further
from ð3; 1Þ ) 12 despite having the same geometric distance
as ð2; 0Þ ) 14. However, in general, geometrically nearby
points map to nearby Hilbert indices.

Insertion into The Hilbert PDC tree works by first map-
ping multi-dimensional points to their Hilbert index, then
exploiting this linear ordering to use essentially the same
insertion algorithm as a B+-tree. Since linear comparison is

Fig. 3. Server index data structure.

Fig. 4. The third approximation of a 2D Hilbert curve with discrete coordi-
nates and indices.
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much faster than R-tree-like geometric calculations, particu-
larly with MDS keys, ingestion throughput increases dra-
matically. Querying works much like any R-tree-like
structure, that is, querying does not directly make use of
Hilbert indices. The locality-preserving nature of the Hilbert
curve indirectly ensures that the tree is well-structured for
efficient geometric queries.

The hierarchical nature of OLAP data introduces issues
with Hilbert ordering that are not addressed by structures
designed for flat dimensions like the Hilbert R-tree. In par-
ticular, keys in the tree are expressed at various levels,
where nodes higher in the tree tend to have coarser keys.
Keys are therefore often compared at different levels than
the leaf level for which the Hilbert ordering was calculated.
Since the breadth of levels may vary across dimensions, the
Hilbert order for leaves may not provide ideal locality for
keys higher in the tree which are expressed at higher levels
in the dimension hierarchy.

To improve this situation, IDs are first expanded such that a
given level in any dimension spans the same numeric range.
This is achieved by shifting the associated bits left to match
the maximum possible value of an ID in that level for any
dimension. As a result, the Hilbert index for leaf-level keys
will still have a good distribution at higher levels in the tree.
The dimension number at the start of each ID is removed
entirely, since this is implicit in the Hilbert mapping.

Fig. 5 shows a simple example for an ID with two dimen-
sions. At level 4, dimension 2 uses only two bits, but dimen-
sion 1 uses four. To compensate, level 4 in dimension 2 is
shifted left two bits, causing values to span roughly the same
numerical range as those in dimension 1. This transformation
is only performed in order to calculate the corresponding
Hilbert index, the keys in the tree used for querying are
unmodified. To minimize space overhead, compact Hilbert
indices [43] are stored, which use the minimum number of
bits necessary given the span of each dimension.

Since the ordering of child nodes is fixed, the node split-
ting algorithms of the PDC tree or other R-tree-like structures
are not applicable to the Hilbert PDC tree. Instead, the over-
lap that would result from splitting a node at each index is
calculated in linear time, and the node is split at the index
that causes the least overlap between the resulting children.

3.6 Fault Tolerance

VOLAP uses redundant replication of shards to ensure that
the system is able to operate without interruption or loss of
data in the event of worker node failures. When replication
is enabled, each shard is stored on Nr different workers. If a
worker fails or stops responding, Nr � 1 workers remain
available to handle queries on that shard. Shard replicas are
kept up to date by sending each insertion from the server to
all Nr workers replicating the relevant shard. Since inser-
tions will invariably arrive at different workers at different
times, shard replicas will rarely be identical at any one point

in time. To mitigate this, quorum consensus is used for
insertions and queries. As illustrated in Fig. 6, the write
quorum parameter W dictates the number of worker replies
the server must receive before notifying the client that the
insert is considered complete. This is similar to how write
quorums work in many fault tolerant key-value stores [44],
[45]. Similarly, queries are sent from the server to all work-
ers storing replicas of each relevant shard, and R read quo-
rum responses must be received from each relevant shard
before the server performs the intermediary aggregation.

Once a server receives R query responses from a set of
shard replicas, it must decide which shard aggregation is
the best or “most correct” representation of the true result.
Since each result is the aggregation of any number of points,
timestamps of individual insertions or points can not be
used to solve this problem, unlike in key-value stores.
VOLAP uses different methods based on the aggregation
function of the query to determine which shard replica’s
result is closest to the true result. For example, assuming
points are never deleted from the system as is typical in
OLAP, for monotonically increasing aggregation functions
like max or count, the best query replica result is always the
greatest. Likewise, for monotonically decreasing functions
like min, the best result is the smallest. For non-monotonic
functions like sum and mean, the result with the largest
count value is likely the most accurate.

When worker nodes die or become unresponsive in
VOLAP, the manager removes the worker from the system
image and alerts servers not to send messages to the unre-
sponsive worker. Periodically, the manager checks the sys-
tem image to ensure that each shard is replicated on Nr

workers. If a shard has fewer than Nr replicas, the manager
coordinates a copy to a new worker in order to create
another replica of the shard. Since VOLAP currently does
not have any anti-entropy mechanisms to recover insertions
lost during worker downtime, if a worker “comes back
from the dead”, its memory is wiped and it is treated as a
new worker which has been added to the system.

Server threads always monitor a local command socket
which broadcasts system changes like worker death. If a
worker dies while a server is waiting for a reply from that
worker, the server adjusts accordingly to ensure execution
proceeds. If the worker is a redundant replica, the server
removes the worker from its pool of expected responses, and
completes the operation and responds to the client if all other
workers have responded. If the operation can no longer be
completed successfully because toomanyworkers have died,
the server aborts the operation and respondswith an error.

Higher values of Nr increases the number of workers the
system can lose while still maintaining correct operation.
Increasing Nr also consumes more resources, as each inser-
tion and query must be executed on Nr different workers.
The quorum parameters W and R thus give the user a level
of control over the consistency of their queries. Lower values
of W and R decrease latency at the cost of decreased consis-
tency, while high values ofW andR tune the system for high
data consistency at the cost of insert and query latency.

3.7 Multi-Threaded Message Handling

Careful handling of messages is necessary to maintain high
performance while ensuring correctness in a highly parallel

Fig. 5. Transforming hierarchical IDs for Hilbert mapping.
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system like VOLAP. Servers and workers have a similar
design for handling incoming requests: a single receiver
thread reads messages from the network socket, and several
processing threads handle requests. The receiver thread dis-
tributes requests to processing threads via local sockets. All
sockets are ZeroMQ sockets, using the appropriate trans-
port backend (tcp or inproc). Using sockets for inter-
thread communication avoids many synchronization issues
and allows for a high degree of parallelism.

The receiver thread balances requests among processing
threads by maintaining a list of currently idle threads.
When a request is received, an idle thread is popped off the
list, and the request is forwarded to the corresponding local
socket. When the thread has finished processing the request,
it sends the reply back to the receiver (and ultimately the cli-
ent) via the same socket, followed by a special message to
indicate that the thread is once again idle. The processing
thread is then placed back on the list of free threads.

In the server, requests typically require sending further
requests to workers. One of two possible configurations can
be chosen by the user:

� Thread sockets: Each processing thread has its own net-
work socket for sendingmessages directly toworkers.

� Single socket: Each processing thread has a local socket
that forwards to a sender thread, which uses a single
network socket to send all messages to workers.

Thread sockets eliminate the hop through the sender
thread, and thus can achieve slightly higher throughput.
However, the lack of a single ordered stream of messages to
workers precludes serializable execution, which requires a
single network socket.

3.8 Serializability

A serializable execution guarantees the same results as a
serial execution of the operation stream [10]. In the context
of VOLAP, this requires that any queries include all relevant
results from insertions issued prior in the stream, and none
issued later. Note that this guarantee does not impose an
execution order for a series of successive insertions or
queries: insertions only affect the outcome of queries, so
successive insertions can safely be executed in parallel until
a query arrives. Similarly, queries do not affect the database
state, so successive queries can be executed in parallel until
an insertion arrives. Synchronization is therefore required
at any transition from query to insertion or vice-versa, as
illustrated in Fig. 7.

A na€ıve implementation could simply block processing
of the stream entirely at each transition, but this would
severely restrict throughput for streams with interspersed

insertions and queries. Instead, VOLAP uses a parallel pipe-
line model where synchronization occurs at various stages
throughout the processing of a request, allowing insertions
and queries to be executed in parallel at different stages in
the pipeline. There are several stages in the execution of a
request where the correct order must be ensured. At each
such stage, if a synchronization point in the stream is
encountered, processing must be blocked until the previous
operation has completed execution of that stage. This is
achieved with a series of barriers which allow any number
of insertions, or any number of queries, to execute in paral-
lel, but block processing if an insertion is encountered while
queries are being executed or vice-versa. The synchroniza-
tion barriers encountered while processing a request, as
illustrated in Fig. 8, are:

1) Server Receive: When the request arrives at the serv-
er’s receive socket, the first barrier is reached by the
(single) receiver thread. Then, the request is for-
warded to a server thread for processing via an inter-
nal socket.

2) Server Prepare: When a server thread receives the
request, it deserializes the request and applies it to
the index.

3) Index: After the request is applied to the index, the
corresponding worker request(s) is/are enqueued
for sending to the relevant worker(s).

4) Enqueue: After all messages have been enqueued to
be sent toworkers, a specialmessage is also enqueued
to signal the sender thread to trigger the next barrier.

5) Send: When the sender thread receives the special
synchronization message, it knows all worker mes-
sages for this request have been enqueued, so serializ-
able delivery of requests toworkers has been ensured.

6) Worker Receive: Identical to step 1 in the server.
7) Worker Prepare: Identical to step 2 in the server.
8) Commit: After the request has been applied to all

relevant shards, serializable execution has been
completed.

In order to maximize throughput, more barriers are used
than are strictly necessary to ensure correctness. For exam-
ple, barrier 2 could be omitted, but its inclusion allows fol-
lowing events to be distributed to server threads and
prepared in parallel while the current operation is being

Fig. 6. An insertion withNr ¼ 3,W ¼ 2.

Fig. 7. The transitions ti within a stream of insertions Ij and queries Qj

where synchronization is required.

Fig. 8. Path of a request through the system with serialization barriers.
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committed to the index. This design allows many requests
to execute in parallel at different stages, so serializable exe-
cution has only a moderate impact on performance, as dem-
onstrated in Section 5.2.

4 LOAD BALANCING

Effective load balancing is crucial for scalable distributed
systems. When the workload of the system is unevenly
partitioned among its resources, some portion goes
underutilized while the remainder struggles to pick up
the slack. This has a negative impact on throughput,
response time, and stability which tends to get further
compounded as the system scales up in size. However,
the load balancing operations themselves can also incur
significant costs due to the overhead of moving poten-
tially large amounts of data over the network. Maintain-
ing consistently high performance requires a load
balancing scheme which offers a good trade-off between
load balancing overhead and effectiveness.

VOLAP uses a real-time load balancing scheme which
allows workers to be added, removed, or replaced dynami-
cally in order to maintain performance in the face of chang-
ing system load. The operations performed during load
balancing are carefully designed to not interrupt processing,
so insertions and aggregate queries can continue to execute
while load balancing is performed.

A separate background process called the manager ini-
tiates load balancing operations. The manager periodically
analyzes the system state stored in Zookeeper and decides
on suitable load balancing operations. It then initiates these
operations, coordinating the necessary actions between
workers and servers. For example, the manager may iden-
tify a worker that is overloaded and about to run out of
memory, then send messages to workers instructing them
to perform the appropriate splits and/or migrations. The
manager is not a bottleneck for insertion or query perfor-
mance, and can reside anywhere in the system.

4.1 Shard Operations

A shard Di stored on a source worker Ws can be migrated
to a destination worker Wd if, for example, Ws is running
out of memory or Wd is a new worker allocated for
spreading the load. A shard can also be split if load bal-
ancing requires smaller shards to migrate. The shard
data structures provide four operations in order to sup-
port these scenarios:

� SplitQueryðDi;BiÞwhich returns a hyperplane h that
partitions Di into D1

i and D2
i with bounding boxes

B1
i and B2

i , respectively, such that D1
i and D2

i are of
approximately equal size.

� SplitðDi;Bi; hÞ which returns ðD1
i ; B

1
i ; D

2
i ; B

2
i Þ where

Di is partitioned into D1
i and D2

i with bounding
boxes B1

i and B2
i , respectively, such that D1

i and D2
i

are spatially separated by hyperplane h.
� SerializeShardðÞ which returns a flat binary blob b

containing the data in Di (suitable for network
transmission).

� DeserializeShardðbÞ which builds the data structure
from such a blob.

4.2 Processing Requests During Load Balancing

Correctly performing a split or migration requires a consis-
tent snapshot of the relevant shard. However, real-time
operation requires that operations can be processed at any
time, including when shards are being split or migrated.
For example, if a shard is being serialized for migration, but
data items are inserted during this process, it is unknown
which insertions are included in the serialized shard and
which have been missed.

To avoid such problems, workers create insertion queues
for shards during load balancing operations. During the
operation, insertions for the shard are inserted into a queue
rather than the shard itself, as illustrated in Fig. 9. A single
queue is used for split queries and migrations, and two
are used during a split with inserts directed according to
the split hyperplane. Queries are directed to both the shard
and the queue(s) to ensure results are up to date. The inser-
tion queue uses the same data structure as shards, allowing
insertions and queries to be processed with the same perfor-
mance as shards themselves.

When a migration is finished, the shard on the source
worker is no longer necessary and is destroyed along with
the corresponding queue. When a split query is finished,
the queue is drained into the shard. When a split is finished,
for each replica, the two queues are drained into their corre-
sponding shard.

4.3 Migration

The basic strategy for maintaining responsiveness during
migration is to have the source worker continue to serve
requests while the shard is migrating. Once the destination
worker receives the shard from source worker, it is activated
there and removed from the source worker. The process of
migrating a shard from a source worker to a destination worker
is initiated and coordinated by themanager.

Fig. 9. Distribution of inserts and queries to a shard Di and its insertion
queue(s) during load balancing.

Fig. 10. Migration process.
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The migration process consists of several stages, each
associated with a message delivery as illustrated in Fig. 10:

1) MigratePrepDest(Ws, s): To begin a migration,
the manager notifies the destination worker that it
will be receiving a new shard s. The destination
worker begins queuing up any insertions for s that
may arrive during the migration.

2) MigratePrepServ(Ws, Wd, s): Once the destina-
tion worker is ready, the manager notifies all servers
that shard s is about to migrate from Ws to Wd. The
servers begin sending any insertions for s to both the
source and destination workers.

3) MigrateBegin(Wd, s): Once all servers are aware
of the migration, the manager instructs the source
worker to send shard s toWd.

4) MigrateData(s, Wd, d): The source worker serial-
izes shard s into a blob b and sends it toWd.

5) MigrateDone(s): When the destination worker
receives s, it adds it to its set of data structures,
applies all pending queued inserts, and notifies the
manager that it has received the shard.

6) MigrateDone(s): When the migration is complete,
the manager notifies all servers, which cease sending
messages for s to the source worker.

7) DeleteTree(s): Now that s is no longer considered
to reside at the source worker by servers, the man-
ager instructs the source worker to delete it.

8) Finally, the manager updates Zookeeper to reflect
the new location of s, and the migration is complete.

Note that all servers are informed of the migration of
a shard before starting the migration process. Thus,
when shards are migrating, correct query results can be
guaranteed by forwarding queries to all relevant
workers.

4.4 Split

Like migration, the process of splitting a shard is initiated
and coordinated by the manager, and transaction process-
ing can proceed normally while shards are being split.
Unlike migration, splitting requires coordination from all
workers replicating the shard. The split process consist of 5
stages, each associated with a message delivery as illus-
trated in Fig. 11:

1) SplitQuery(s): To begin the split, the manager
arbitrarily selects one of the workers replicating the
shard and requests that it return a hyperplane with
which to split the shard.

2) SplitRequest(s): Once the manager receives the
split hyperplane, it sends a split request with the
hyperplane to all workers replicating the shard. The
workers then begin the split process.

3) SplitComplete(s, s0, s00): Once a replica split
completes, the worker notifies the manager that s is
split into s0 and s00.

4) SplitUpdate(s): When the manager receives the
SplitCompletemessage from each worker, it noti-
fies all servers that s has been split into s0 and s00. The
servers begin sending insertions and queries to s0

and s00.
5) Finally, the manager updates Zookeeper to remove

the old shard s and add the two new “sides” s0

and s00.
In order to handle queries after shards have been split,

each worker Wk stores a mapping table Mj. If a shard Di is
split into D1

i and D2
i , then Mj stores an entry with key Di

and value pointing to the two data structures for D1
i and

D2
i . Thus, any queries in the queue which were initiated

before the split can be applied to the two new shards that
contain the data originally stored in the query shard.

4.5 Replication

When a server notices that messages being sent to a
worker are timing out, the server records in the system
image that the worker node has died and its shards have
been lost. This triggers the manager, who periodically
checks the system image for any shards that have less
than Nr copies, to initiate a replication operation of the
shard to another worker. The replication process is essen-
tially a migration without deletion. The source worker
begins queuing insertions for the relevant shard, and
instructs servers to send insertions to both the source and
destination worker. The source worker then sends a copy
of the shard to the destination worker, followed by a
copy of the queued inserts. Finally, the manager updates
Zookeeper to reflect that the destination worker now rep-
licates the shard.

4.6 Load Balancing Algorithm

VOLAP has a modular design that allows for various opti-
mizers which implement load balancing algorithms. The
manager provides access to the system state as stored in
Zookeeper, and periodically requests load balancing opera-
tions from the optimizer. If the optimizer returns a set of
operations, the manager initiates them, and, once all opera-
tions are complete, resumes periodically requesting load
balancing operations from the optimizer.

The experiments below use an optimizer that balances
the memory load of workers, so if a single worker becomes
too full, data will be migrated to a worker with more free
memory. The improvement I for a migration of a shard s
from worker Ws to Wd is the difference between the current
imbalance of the workers and the imbalance if the migration
were performed. If we denote the size of a worker or shard

X asX, then

I ¼ jWs �Wdj � jðWs � sÞ � ðWd þ sÞj: (1)

Fig. 11. Split process.
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For example, ifWs ¼ 1000,Wd ¼ 500, and s ¼ 250, then

I ¼ jWs �Wdj � jðWs � sÞ � ðWd þ sÞj
¼ j1000� 500j � jð1000� 250Þ � ð500þ 250Þj
¼ j500j � j750� 750j
¼ 500:

In this case, migrating s results in the two workers being
completely balanced, so the maximum possible improve-
ment (their original difference in size) is achieved.

The algorithm proceeds by evaluating every possible
migration and ranking them by improvement. In order to
avoid migrations that do not result in a significant enough
improvement to justify their expense, the user can specify a
migration threshold parameter Tm. For a migration to be con-
sidered, the improvement must exceed the shard size scaled
by the migration threshold, that is

I � Tm � s: (2)

Then, potential splits are considered by evaluating the
migrations they would enable. For each shard, the optimizer
considers the migrations that would be possible if the shard
were split in half, and adds the split to the list of potential
operations using the same criteria as migrations.

The optimizer then chooses operations in order of
decreasing improvement. The user can control the aggres-
siveness of load balancing by configuring the minimum
improvement which an operation must exceed in order to be
selected. To prevent a worker from being too heavily loaded
by load balancing operations, at most one migration to or
from a givenworker, and atmost one split on a givenworker,
is chosen in a single optimization round. When an operation
is chosen, the relevant workers are flagged, and subsequent
potential operations that involve those workers are skipped.
Any such skipped operations will likely be chosen in the
next optimization round if they remain worthwhile.

5 EXPERIMENTAL EVALUATION

VOLAP performance is evaluated with respect to the
system size, workload mix (percentage of insertions in
the operation stream), and query coverage (percentage of the

database that needs to be aggregated for a query). Data sets
are either from TPC-DS with d ¼ 8 hierarchical dimensions
as shown in Fig. 1, or a synthetic Zipf distribution with
skew s ¼ 1 except where otherwise noted. Experiments
were performed on Amazon EC2, using c3.8xlarge,
c3.4xlarge, and c3.2xlarge instances for servers,
workers, and all other nodes, respectively. At the time of
writing, these instances are based on Intel Xeon E5-2680
processors, running Amazon Linux with Linux 3.14.35, Zer-
oMQ 4.0.5 and Zookeeper 3.4.6.

Queries are randomly generated to span a wide range of
coverages, and specify values at various levels in all dimen-
sions. Generated queries are tested against the database and
binned according to their true coverage. During benchmark-
ing, queries are chosen uniformly at random from the
appropriate bin. Except where otherwise noted, Nr ¼ 1 rep-
licas are used.

5.1 Data Structure Performance

The Hilbert PDC tree is designed for high-velocity environ-
ments, and supports a dramatically higher rate of insertion
than its predecessor the PDC tree, as shown in Fig. 12a. In
this experiment, using TPC-DS data with 8 threads on a sin-
gle quad-core machine, the Hilbert PDC tree ingests data
over 10 times faster than the PDC tree.

Fig. 12b compares the performance of the Hilbert PDC
tree and the PDC tree for queries with varying coverage.
Both trees perform relatively well with high coverage, since
these queries tend to completely cover high-level tree nodes.
This allows the cached aggregate values in the tree to be
used, avoiding the need to traverse more deeply. The perfor-
mance gain of the Hilbert PDC tree for low and medium
coverage queries highlights the improved tree structure
obtained by using Hilbert ordering. For both low (below 33
percent) andmedium (33 to 66 percent) coverage queries, the
Hilbert PDC tree performs significantly better than the PDC
tree. The fractal nature of Hilbert ordering combined with
carefulmapping ofMDSs (as described in Section 3.5) produ-
ces less overlap at lower levels in the tree than the R-tree-like
PDC tree algorithm. This increases the likelihood that cached
aggregate values are used for lower coverage queries.

The benefits of the PDC tree are most apparent with a
high number of dimensions. In particular, PDC trees handle

Fig. 12. Performance of tree variants with increasing number of elements, d ¼ 8.
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many dimensions much more efficient than R trees, as can
be clearly seen in Fig. 13b. Above 16 dimensions, the R tree
variants become effectively unusable, but the PDC tree var-
iants scale gracefully to many more dimensions.

The Hilbert PDC tree preserves this scalability in query
performance, and significantly improves it for insertion, as
shown in Fig. 13a. With over 16 dimensions, the query per-
formance of the R tree variants degrades dramatically, but
both PDC trees retain their speed. Since insertion in the Hil-
bert PDC tree is based on a simple linear ordering rather
than geometric calculations as in the PDC tree, the cost of
additional dimensions is significantly lower. As a result,
insert latency is nearly flat compared to the PDC tree where
insertion gets significantly more expensive as the number of
dimensions increases. Accordingly, all subsequent experi-
ments in this section use the Hilbert PDC tree as the under-
lying data structure.

5.2 Serializable Execution Impact

The performance impact of serializable execution is shown
in Fig. 14. The socket configurations refer to the different

architectures described in Section 3.7. All three experiments
use the same TPC-DS data and queries. The effects of serial-
izability can be seen by comparing “serializable” with
“single socket”, which both have the same socket configura-
tion. The impact is greater when there is a mix of insertions
and queries, as expected, since synchronization is required
only when an insertion is followed by a query, or vice-versa.
In the worst case, at a 50 percent mix, serializability comes
at a cost of approximately 20 thousand operations per sec-
ond. A significant cost, but one that only affects the client
with serializable execution enabled. Note that a 50 percent
mix here results in a stream that is often an insertion fol-
lowed by a query, then another insertion, and so on; the
worst case scenario for serializable execution overhead.

5.3 Real-Time Load Balancing

The real-time load balancer coordinates the elasticity of the
system. As workers are added, the load balancer automati-
cally moves data items to the new workers to balance the
workload. Fig. 15 shows the impact of real-time load balanc-
ing during a horizontal scale-up experiment. In this experi-
ment, load phases are interleaved with insert and query
benchmarking phases. At the start of each load phase, two
additional workers are added to account for the increase in
database size. The red region shows the minimum and

Fig. 13. Performance of tree variants with increasing number of dimensions,Ni ¼ 50; 000; 000.

Fig. 14. Performance impact of serializable execution. “Thread sockets”
has server threads communicate with workers directly using a thread-
local socket. “Single socket” has all threads send to workers via a single
socket, and “Serializable” uses the same architecture but with added
synchronization to guarantee serializable execution.

Fig. 15. Load balancing data size per worker as database size Ni and
number of workers p increases.Ni � p � 500 million; p ¼ 4 . . . 20;m ¼ 2.
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maximum number of data elements stored on a worker.
When new workers are introduced they are empty, causing
the minimum to go to zero. The effects of the load balancer
are clearly visible as the gap between minimum and maxi-
mum worker size is reduced by moving data to the newly
introducedworkers. The number of migration operations for
this process are shown as a dotted purple line associated
with the right y-axis. Once balance is achieved, loading pro-
ceeds, increasing the minimum and maximum size per
worker as new elements are inserted. Note that this experi-
ment uses discrete phases to ensure a stable benchmarking
environment, but in general, load balancing is performed
concurrently with insertions and aggregate queries when-
ever themanager decides an adjustment is necessary.

5.4 Horizontal Scale-Up Performance

Fig. 16 shows the insert and aggregate query performance for
various workloads as the system size increases. This data is
from the same experiment as shown in Fig. 15, where two
new emptyworkers are added at each scale-up step. For each
system size with p workers and Ni � p	 50 million data ele-
ments, benchmarks are performed for insertions as well as
queries with low (below 33 percent), medium (between 33

and 66 percent), and high (above 66 percent) coverage. The
throughput and corresponding latency are shown in Fig. 16.

Fig. 16 shows that VOLAP scales well in an elastic envi-
ronment. As the database size increases and workers are
added to compensate, VOLAP maintains its performance
over the entire range of database sizes. The insertion curve
is nearly flat at approximately 50 thousand inserts per sec-
ond. Query performance is unsurprisingly more affected by
increasing database size, but the gentle slope averaging
approximately 20 thousand per second shows that VOLAP
can sustain high throughput and sub-second aggregate
queries for very large databases.

VOLAP also supports bulk ingestionwhich allows data to
be loaded at a much higher rate than point insertion. When
many records are available to be bulk inserted at once,
experiments on the same system show VOLAP to be capable
of ingesting data at over 600 thousand items per second for
TPC-DS data loaded from disk, and over 1 million items per
second for synthetic data generated by the client on the fly.

5.5 Insert and Query Performance

Fig. 17 shows the throughput and latency for insertions and
queries with a database of 1 billion items. Performance is

Fig. 16. Query and insert performance with increasing system size. Database size Ni and number of workers p ¼ Ni=50 million (4 
 p 
 20) both
increasing. Low coverage: Below 33 percent; medium coverage: Between 33 and 66 percent; high coverage: Above 66 percent.

Fig. 17. Performance for various workload mixes and query coverages. TPC-DS; Ni ¼ 1 billion; p ¼ 20; m ¼ 2; low coverage: Below 33 percent;
medium coverage: Between 33 and 66 percent; high coverage: Above 66 percent.
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measured for various workload mixes and query coverages.
Workload mix has a significant impact on throughput
because the time spent for insertions and queries may vary
considerably.

Fig. 17 shows that the “coverage resilience” of the Hilbert
PDC tree carries through to VOLAP as a whole: query per-
formance is nearly identical regardless of coverage. The
cached aggregate values discussed in Sections 3.5 and 5.1
speed up large aggregate queries on the trees, and the paral-
lelism of workers mitigates the impact of sending a large
query to many shards.

In these experiments, insertion was approximately three
times faster than querying, with a predictable linear rela-
tionship between workload mix and overall performance.
This also demonstrates that insertions do not significantly
impact concurrent query performance.

5.6 Coverage Impact

Amore detailed analysis of the impact of query coverage on
performance is shown in Fig. 18. Both the impact on indi-
vidual query time and the number of shards searched are
shown as a heat map.

As shown in Fig. 18a, the majority of queries are executed
very quickly, with a few outliers at low coverage. This
reflects the behaviour of the Hilbert PDC tree: with high

coverage it is likely that aggregates will be found at higher
levels in the tree, making deeper traversal unnecessary.
However, with low coverage it may be necessary to walk to
the leaf level several times to find individual values, if none
of the higher level directory nodes completely cover the
query region.

As shown in Fig. 18b, the relationship between coverage
and number of shards searched is approximately linear,
where increasing coverage requires an increasing number
of shards to be searched. There are some outlying points at
around 50 percent coverage where many more shards must
be searched, however. This is due to queries that intersect
many boundaries of the shard partitions, requiring a larger
number of shards to be queried.

5.7 Skew Tolerance

Fig. 19 shows the performance of VOLAP on Zipf distrib-
uted data with increasing skew s. Hierarchical data is gener-
ated such that the overall distribution is close to a Zipf
distribution within the contraints of the dimension hierar-
chies. The system is configured to maintain ingestion per-
formance, with 80 initial shards, a minimum balance
improvement of 2 million, and worker statistics updated
every second. Query times shown are for the maximum
database size of 1 billion items.

Fig. 18. Effect of coverage on query performance;Ni ¼ 1 billion; p ¼ 20.

Fig. 19. Performance and load balancing with increasing data skew;Ni ¼ 1 billion; p ¼ 20.
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Because of the multi-dimensional nature of the data and
the distribution algorithm described in Section 3.4, skew and
performance do not have a straightforward linear relation-
ship, but as Fig. 19 shows, more load-balancing operations
are necessary to maintain performance as skew increases.
Splits tend to impact performance most significantly, since
they only occur when migration of existing shards can not
address the imbalance. Worker threads are thus kept busy
for longer before the migration can occur and balance be
improved. This is particularly visible in this experiment with
a skew of 2.0, where ingestion performance drops to just
above 800 thousand inserts per second. However, in general,
VOLAPmaintains relatively stable performance over a wide
range of skew, sustaining well over a million inserts per sec-
ond on average. This is because once heavily loaded shards
are split and/or migrated, their load is more evenly distrib-
uted amongst workers, so the skew of the data contributes
less to skew betweenworkers as time progresses.

The effect of load balancing over time for a run with a
high skew of 8.0 can be seen in Fig. 20 which shows the
number of items stored on each worker over time.

5.8 Replication Impact

Fig. 21 shows the operation latency with varying values of
Nr, W and R, with Ni ¼ 300,000,000 items. The number of
worker nodes is the same regardless of the value of Nr, and
consequently the amount of load on the set of workers is
proportional to Nr. As a result, increasing Nr with this con-
figuration has a negative impact on performance.

The addition of replicas increases latency by approxi-
mately 0.1 to 0.2 seconds in this configuration, as shown in
Fig. 21. Since all of the compute nodes in this experiment
communicate over a low latency local network, there is little
variance in the time it takes each worker to return a
response to a server. Because of this, the value of the read
and write quorum has a minimal effect on operation latency
with this configuration.

5.9 Query Freshness

Without shard replication, user sessions attached to the same
server will observe a very low time between an insert being

issued and its effect being visible in subsequent queries, since
no global synchronization is required. To synchronize ses-
sions across servers, VOLAP periodically initiates a synchro-
nization of the servers through Zookeeper at a configurable
rate, set to 3 seconds in these experiments. The time between
an aggregate query issued on one server and a prior insert
operation issued on a different server is referred to as the
elapsed time. In these experiments the number ofmissed inser-
tions drops very close to zero after only 7ms, and, on average,
to zero after 20ms. These figures represent typical behaviour,
though it is possible for consistency to take longer in some
edge cases. In the many experiments performed with
VOLAP, consistency between insert and query operations
executed on different servers was always observed in under
3 seconds.When shard replication is enabled,measuring con-
sistency ismore complex, and beyond the scope of this paper.

6 CONCLUSION

VelocityOLAP (VOLAP) is a scalable OLAP system which
allows high-velocity data to be queried in real-time. A novel
underlying data structure exploits dimension hierarchies at
a low level to allow aggregating large portions of the data-
base quickly without materializing multi-dimensional
views, and supports a very high rate of data ingestion. A
fully decentralized architecture supports horizontal scaling,
allowing VOLAP to scale up to very large sizes using only
commodity hardware or modest cloud instances.
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