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SUMMARY

Synthetic proteins with high affinity and selectivity for a protein target can be used as research tools,

biomarkers, and pharmacological agents, but few methods exist to design such proteins de novo. To

this end, the In-Silico Protein Synthesizer (InSiPS) was developed to design synthetic binding proteins

(SBPs) that bind pre-determined targets while minimizing off-target interactions. InSiPS is a genetic

algorithm that refines a pool of random sequences over hundreds of generations of mutation and se-

lection to produce SBPs with pre-specified binding characteristics. As a proof of concept, we design

SBPs against three yeast proteins and demonstrate binding and functional inhibition of two of three

targets in vivo. Peptide SPOT arrays confirm binding sites, and a permutation array demonstrates

target specificity. Our foundational approach will support the field of de novo design of small binding

polypeptide motifs and has robust applicability while offering potential advantages over the limited

number of techniques currently available.

INTRODUCTION

Proteins are diverse macromolecules that form intricate and complex protein-protein interaction (PPI) net-

works through selective affinity binding. These properties have driven an expansion in the field of protein

and peptide design over the past decade (Kang and Saven, 2007; Pantazes et al., 2011; Saven, 2010; Yu

et al., 2014). Specifically, the ability to design synthetic proteins that can bind, label, or inhibit a specified

target with high affinity are of primary importance and have the potential to replace antibodies and chem-

ical compounds in a wide range of applications. Current methods to develop engineered binding proteins

include peptide aptamer selection (Colombo et al., 2015), directed evolution of display systems (Goldflam

and Ullman, 2015), and computational methods, the majority of which modify naturally occurring protein

folds rather than designing novel structures ab initio (Benjamin Stranges and Kuhlman, 2013; Karanicolas

and Kuhlman, 2009; Mikut et al., 2016; Schreiber and Fleishman, 2013).

Computational protein design (CPD) can allow for the in silico evaluation of amino acid sequences on a

scale that goes beyond the constraints of many laboratory approaches (Chica et al., 2005). Natural proteins

represent only an infinitesimal portion of potential functional sequences, limiting the scope of most current

CPD techniques (Woolfson et al., 2015). Many protein targets lie beyond the reach of natural protein folds

or current approaches to developing binding peptides, and searching randomized sequences space has

been shown to successfully yield novel functional binding proteins (Cherkasov et al., 2009; Devlin et al.,

1990). It is thought that true large-scale de novo protein design can expand beyond the confines of biolog-

ically derived molecules into the vast space of ‘‘never-born proteins’’ (Li et al., 2013; Luisi et al., 2006). This

unexplored sequence potential coupled with the fact that many protein-based therapeutics have been

shown to be effective and well-tolerated in clinical trials (Craik et al., 2013; Otvos and Wade, 2014) have

made peptides a quickly expanding category of US Food and Drug Administration (FDA)-approved drugs

over the past 20 years (Fosgerau and Hoffmann, 2015; Kaspar and Reichert, 2013).

In addition to peptide therapeutics, CPD has been used in recent years for developing ligand-binding pro-

teins (Tinberg et al., 2013), nanobiotechnology (Wilson, 2015), de novo enzyme design, and the develop-

ment of antibody mimetics (Lao et al., 2014). Much of the recent focus has been on developing proteins to
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Figure 1. An Overview of the InSiPS Genetic Algorithm

(A) An initial pool of random protein sequences 150 aa in length is created. Next, the primary loop is entered: sequences

in the pool are evaluated, and subsequent generations are created. This process repeats for a minimum of 250

generations until a high-fitness peptide is produced.

(B) PPI prediction. Sequences generated by InSiPS are evaluated using the Protein-Protein Interaction Prediction Engine

(PIPE) (Pitre et al., 2008). PIPE requires a validated global PPI network as input. Step 1: protein A is compared with all

proteins in the known PPI network. A sliding window is used both on A and the proteins in the PPI network until some

segment of A, starting at position i, matches a segment of some protein T in the network. All known interactors

of T (neighbors) are put into a list to be used in the next step. Step 2: protein B is compared with the proteins in the

neighbor’s list in the same manner. When a segment of B, starting at position j, is found to match a segment of a protein

from this list, the result matrix is incremented at position (i,j). This matrix represents all the segments in proteins A and B

that co-occur in experimentally validated PPIs and is used to predict if A and B interact. The interaction algorithm assigns

a predicted interaction score between 0 and 1. Any pair scoring over 0.51 is predicted to interact with a specificity of

99.5%. The fitness of a protein sequence is calculated based on predicted interactions with targets-non-targets.

(C) Generating the next generation of candidate sequences. First, a copy, mutate, or crossover operation is randomly

chosen with a preset probability proportional to the fitness of a sequence as calculated in (B). This process is repeated

until the next generation is complete. The algorithm is terminated after a minimum of 250 generations when the fitness

score does not improve over 50 consecutive generations.
replace targeted antibody therapies (Huang et al., 2013; Takeuchi et al., 2014). Rationally designed syn-

thetic proteins with high affinity or specificity for a chosen target may become an important alternative

to antibody-based biological drugs, which experience numerous limitations including ineffective pharma-

cokinetics, a relatively large size, immunological complications, ethical questions, and high production

costs. Computational tools that can effectively design novel proteins specifically architected to interact

with a wide range of targets are now beginning to emerge (Chevalier et al., 2017; Viart et al., 2016).

We present a powerful massively parallel computational tool that designs high-affinity binding proteins for

a given target. This tool is the first of its kind as it employs a unique genetic algorithm, actively minimizes

off-target interactions during the design process, and does not employ docking models or require infor-

mation on the 3D structure of the target. The In-Silico Protein Synthesizer (InSiPS) algorithm begins with

a pool of random amino acid sequences and, over many generations of fitness-based selection followed

by mutation and crossover events, converges on sequences that are predicted to interact with a specified

target andminimize interactions with non-targets (other proteins in the environment) (Figure 1). InSiPS uses

the co-occurrence of small interacting motif pairs (Pitre et al., 2012; Schoenrock et al., 2014) to predict PPIs

and intelligently design proteins with desired interaction profiles. In this way, previously ‘‘undruggable’’
376 iScience 11, 375–387, January 25, 2019



proteins (Ostrem and Shokat, 2016), and those that lack a well-recognized binding pocket, may be targeted

by this method.

The InSiPS algorithm evaluates the predicted affinity and specificity (fitness) of hundreds of thousands of

sequences over hundreds of generations, meaning upward of a billion predictions are made in a single

run. This scale is difficult to achieve when using competingmethods that rely on detailed 3D protein config-

uration data (Lewis and Kuhlman, 2011) and are thus limited by the computational restraints of working with

docking models (Pierce et al., 2014).

Other CPD methods have employed sequence-based approaches to design proteins. For example, Fisher

et al. (2011) utilized binary patterning of alternating polar and non-polar residues to yield biologically func-

tional proteins in Escherichia coli (Fisher et al., 2011). Keating and others have developed CLEVER and

CLASSY, a method of cluster expansion that maps a complex function of atomic 3D coordinates from struc-

ture-based models of protein energetics to more simple linear functions of sequence. This change dramat-

ically speeds up scoring and has been used to successfully design highly specific synthetic protein ligands

against multiple basic-region leucine zipper transcription factor families (Grigoryan et al., 2009; Negron

and Keating, 2013). However, InSiPS differs from these methods and other sequence-based approaches

as it uses sequential optimization of binding via a genetic algorithm without any predetermined pattern

or use of structural considerations, instead relying on conserved short linear binding motifs.

Conserved short linear motifs are known to mediate PPIs in a manner that is unique from the more classically

accepted interactions between large, rigid domain structures (Chica et al., 2009, 2005; Davey et al., 2012).

The more flexible linear motifs are ubiquitous across higher eukaryotes and are proposed to be capable of

re-wiring PPI networks through the loss or gain of these functional modules (Neduva and Russell, 2006). Our al-

gorithmuses primary protein sequences andexperimentally validated interaction networks to screen for the co-

occurrence of such motifs common to known protein pairs. This technique has been used to accurately predict

global PPI networks in a variety of organisms including Saccharomyces cerevisiae,Caenorhabditis elegans,Mus

musculus, and humans (with a precision of 82.1%) (Pitre et al., 2012; Schoenrock et al., 2014).

As a proof of concept, we aimed to design synthetic binding proteins (SBPs) that could functionally inhibit

non-essential endogenous proteins in the yeast Saccharomyces cerevisiae. For ease of experimentation, 18

initial targets were chosen that fit our desired criteria of localizing to the cytoplasm, being of moderate size

(<1,500 amino acids [aa]) and relatively steady abundance (500–5,000 molecules per cell) in addition to pos-

sessing readily observable phenotypes when the encoding gene is deleted or the protein product is func-

tionally inhibited. Of 18 targets, 3 with varying fitness scores were selected for wet-laboratory experimen-

tation: (1) Psk1, a serine/threonine kinase, which plays a role in regulating sugar metabolism; (2) Pin4, a

protein involved in G2-M phase progression following DNA damage; and (3) Rmd1, a protein involved in

meiotic nuclear division. The engineered SBPs were specifically designed to avoid interactions with all

other yeast cytoplasmic proteins (designated as non-targets). A length of 150 aa was chosen for this project

to ensure that the majority of predicted interaction motifs are included within the SBP sequence. Only a

subsection of this 150-aa polypeptide, which also contains a 6xHIS tag for affinity purification, is likely

required for binding. We evaluated the ability of anti-Psk1, anti-Pin4, and anti-Rmd1 to bind or inhibit their

respective targets using a series of phenotypic assays and binding experiments. See Tables S2 and S3 for a

complete list of InSiPS results for all target proteins considered in this study.

Our results validate the ability of this approach to computationally engineer unique SBPs. Because InSiPS

does not begin with a template, but rather a pool of random sequences, the algorithm has the potential to

search sequence space beyond biological barriers and is not constrained to naturally occurring sequences.

Moreover, because of efficient parallelization of the algorithm, hundreds of thousands of predictions can

be made during each ‘‘generation’’ of the genetic algorithm, allowing strong selective pressure to be

applied to maximize binding affinity and specificity. Ultimately, InSiPS-engineered proteins may be useful

for research, for biotechnology, or as pharmacological agents.
RESULTS

InSiPS Designs SBPs against Three Target Proteins

A preliminary run of InSiPS was used to evaluate initial SBP designs against 18 yeast targets. Our genetic

algorithm assigns each candidate protein sequence a fitness (interaction) score between 0 and 1, balancing
iScience 11, 375–387, January 25, 2019 377



Synthetic Binding

Protein

Fitness Target

Score

Max Non-Target

Score

Max

Non-Target

Average

Non-Target Score

Closest Yeast

Homolog to SBP

Anti-Psk1 0.465 0.718 0.352 Ubi4p 0.072 Mmp1p

Anti-Pin4 0.380 0.630 0.398 Cdc39p 0.0797 Esl1p

Anti-Rmd1 0.344 0.563 0.389 Sec14p 0.132 YAP1801p

Table 1. InSiPS Predictions Suggest High Affinity of SBPs for Target Proteins and No Predicted Off-target Interactions

Higher interaction scores indicate an increased likelihood of interaction, and a score of >0.51 would be deemed likely to interact at 99.5% specificity. The fitness

function weighs scores between the SBP and both targets and off-targets {Fitness(SBP) = [1 - MAX(score(Non-targets)) x score(Target)}. A higher fitness function

indicates an increased likelihood of a protein having specificity for the target. The target score represents the score between the SBP and the target protein. The

max non-target is score between the SBP and the next most likely off-target interaction (no interactions predicted). The average non-target score is the averaged

score between the SBP and all proteins localized to the cytoplasm. The highest scoring non-target protein and yeast protein most homologous to the SBP are

also listed (see Figure S1 for alignment and Table S1 for sequences of synthetic proteins).
affinity for the target with specificity (i.e., reduced binding to non-targets; see Transparent Methods for

more details). In all cases, InSiPS was able to design SBPs with substantially stronger predicted affinity

for the designated target than the highest likely ‘‘non-target’’ protein. In addition, all SBPs produced

very low average non-target scores (Table 1), highlighting the selectivity of SBPs, and showed limited

sequence homology to known yeast proteins (Figure S1).

Of the three designed SBPs selected for wet-laboratory experimentation, anti-Psk1 demonstrated

the highest fitness (0.465) followed by anti-Pin4 (0.380) and anti-Rmd1 (0.344). All three anti-target proteins

showed relatively strong interaction scores against their respective targets (Psk1, 0.718; Pin4, 0.630; Rmd1,

0.563). In all cases, the scores of all the non-target proteins are below the threshold of 0.51 at which the

algorithm would predict an interaction, meaning no off-target interactions are predicted. InSiPS appears

to work better for some targets than others. Anti-Psk1 exceeds the other two anti-target proteins in terms

of maximizing target score and minimizing of the max non-target score. InSiPS was able to effectively

design binding proteins for all targets considered (see Tables S2 and S3), but only three targets were

selected for wet-laboratory experimentation.

To evaluate the novelty of the anti-target proteins, the sequences were compared against the yeast pro-

teome using BlastP. The results show limited sequence similarity to yeast proteins (Figure S1). Anti-Psk1

most closely resembles the known Psk1 interactor Mmp1 and aligns with 34% coverage and a maximum

52% identity over 38 aa. Anti-Pin4 has sequence homology to a single yeast protein, Esl1, a known interac-

tor of Pin4 with 29% sequence identity over a region representing only 3% of the total protein sequence.

Anti-Rmd1 was found to have significant sequence homology with two proteins, Sec14 with a maximum

52% sequence identity over 29 aa, and Pmt5 with a maximum 28% sequence identity. However, neither

of these proteins is known to interact with Rmd1.

Anti-Psk1 and Anti-Pin4 Show Functional Inhibition of Targets In Vivo

We hypothesized that the expression of our anti-target proteins may inhibit the function of the target pro-

teins if biologically significant binding occurs in vivo. To this end, we expressed the SBPs in S. cerevisiae and

performed three assays that examined conditional viability or growth rate and effects on protein distribu-

tion (Figure 2).

To test if the anti-Psk1 SBP can functionally inhibit Psk1, we induced oxidative stress and compared viability

and growth rate to wild-type (WT) andDpsk1 strains as the loss of PSK1 is known to increase sensitivity to UV

light and oxidizing agents (Hanway et al., 2002). Anti-Psk1 expression phenocopies the Dpsk1 mutant,

consistent with inhibition of protein function (Figure 2). As seen in Figures 2A and 2C, Dpsk1 is sensitive

to UV irradiation and exposure to H2O2, phenotypes that were also seen when anti-Psk1 is expressed.

UV exposure decreased viability in Dpsk1 by 85% and by 83% when anti-Psk1 is expressed. To determine

if the sensitivity observed was the result of the anti-Psk1 protein and not other factors, we expressed anti-

Psk1 in the Dpsk1 strain and observed no significant alteration to viability. Growth curve analysis showed

that exposure to H2O2 decreased the growth rate of cells expressing anti-Psk1 relative to WT cells, which

strongly resembles the Dpsk1 phenotype (Figure 2C). In addition, expression of anti-Psk1 resulted in a
378 iScience 11, 375–387, January 25, 2019



Figure 2. Strains Expressing Anti-Psk1 and Anti-Pin4 Can Phenocopy DeletionMutants of the Target Proteins and

Alter Target Protein Expression or Assembly

(A and B) Viability of cells under strain-specific stress condition shows that anti-Psk1 and anti-Pin4 expression can produce

phenotypes that resemble loss of function mutants of the target proteins. (A and B) Average normalized colony-forming

unit (CFU) counts from four trials are displayed as mean G SD. Stress conditions in trial were (A) exposure to UV light for

30 s for the anti-Psk1 trial and (B) exposure to cycloheximide (65 ng/mL) for the Pin4 trial.

(C and D) Expression of anti-target SBPs produces growth defects under strain-specific stress conditions that resemble

deletion of the target. Three replicates of each culture or condition were grown for 12 h in liquid YPG (Yeast extract/

Peptone/Galactose) + drug, media and OD600 was measured hourly. This experiment was repeated three times. Error

bars represent SD among replicates, and a polynomial line of best fit is presented. (C)Dpsk1 sensitivity to H2O2 resembles

the phenotype of strains expressing anti-Psk1. Cells were grown in media containing 0.75 mM H2O2. (D) Dpin4 sensitivity

to 13 mM hygromycin resembles the phenotype of strains expressing anti-Pin4.

(E and F) Observed alteration of fluorescence profile of GFP-tagged targets when anti-target proteins are expressed.

Aliquots of WT + anti-target protein cells from the same culture were used to inoculate complete media with either 4%

galactose (where anti-target SBP is expressed) or 4% glucose (where anti-target SBP is repressed), and overall fluorescent

signal from three independent cultures for each condition were measured over time and normalized to the growth rate.

See also Figure S2 showing that anti-Pin4 can cause sensitivity to arsenite.
significant change (net –decrease) in the fluorescent signal of GFP-tagged-Psk1 protein, suggesting

possible aggregation or degradation of the target (Figure 2E).

We performed the same assays as above to test for any functional inhibition of Pin4 by the anti-Pin4 pro-

tein. The deletion of PIN4 is known to cause yeast cells to become sensitive to inhibitors of protein
iScience 11, 375–387, January 25, 2019 379



synthesis such as cycloheximide and hygromycin B (Brown et al., 2006). Culturing in the presence of

65 ng/mL cycloheximide decreased viability in Dpin4 by 67%, WT+ anti-Pin4 by 35%, and Dpin4+ anti-

Pin4 by 34% (Figure 2B). Growth curves show similar sensitivity of WT+ anti-Pin4 and Dpin4 to hygrom-

ycin B (Figure 2D). These results show that anti-Pin4 sensitizes cells to translational inhibitors, suggesting

functional inhibition of Pin4. In addition, cells expressing anti-Pin4 become sensitive to arsenite in a

manner similar to those expressing Dpin4 (Figure S2). The expression of anti-Pin4 decreased the net fluo-

rescent signal of GFP-tagged Pin4. These results together suggest partial functional inhibition of target

protein function.

The third target selected for experimentation, Rmd1, was analyzed to detect if phenotypic changes can be

produced through expression of the anti-Rmd1 protein. However, no significant alteration to conditional

viability or sensitivity to b-mercaptoethanol or L-1,4-dithiothreitol exposure similar toDrmd1 was observed

and no significant change to the fluorescent profile of GFP-tagged Rmd1 was detected when anti-Rmd1

was expressed. For these reasons, we chose not to experiment further using the anti-Rmd1 peptide as

the aim of this project was to demonstrate functional inhibition through binding. This observation suggests

that not all designed anti-target peptides are functionally effective.

Yeast Two-Hybrid Analysis Indicates Binary Interactions between Target/Anti-target

Proteins

Together, the results displayed in Figure 2 suggest that anti-Psk1 and anti-Pin4 possibly bind to and alter

the endogenous functionality of their respective targets. To confirm that binary PPIs between Psk1/

anti-Psk1 and Pin4/anti-Pin4 occur in vivo, we performed a series of yeast two-hybrid (Y2H) assays. Three

reporter genes were present in our Y2H strain, which are all induced by Gal4 reconstitution, and three

independent reporter assays were employed to test for interactions (see Transparent Methods for

details).

In this way, the reconstitution of GAL4 by a physical interaction between the bait (target) and prey (anti-

target) will induce growth on minimal media lacking uracil, activate lacZ activity, and provide resistance

to 3-aminotriazole. All three reporter assays showed binding signals indicating physical interactions be-

tween the two target-anti-target combinations in vivo (Figure 3). Figure 3C indicates that binding affinity

between anti-Pin4/Pin4 may be lower than the anti-Psk1/Psk1 affinity as this b-galactosidase assay is the

most quantifiable of the three Y2H assays employed.

Peptide SPOT Array Analysis Shows that Binding on Targets Occurs at Predicated Loci

Positive results in our Y2H assays further support binding between target and anti-target proteins in a

biological system. To probe these interactions in vitro and to further evaluate target interaction sites,

a walking peptide SPOT array was used (Figure 4) (Jia et al., 2005). Because InSiPS predicts regions

on both the target and anti-target proteins responsible for binding, it provides a starting point to probe

the binding regions. Using InSiPS-predicted interaction sites, we designed walking peptide arrays that

probed the predicted interaction site of the target and flanking regions using 18-aa motifs shifting at sin-

gle amino acid intervals. As seen in Figures 4A and 4B, very specific residues on both interacting partners

are proposed to facilitate binding (dark green regions). Interactions between both anti-Psk1/Psk1 and

anti-Pin4/Pin4 were shown to occur within or directly adjacent to Protein-Protein Interaction Prediction

Engine-predicted interaction regions (Figure 4). This further supports the biological validity of our

CPD method for engineering binding proteins and demonstrates the specificity of the engineered

proteins.

A very specific site was predicted to mediate the Psk1/anti-Psk1 interaction. This interaction region spans

residues 1209–1247 in Psk1 and residues 47–69 (22 amino acids long) on the anti-Psk1 designed protein.

Peptides spanning the Psk1 target region and flanking residues were probed with purified 6xHis-tagged

anti-Psk1. As expected our observations using a walking array indicate an overlap between the predicted

interaction site and the site identified by the walking array.

Interestingly, the predicted interacting region on anti-Psk1 residues is in an area that does not have signif-

icant sequence homology toMmp1 (Figures S1 and S3), the protein in the yeast proteome with the greatest

sequence homology to anti-Psk1. Here we see how InSiPS demonstrates its ability to focus on specific small

interacting motifs that facilitate direct protein binding.
380 iScience 11, 375–387, January 25, 2019



Figure 3. Yeast Two-Hybrid Assay Indicates Physical Interactions between Target and Anti-target Proteins

(A and B) (A) Positive Y2H results using uracil reporter assay. A growth curve in minimal media lacking uracil shows that

Pin4/anti-Pin4 and Psk1/anti-Psk1 bait-prey combinations grow better than the negative control strain, indicating a PPI

between bait and prey proteins through expression of the URA3 reporter. Triplicate trials produced similar positive

results, but the results from a single trial are shown. (B) Positive Y2H result for Pin4/anti-Pin4 and Psk1/anti-Psk1 bait-prey

combinations based on resistance to 3-aminotriazole (3-AT). Normalized colony-forming unit (CFU) counts for triplicate

trials onminimal media lacking histidine +25mM3-AT resistance in test bait-prey combinations and in the positive control

are presented as mean G SD.

(C) Positive Y2H result for Pin4/anti-Pin4 and Psk1/anti-Psk1 bait-prey combinations using a b-galactosidase reporter.

Miller units are used to quantify b-galactosidase activity by measuring the hydrolysis of ortho-Nitrophenyl-b-galactoside

(ONPG) spectrophotometrically. Relative b-gal activity (fold change) from triplicate trials is shown relative to negative

control G SD. The Psk1/anti-Psk1 interaction produced a stronger signal than Pin4/anti-Pin4.
Walking SPOT array analysis of the predicted Pin4 interaction region indicated a single motif that facilitates

the observed binding between Pin4 and anti-Pin4, which again corresponded closely to the region pre-

dicted by InSiPS. A single region spanning residues 440–466 demonstrated binding affinity for the anti-

target protein in the walking array (Figure 4D). This further supports the premise that InSiPS can successfully

engineer proteins that bind through short interaction motifs.

Specific binding of both anti-Psk1 and anti-Pin4 synthetic proteins to short subsequences within the target

protein was observed in the walking peptide SPOT array (Figures 4C and 4D). We further studied the inter-

action between Psk1/anti-Psk1 as this peptide demonstrated the highest fitness score (Table 1), strongest

Y2H signal (Figure 3C), and greatest functional inhibition of the target (Figures 1A and 1B).

The walking array results showed that the highest binding intensity occurred between anti-Psk1 and a trun-

cated version of Psk1 spanning residues 1207–1224 (Figure 4C). We probed this interacting region using a

permutation array to determine which residues are the most essential for binding by making single amino

acid substitutions at all positions and monitoring the effect on binding affinity.

Permutation Array Shows High Specificity of Subsequence in the Psk1-Binding Motif

Our permutation analysis showed that amino acids 1218–1224 on Psk1 appear to be the most essential to

the interaction (Figure 5C). This region that has three identical residues with the highest scoring predicted

off-target interactor Ubi4, 1219K, 1221L, and 1223D (Figures 5A and 5D). However, the residues that have

the greatest influence on the affinity between Psk1/anti-Psk1 binding are two histidines at 1220H and 1222H

such that any substitution at these loci abolishes the interaction (Figure 5C). Notably, on Ubi4, the
iScience 11, 375–387, January 25, 2019 381



Figure 4. Walking Peptide SPOT Arrays Indicate Specific Binding Regions

SPOT arrays containing 18-aa-long printed peptides corresponding to subsequences from within the predicted

interaction regions of target protein at single amino acids intervals.

(A and B) Predicted interactionmatrices highlight the predicted interaction regions between target (x axis) and anti-target

(y axis). (A) The anti-Psk1/Psk1 interaction site was predicted to occur between residues 1209–1246 of the PSK1 protein.

(B) The Pin4/anti-Pin4 interaction site was predicted to occur between residues 472–506 on Pin4.

(C and D) SPOT arrays of predicted target binding sites and flanking regions probed with 6xHis-tagged anti-target

proteins followed by detection using an anti-His antibody. (C) Specific binding of the anti-Psk1 protein to the target was

detected between amino acids 1204–1228 (D) Specific binding of the anti-Pin4 protein to the target was detected

between amino acids 436–458.

(E and F) Relative binding of SPOT array peptides indicates highly specific binding regions with highest relative binding.

See also Figure S3 for analysis of the anti-Psk1 predicted interaction site.
off-target protein predicted to be the most likely to interact with anti-Psk1, the corresponding residues are

glutamine (Q) and glutamate (E). Importantly, both single-amino-acid substitutions, H/Q and H/E,

demonstrated significantly decreased affinity for anti-Psk1 protein suggesting relatively lower affinity for

the Ubi4 (Figure 5D). The specificity of our peptides is shown by the limited number of acceptable substi-

tutions at these two key loci. Despite the sequence homology to this region on Ubi4, key residues 1222H

and 1224H are expected to limit binding by anti-Psk1.

To gauge the affinity of the anti-Psk1 protein against the predicted Psk1-binding site, fluorescent peptides

corresponding to the Psk1 1207–1224 amino acid sequence were synthesized and purified for binding
382 iScience 11, 375–387, January 25, 2019



Figure 5. Characterization of Psk1 Interaction Motif and Binding Affinity

(A) Permutation array based on relative binding of the anti-Psk1 binding peptide to the Psk1 interactionmotif (1207–1224).

Peptides that correspond to the WT Psk1 sequence are outlined in white. Spot coloring is based on the relative binding

intensity for each permutated position.

(B) Binding curve of anti-Psk1 with the Psk1-binding motif. Shown in the diagram are equilibrium isotherms for the

Psk1(1207–1224) peptide from fluorescent polarization.

(C) Anti-Psk1 recognition motif based on a position-specific scoring matrix created from the permutation array.

(D) Sequence homology between the anti-Psk1-binding site of Psk1 and closest homolog Ubi4. Histidine residues at

positions 14 and 16 of the anti-Psk1-binding motif are not conserved in the Ubi4 protein sequence.
studies in solution. As shown in Figure 5B, binding of the Psk1 (1207–1224) peptide to anti-Psk1 assumed

saturable patterns with a Kd value of 2.2 nM. Together these results demonstrate the ability of InSiPS to

engineer a small synthetic binding peptide with limited sequence homology to natural proteins that can

bind with high affinity to the designated targets.

DISCUSSION

We have designed and validated a unique computational tool, InSiPS, for engineering proteins that bind

specified protein targets with high affinity. InSiPS offers multiple strengths over current CPD tools because

of its unique methodology. By functioning as a genetic algorithm and analyzing thousands of candidate se-

quences over hundreds of generations, InSiPS can engineer high-confidence binding proteins, which limits

the need for costly and time-intensive speculative laboratory trials using classical enrichment techniques.

Because the algorithm analyzes PPIs using patterns of primary amino acid sequences, it is not limited to

working on proteins with known high-resolution 3D structures or domains (Zhang et al., 2013) and is free

of the requirement for known 3D pockets. In this way it expands our ability to tackle diverse protein targets.

InSiPS also has the unique advantage of actively avoiding interactions with thousands of off-target proteins.

This robust algorithm has broad applicability and could theoretically be used to target various proteins.

These features, coupled with the wide variability of potential future applications (for example, in the areas

of biomarkers and pharmacological agent development), make InSiPS a powerful CPD tool.

The efficacy of the InSiPS algorithm is demonstrated here through the successful engineering, production,

and biological analysis of two SBPs, anti-Psk1 and anti-Pin4, which successfully bind to respective targets

Psk1 and Pin4. Each binding protein was the manifestation of hundreds of generations of the genetic algo-

rithm and upward of a billion PPI predictions. Both SBPs had limited sequence homology to endogenous

yeast proteins (Figures S1 and S2) and demonstrated high fitness scores (0.465, 0.380), predicting strong

affinity for their target proteins and low affinity for all other proteins localized to the yeast cytoplasm.

Consecutive biological assays verified the ability of these proteins to bind their targets both in vivo and

in vitro and inhibit their natural biological functions.
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Initial experiments indicated that the expression of anti-target proteins anti-Psk1 and anti-Pin-4 could func-

tionally inhibit target proteins and produce phenotypes that resembled Dpsk1 and Dpin4, respectively

(Figures 2A–2D). Y2H analysis indicated binary interactions between target and anti-target proteins in vivo

(Figure 3), and a peptide SPOT array was probed in vitro to identify specific bindingmotifs on Psk1 and Pin4

responsible for mediating interactions (Figure 4). These results suggest that binary interactions are occur-

ring between anti-Psk1/Psk1 and anti-Pin4/Pin4 within predicted target regions, but further study is needed

to understand binding dynamics.

The anti-Psk1/Psk1 interaction was further probed as it exhibited the highest fitness score (Table 1), binding

affinity (Figure 5), Y2H signal (Figure 3C), and functional inhibition of the target (Figures 1A and 1B). Per-

mutation analysis showed that a single amino acid change to the target binding site can prevent binding

of anti-target proteins (Figure 5D). This demonstrates the ability of the genetic algorithm to ‘‘evolve’’ pro-

teins that possess significant binding specificity by searching beyond natural sequence configurations.

Fluorescence polarization of the Psk1-binding motif and anti-Psk1 protein demonstrated a saturable

pattern with a Kd value of 2.2 nM (Figure 5B). The strong affinity of the anti-Psk1 protein for its target

coupled with the specificity observed in the permutation analysis lends further support to the ability of

the InSiPS algorithm to efficiently design protein sequences with desired interaction properties.

The current study furthers the emerging field of de novo binding protein or peptide design, which strives to

explore beyond natural protein sequence space and create functional high-specificity proteins that often

are not found in nature. The majority of previous approaches to protein engineering have involved intelli-

gent manipulation of naturally occurring proteins, but CPD is now quickly entering a new era of de novo

design. Most major advances in de novo CPD over the past few years have focused on mastering protein

folding and structure prediction and using these principles to design simple novel protein structures

(Huang et al., 2016). For the most part, these newly designed proteins are structural with limited function-

ality and have simply served to lay the groundwork for future endeavors. Fundamental protein structures

such as barrels (Huang et al., 2015; Thomson et al., 2014), helical bundles (Huang et al., 2014), protein nano-

materials (King et al., 2012), and oligomers (Boyken et al., 2016) have been developed and may eventually

be used for a variety of future applications as we delve further into sequence space and take advantage of

the scalability and specificity of polypeptides. However, at this point, very few novel functional polypep-

tides have been developed computationally de novo.

Proteins or peptides with short highly specific binding motifs, like the ones developed in this study, could

be developed to function as aptamers, research tools, biomarkers, pharmacological agents, or more. Pep-

tide aptamers continue to be developed for a variety of industrial (Colombo et al., 2015) and medicinal

(Hanley-Bowdoin and Lopez-Ochoa, 2015) applications, but the field of using proteins as pharmacological

agents has expanded significantly over the past 5–7 years. Peptide therapeutics can be tailored to maxi-

mize compatibility, stability, and potency with relative ease, and there are currently over 60 available

FDA-approved peptide drugs with another 500+ progressing through the development stage (Kaspar

and Reichert, 2013; Rafferty et al., 2016).

Other potential applications of this methodology include the development of biosensors for previously un-

reachable biomarkers or the intelligent design of peptide aptamers. Certain small protein targets such as

themedically relevant angiotensinogenase renin have proven difficult to probe with traditional approaches

but can be detected using peptide-based aptamers developed using cDNA display techniques (Biyani

et al., 2016). Peptides designed to function as therapeutics can outperform relatively larger (�150 kDa) an-

tibodies in terms of bioavailability, tumor penetration, and production efficiency and have been used to

develop binding assays, cancer therapy, drug delivery, and in vivo imaging (Yu et al., 2017). Peptides, which

were previously thought of as ineffective pharmacologically due to poor delivery mechanisms and rapid

degradation or clearance (Otvos andWade, 2014), are changing pre-conceptions as synthetic peptide pro-

duction decreases in cost, new delivery systems are developed, and biological production using vectors

such as viruses or genetic manipulation via CRISPR-Cas9 become more realistic possibilities.

To summarize, we have presented a unique CPD tool that employs a massively parallel genetic algorithm

and PPI prediction tool to engineer binding peptides against protein targets. We demonstrated that two

synthetic proteins engineered by InSiPS can bind endogenous yeast proteins at predicted motifs and

inhibit functionality. Further work will examine if the technique can work in other species and explore
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the range of potential targets. We invite those interested in using InSiPS to contact the corresponding

author. By combining constructive techniques such as InSiPS with modeling technologies, future tech-

niques will aim to develop highly stable, specific binding proteins for a range of applications.

Limitations of the Study

Our method has furthered the field of de novo computational design of short binding polypeptides and

offers promising preliminary findings, but more work is required to expand the reach and efficiency of

the method. The current framework restricts InSiPS to working on annotated proteins within known PPI net-

works. The technology may be applicable in other systems, but this has not yet been shown. The algorithm

also does not directly consider protein stability but combines aspects of known functional motifs to confer

bioactivity. Because InSiPS functions in the realm of flexible linear motifs, limited structural considerations

are required. Future work will examine incorporating additional structural prediction tools to predict sta-

bility and folding patterns.

Another limitation may be the applicability of our approach to tackle different targets. In the current study,

we started with three potential targets. In our first attempt, we generated high-scoring anti-peptides with

limited off-target interactions for two of three targets. As each round of computation begins with a random

pool of sequences, further iterations of InSiPS may identify suitable anti-peptides for Rmd1. However, with

low sample numbers it remains difficult to speculate about the broad applicability of our approach to

different proteins. InSiPS may also be constrained if the desired target is a member of a protein family

with highly similar sequences or shares significant sequence similarity with other proteins in the cell.

Last, the specificity of these proteins remains unclear despite being engineered to avoid off-target inter-

actions. Only indirect and predicted evidence that our anti-target proteins avoid off-target interactions

is provided in this article. We did not observe significant changes in observable phenotypes when the

target protein is deleted and the anti-target protein is expressed (Figures 2A and 2B) and show specificity

through the binding observed in the SPOT arrays (Figures 4 and 5).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, three figures, three tables, and one data file and

can be found with this article online at https://doi.org/10.1016/j.isci.2018.11.038.
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A       Anti-Psk1 

• Mmp1p [Saccharomyces cerevisiae CEN.PK113-7D] 

Score Expect Method Identities Positives Gaps 

36.2 bits(82) 0.015 Compositional matrix adjust. 14/27(52%) 18/27(66%) 0/27(0%) 

Anti Psk1  65   MAQCAPEEACQYPVRRSYGLHATNCIE  91 

                + QC  E +CQYPV  SY LHA+  I+ 

MMP1      120   VVQCGAELSCQYPVSGSYALHASRFID  146 

 

B        Anti-Pin4 

• Esl1p [Saccharomyces cerevisiae S288c] 
 

Score Expect Method Identities Positives Gaps 

28.1 bits(61) 0.60 Composition-based stats. 11/38(29%) 17/38(44%) 0/38(0%) 

Anti Pin4 65   AHTKMGAAQNYDCKLYFGLKTQIWVHFCVQCLQAETNN  102 

               A    G+ +NY+C LYF +    W+       +   NN 

Esl1p    933   AAASKGSDENYNCTLYFVIDATSWLRHFAHIFKLAKNN  970 

 

C         Anti-Rmd1  

• phosphatidylinositol/phosphatidylcholine transfer protein SEC14 [Saccharomyces 
cerevisiae S288c] 

Score Expect Method Identities Positives Gaps 

36.6 bits(83) 6e-04 Compositional matrix adjust. 15/29(52%) 16/29(55%) 0/29(0%) 

 

Anti Rmd1     2   NMVWEIAQVVQYRLPMCCSWGPHDTEQKC  30 

                  N+VWE   VVQYRLP C     H  E  C 

Sec14        146  NLVWEYESVVQYRLPACSRAAGHLVETSC-- 174 

 

• putative dolichyl-phosphate-mannose-protein mannosyltransferase PMT5 [Saccharomyces 
cerevisiae S288c] 

Figure S1. BlastP analysis of anti-target proteins with closest yeast homolog shown, related to Table 
1. Closest yeast homolog of anti-Psk1 (A), anti-Pin4 (B) and anti-Rmd1 (C) are shown.  

 



 

Figure S2. Drug sensitivity growth curve of the anti-Pin4 protein causes sensitivity to arsenite 
(0.1M) similar to Δpin4, related to Figure 2. A single large culture (40mL) of each condition is 
represented but multiple repeats demonstrated the same trend. 

 

 

Figure S3. Sequence similarity of anti-Psk1 to known yeast proteins show that there is limited 
sequence homology within the predicted Psk1 binding site, related to Figures 4-5. 
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Table S1. InSiPS output results for three targets chosen for wet-lab experimentation including 
protein sequences, related to Table 1. Also included are predicted fitness (specificity), interaction 
scores for the target protein, highest scoring off-target protein, and the average non-target PIPE score. A 
protein pair with a PIPE score over 0.51 is predicted to interact with a specificity of 99.5%. 
 

Target 
Protein 

Fitness Target 
Score 

Max non-
target 
score 

Avg non-
target 
score 

Sequence of anti-target protein 

Psk1 0.465 0.718 0.352 
Ubi4 

0.072 SDNEHLHKCQRLKTRWKMARQFSDPQHNMYWII
NWAQAMNIHADQNQEEEEELHDASVNNAEQYM
AQCAPEEACQYPVRRSYGLHATNCIERRKCCMIM
YQHPTCRQWEAKNTCAISRAGKGVYWKGIIFMR
AWKHWCTRRLVQ [17.3kD) 

Pin4 0.380 0.630 0.398 
Cdc39 

0.0797 IFIYGDRLLDQRSQQCEQQRPKGQDHHLTPFANTS
RKDAEKHFFCPETFTYHLSVCTNPAGAMNAHTK
MGAAQNYDCKLYFGLKTQIWVHFCVQCLQAETN
NQDADIQAYMIPAHRGLRYKSPHALPLSLGKRYF
CKTGKSWEA [16.6kD] 

Rmd1 0.344 0.563 0.389 
YAP1801 

0.132 VNMVWEIAQVVQYRLPMCCSWGPHDTEQKCPE
ACQFAQRIAPGDGRRGAFGKFHRGFFGRHVAHCR
NPWFDSCASLNVTVQPMEPHLTRFTGKKKWVVQ
VETKHQKPTLAQQHVTQPQQKPGAQPLKWEMRF
DRHWICNNGARF [16.8kD} 

 

Table S2. InSiPS outputs for all 18 candidate target sequences, related to Table 1, Table S3. 

 

Target   
name 

Systematic 
gene name Fitness 

Target 
score 

Max non-
target score 

Average non-target  
Score 

REI1 YBR267W 0.437109 0.66573458 0.34341903 0.03132127 
CHK1 YBR274W 0.570826 0.70807537 0.19383371 0.019953153 
BDH1 YAL060W 0.290459 0.54265767 0.4647474 0.236912524 
AIM2 YAL049C 0.276894 0.5333423 0.48083291 0.139402474 
HSM3 YBR272C 0.358195 0.59402891 0.39700788 0.125126232 
ACS1 YAL054C 0.45144 0.64881096 0.3042048 0.015965355 
RPL19B YBL027W 0.329424 0.54180512 0.39198845 0.076419325 
PIN4 YBL051C 0.313386 0.55347628 0.43378601 0.144189497 
PSK1 YAL017W 0.541232 0.71515927 0.24320134 0.041448462 
RMD1 YDL001W 0.399594 0.67404023 0.4071663 0.088788771 
PSK2 YOL054W 0.433372 0.65443715 0.33779394 0.025854975 
HEK2 YBL032W 0.66108 0.84123403 0.21415452 0.018977927 
CCR4 YAL021C 0.464692 0.67289423 0.30941335 0.059046125 
CDC24 YAL041W 0.364046 0.62862367 0.4208845 0.114832926 
FUN11 YAL036C 0.301512 0.58082879 0.48089416 0.079736457 
YPT10 YBR264C 0.283617 0.54491094 0.47951721 0.265006925 
EFM2 YBR271W 0.22569 0.4165458 0.45818566 0.291757241 
PRD1 YCL057W 0.24819 0.45788308 0.45796182 0.315611118 

 



Table S3: Sequences of 18 anti-target proteins generated in the original InSiPS run, related to Table 1. 

Target 
Protein 

Sequence anti-target protein 
 

REI1 HHHHHHVMKPAEFAVQAIYKLAPVARRMHCYVLAWTDSQNTIISRNAINGVIHADAHDCGVSNPNFGD
SARFGNGQVCIVCNEQMKLLTKHPWNVVQHRNMGCPMKTEMCERMPGYMEPCFHQFNPASMPDD
SDDWRDAQCEPAGKINGL 

CHK1 HHHHHHAHFIHGSPLAIEAIGAALAYGCKFMFIHAPLYLCYSDWRVTGMDFHDMKEPAWAHVSAGVPY
SAPAPCYHTYSIMMVGYLAGKHIFANREPWPWYVPYSRTHAGQRVFPTDAPIWEDDQRERMGAAQQ
SKWIGRRPDKMSGKAF 

BDH1 HHHHHHQNQQRACQPMPQHQQQHHAADQLQARYRWQLEPWHEWAWCAACARGYYETHVVCITCF
CIGMAKPHISYTERHERPSKCAAWSRDALTAKFARTAKASKCACNLYMHCPLYRNCPQAQTCPIYRCD
ELGAVKTHFCAEAWETSW 

AIM2 HHHHHHSATQADSTAHESTKFHNSKNADQPHTCYFPMMCHGAYFEGWPPCCKWYLQHNEHPGHYR
THAHIDHCTSNETRKKKHHQHHIKKYRQMHTDGIRCSWRNKDESKTGPVTPVRLKNAHSKSCYGFCH
FNNQMQPCSNYKRPSSGN 

HSM3 HHHHHHQQAGMQSQQQQQEQLCKEEPQTKAGPEYESNHAFAQQQVNMCAHGKCAAFWQTKNDWI
QMFDDPTTRCSPCHWAADPAEVQEEAVAADIKIWHCDKQCQCCSRMSDGIPHRIVCCFYTDDSRYAK
FKSVYDGFGFTSMMIVPCS 

ACS1 HHHHHHIFIWISDKVSWMNCRFAGDKQNAHTYSCMHFQEPMSEMWLKLLMYTARFANTEPRGVYTH
EARPVWTNIKDYVFNAAICPAWREKGGNNAANSMENHYVGACAVESNECIKPHCVPALWFYCKFCHQ
FTEPHMHPSAYILAKGT 

RPL19B HHHHHHRCPPHSRKGQLLFRHAFADREQQGRNQWPYQNRNWKARYEACPKKEMQVTVKLLWCEM
NMAWHCQQAIRGRHHIISHNQLWHDEEEFGIPCAMEVNQLRIHFNWLFSLYVPFGGLMPPHLAFQNR
MHCLEKEGTKFIPAMEYFA 

PIN4 HHHHHHTMACYQWRQMHERQHHHRENKTVAAVEMCHCLMTWAYHKARWDCRECGQTGVPFHQW
QHHQQQARQHSQKHRAALYREDMMFFHFYNHPNHLVHQVTQMTQYWAHFIPRSHPWEPATCQSNIL
VCCKNTCYTMAHTVRTTDAEW 

PSK1 HHHHHHEQVHRQVHDKERAQAAVGTWLFALCDLCSYGGWFCCCFCRKRVRILVFAFKHHRICRREW
WRWCTKKMNIHMIPTQVVMVMIEPHIMALYMGCQTGFIECDFYMGRFRSQAHFVHMFFAQMVWQAK
CTQQDWYSRINRKKNDHL 

RMD1 HHHHHHHCECDQPVHAIAYQLYVLVEFCDHGAMEKYMMTRWHAALREVLGEICTDWGGDYTQAHAQ
HAEAEAECMMHGIAAHPYFIIQWPTFHDQEQTYNIDDTGAGACCKNHAAEHTCKDEPEWPKNFRWG
QFAGPIHCCQGYADTAQI 

PSK2 HHHHHHATQCDPQYFQQDAPPNQGELCKWQIHVYFRFQAYWERPHHAEETHAAWRRWWVQNKTM
KVVLPKMHRGVGKSGEHRLMMWALECQYVMTARWFAKFGGTKAGMIFIMKRNYKLRCHPCFEIWAT
AKNRMPWNFPGQGGSDSVTV 

HEK2 HHHHHHSVKANCSYFWAKYNYILTAVWATNEAERHTRRAEWKDFYHWGLIKAPVSVSINPECTTANE
EYFPWWFLYKNRAGQYPTGPPAMAPHAKSPQTMQSKQAEIGMMHPNVFAREWHHYAPPQNEMFMS
ARFLMQGKTPCQYGGRIR 

CCR4 HHHHHHFYCTHLQDRWAMIGWGCLPPHNCTGFAENEDEFPLAISLKNKYRKVKFCFLLYCLCTCPIEY
AFTGHEQIAARGQQRSHQTQYYKPGMHVGWRKSPTKFFLYYKQPGRLCQGMTCVMVMQEQHQENL
DWQQKEKHRKASSQQYD 

CDC24 HHHHHHSMARCFESYMDNVMRPDRIWHELWYAGVNDMWAAFQCCPWCTWFQCEVHYLYVITCALK
VARCWEAVDHYWPFVTAAWAQQLAVPFMQEQQHLQTHDQEDDLMHQKLIKICWLKNAQHPGAFPAL
AECFCYWKPVVANTLSVAL 

FUN11 HHHHHHSHAPYHKQASGDRHPSIRFWANMQLFLFCESYQKAACSAVVCFPLVCTYNEAMNAWVRVP
EIFLHRPWYPNILATRDPCNYYTNFELGSSRLLVNCGRRQNWVWEEEGAERCHPMMSAHLVDTHRPI
YGQSGQVHHCSDDNDNG 

YPT10 HHHHHHFLMARAAFNYWYMGYPPIFITIQAVIQEENGDQHFQQQEHGQPGEQTAQMQQHQQPEQQH
MKTEMAACPSDGLGAACPTWFHEGTGCPRCKFPARGQIFAKCHRTWMQWDMFVLQWAYTLEFWQ
CSGEHDMCLFFRNICHAVAY 

EFM2 HHHHHHIPAQCKLWSTLTAKQCFNCGQTNGTRCYRCGQFCHKIRDCPEARDCYHCGNGALVFCYWK
NNCHERAFRYACPWLPTADVGAPWKCPDGGSQCEHNCDAAWLTWAVQSIQTHNQPKQGPQQQEQ
RNQNERQQSHVKQTTGQKEY 

PRD1 HHHHHHAYDDYMYHDHFHNNHEHPHQLMCKLRDYAHYLTWCERQGQAQCLCDARVDVRQRMEYC
PFFEGYREQCKFGPHCTQSACSYRPPTHQCKCNCACQGCPEAQCCTCHSYSQDGGGSTQQQEPPH
HQPAQWQQQDPNTQVDNAPYE 

 

 



Transparent methods 

InSiPS Algorithm 

The InSiPS algorithm aims to design protein sequences that are predicted to interact specifically with a 

given target. Formally, a problem is presented to InSiPS in the form of a target protein sequence and a set 

of non-target protein sequences (off-targets). For each protein design problem addressed in this 

manuscript, InSiPS was provided the sequences of the given target protein and the sequences of 1701 off-

target yeast proteins known to localize to the cytoplasm. InSiPS then uses a genetic algorithm to design 

functional peptides. It starts with an initial population of 1000 randomly generated sequences 150aa in 

length.  

Next, the fitness of each individual is calculated based on the predicted interaction scores of the given 

sequence and the target/non-targets (see next section in Transparent Methods for details on the fitness 

function). Once all of the sequences in the current population have been evaluated, the next generation 

(pool) is created. Three operations are used to build the next pool: copy, mutate, crossover. The copy 

operation simply selects a sequence from the current pool and places it in the next pool. The mutate 

operation selects a sequence from the current pool and randomly mutates each amino acid in said 

sequence with a fixed probability and places the resulting sequence in the next pool. The cross-over 

operation selects two sequences from the current pool, chooses a random point at which to split the two 

sequences exchanges the ends of the sequences and places the resulting new sequences in the pool of the 

next generation. Each operation needs to select at least one sequence from the current population and this 

is done randomly with each sequence’s probability of being selected being proportional to its fitness. The 

probability of selecting the copy, mutation or cross-over operation as well as the rate of mutation can all 

be manually set. These parameters were set to 0.1, 0.4, 0.5 and 0.05, respectively, for all runs described in 

this manuscript.  

This process of evaluation and creation was repeated for a minimum of 250 generations at which point the 

algorithm did not terminate until the fitness score of the best individual sequence observed did not 

improve for a further 50 generations. Three SBPs amenable to wet lab testing in our facility were chosen 

and re-run three times using random seeds and the highest scoring SBP out of all runs was chosen for 

follow-up investigations. An arbitrary length of 150aa was chosen for this proof of principle project as 

predicted sites can vary in length and because a larger polypeptide is more likely to result in functional 

inhibition when bound.  A length of 150 includes the majority of predicted sites (up to a 114aa predicted 

site +/- 20aa required for prediction + 6XHIS tag). 

 



Fitness Function 

InSiPS employs a well-established protein-protein interaction prediction tool known as PIPE (Protein 

Interaction Prediction Tool) (Pitre et al., 2008, 2012) to predict the likelihood of sequences physically 

interacting with targets and non-targets. PIPE has successfully predicted proteome wide interaction maps 

in several species including S. cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, and 

humans at an extremely high specificity (99.95%) (Pitre et al., 2012). The method is purely sequence 

based and has been independently shown to outperform competing PPI prediction methods in recall 

precision (Park, 2009) with a nearly negligible false positive rate of 0.05%.  

To assign a fitness to a given protein sequence produced by InSIPS, PIPE is used to evaluate the predicted 

interaction profile of each sequence generated (likelihood of interacting with the target vs non-targets). 

The resulting prediction scores are combined into a single score using the InSiPS fitness function. This 

function rewards target binding and penalizes predicted off-target interactions. The fitness of a given 

sequence calculated as follows:  

Fitness(seq) = [1 - MAX(PIPE(seq, non-targets)) x PIPE (seq, target)] 

For each target, InSiPS generates an ordered list of sequences which maximize this fitness function. 

Importantly, this list generally includes several unique polypeptides that have limited homology to known 

proteins. 

Implementation Details  
 
InSiPS is a massively parallel algorithm designed to run on IBM’s Blue Gene/Q supercomputer. It is 

implemented in the C programming language and consists of a two-level master-slave / all-slaves 

architecture. The master process is responsible for all of the genetic algorithm functionality while the 

slave processes are responsible for executing the PIPE algorithm on generated protein sequences and 

target/non-target proteins. This aspect is implemented using MPI, a communication protocol allowing the 

processes to communicate with one another.   

 

The master process starts by generating a pool of random protein sequences to act as the first generation 

(pool). This population then needs to be evaluated and are then sent individually to the slave processes. 

The results are then returned as a list of PIPE scores between the candidate sequence and all of the target 

and non-target proteins. The master process uses this data to assign each sequence in the current pool a 

fitness score and creates the next pool, as discussed above, before reevaluation happens. All of 

these functions are performed in parallel within the master process through the use of openMP, a shared 

memory multiprocessing API.  



 

Although the master process performs most of the important functionality of InSiPS, the bulk of the 

computation time is spent performing PPI predictions. This is what the slave processes are responsible 

for. At the start of an InSiPS run, each slave process requests work from the master. It then receives a 

candidate protein sequence and is then responsible for applying the PIPE algorithm on this sequence and 

all of the target/non-target proteins. Once complete the results are sent back to the master process the 

slave process waits to receive another sequence to analyze. Again, all of these predictions are done in 

parallel within the slave process in an all-slaves manner through the use of openMP.  

 

A single run on InSiPS will evaluate hundreds of thousands of potential sequences, leading to hundreds of 

millions of individual PPI predictions needing to be computed. A typical run of InSiPS would use 512 

Blue Gene/Q nodes, each capable of supporting 64 computational threads. This leads computational 

processes consisting of 512 MPI processes and over 32,000 computational threads.   

 
Target Protein Selection 

18 endogenous yeast proteins with the following characteristics were chosen as experimental candidate 

targets; 

i. localized to cytoplasm 
ii. between 500-1500aa in size 

iii. moderate abundance (3,000-10,000 copies per cell) 
iv. mutants demonstrate readily observable phenotypes (drug sensitivies/resistance) 

InSiPS generated an optimized anti-target protein for each of the 18 yeast cytoplasmic protein targets. 

Three proteins of varying fitness most amenable to laboratory testing (Rmd1, Pin4 and Psk1) were each 

re-run three more times using different random seeds. The best results from these runs were forwarded for 

experimental validation.   

Vectors 

Output sequences from InSiPS for anti-Rmd1, anti-Pin4, and anti-Psk1 (Table 1) were synthetized by 

GeneArt®, a division of Invitrogen/ThermoFisher and cloned into the pYES2 expression cassette. The 

open reading frame (ORF) of the synthetic proteins is under the control of a GAL1 promoter and a 6X His 

tag was added to the C-terminus. The cassette was also sub-cloned into pBI881 for use in yeast-two 

hybrid and affinity purification assays. The p416 plasmid which contains a LacZ expression cassette was 

used as a background plasmid control for drug sensitivity analysis. Protein purification was performed 

using the pET281 E. coli expression vector.  a



Strains 

Drug sensitivity assays were performed using variations of S. cerevisiae S288C (MAT a orfΔ::kanMX4 

his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ), described in (Winzeler et al 1999). GFP experiments were performed 

in an EY0986 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) background. Yeast-2-hybrid experiments were 

performed in MAV203 (MaV203 (MATanti leu2–3, 112, trp 1–901, his3Δ200, ade2–101, gal4Δ, gal80Δ, 

SPAL10∷URA3, GAL1∷lacZ, HIS3UAS GAL1∷HIS3@LYS2, can1R, cyh2R). Protein purification was 

performed in BL21 E. coli. 

Growth Media 

S. cerevisiae strains were maintained in complete yeast media YP (Yeast extract, Peptone, 2-4% sugar) or 

autotrophic media [yeast nitrogen base, an amino acid supplement lacking the appropriate amino acid (-

Leu lacking leucine, -Ura lacking uracil, -Trp lacking tryptophan, or –Leu/-Trp lacking leucine and 

tryptophan) and 2%-4% of various sugars]. Expression of synthetic proteins was achieved using media 

supplemented with 2% galactose. Synthetic complete (SC) media (yeast nitrogen base, and a complete 

amino acid supplement + 2-4% various sugars) was used as a complete media when comparing to strains 

grown in autotrophic media. E. coli strains were grown in LB media with 30μg/mL kanamycin for 

selection and supplemented with 500μM IPTG for induction of protein expression. 

Drug Sensitivity Colony Count Analysis 

S288C strains containing pYES2 plasmids expressing either anti-Psk1 or anti-Pin4 or the p416 

background plasmid were grown to saturation in 5mL of –Ura liquid medium for 48hr shaking at 30oC. A 

WT strain containing a p416 plasmid was included as an addition WT control. S288C WT and strains 

with either PSK1 or PIN4 deleted were grown in SC liquid medias. Cultures were then serially diluted in 

sterile distilled water from 10-1 to 10-4. 100μL of the 10-4
 dilution was spread on YP-galactose agar plates 

for the control condition and plates were grown at 30oC for 48 hours. For the experimental condition, 

100μL of the 10-4 dilution was spread on YP-galactose plates containing with 65ng/mL cyclohexamide 

for the Pin4 experiment and for anti-Psk1, the plates were exposed to 30 seconds of UV radiation using 

the sterilization bulb in a biological safety cabinet. Colony counts are represented as the ratio of colony 

forming units (CFUs) counted on the experimental condition plates over the number of CFUs control 

plates normalized to the ratio of the WT + background plasmid strain in the same conditions. Mean and 

standard deviation from triplicate trials are presented. 

 

 



Drug Sensitivity Growth Curve Analysis 

S288C strains containing pYES2 plasmids expressing either anti-Psk1 or anti-Pin4 or the p416 

background plasmid were grown to saturation in 5mL of –Ura liquid medium for 48hr shaking at 30oC. A 

WT strain containing a p416 plasmid was included as an addition WT control. S288C strains with either 

PSK1 or PIN4 deleted were grown in SC liquid medias. The p416 plasmid expresses β-galactosidase 

under a Gal4 promoter to ensure that overexpression off of a plasmid does not contribute to any observed 

phenotypes. Overnight cultures were collected by centrifugation at 5000 RPM then washed in dH2O and 

resuspended in YPGalactose. The cell density of this suspension was estimated by obtaining OD600 values 

from 10X diluted samples. Aliquots from these samples were then added to culture tubes containing 5mL 

of YPGalactose with and without drug. Equal volumes of this cell suspension were added to the 

appropriate culture tubes that starting densities were consistent at OD600= ~0.3. Three cultures without 

drug and three cultures containing drug were inoculated in each trial and 3 trials were completed. Cultures 

were grown in appropriate media over 12 hours with OD600 readings of 200μL aliquots taken every 60 

minutes. Drug conditions for anti -Psk1 was and 0.75 mM H2O2. Drug conditions for anti-Pin4 were 

hygromycin 13μM and 0.1mM arsenite.  

GFP Analysis 

EY9086-derived strains with GFP-tagged targets (Psk1 and Pin4) were obtained from the yeast-GFP 

collection (Thermo Fisher) and analyzed to identify any alteration to the fluorescent signal when anti-

target proteins were expressed. Cultures were grown for 48hr shaking at 30oC to saturation in 5ml of –Ura 

+2% raffinose. 10μL of each saturated culture was used to inoculate wells containing 190μL of either 

induction or repression media. Induction was achieved using -Ura + 2% raffinose + 2% galactose and 

repression media contained -Ura + 2% raffinose + 2% glucose. Fluorescent determinations were made 

every 10 minutes using a BioTek FL600 microplate reader at 30oC shaking orbitally prior to readings and 

plotted over 6 hours. Average fluorescent units were normalized to cell density readings (OD600). Raw 

data is provided as a Supplemental Data file. 

Yeast-2-Hybrid Construct Preparation 

The ORFs of anti-Pin4 and anti-Psk1 were amplified from the synthesized pYES2 expression plasmids 

using primers with unique recognition sites to facilitate cloning into the prey (GAL4-TA) plasmid pBI-

881 (Kohalmi et al., 2002). The ORF of PSK1 and PIN4 were amplified from commercially available 

BG1805 yeast overexpression plasmids obtained from GE-Dharmacon (Gelperin et al., 2005) using 

primers containing XhoI and NotI unique restriction sequences and cloned into the bait (GAL4-DB) 

plasmid pB880. The anti-Pin4, anti-Psk1 inserts were cloned into pBI881 using SalI-NotI recognition 



sequences. Primer sequences are found below. Transformation was completed using the LiAC/PEG 

method using carrier ssDNA. Transformants containing pBI880 were selected on –leu plates and plated 

on –ura plates to ensure plasmids did not self-initiate. Double-transformants containing both the 

appropriate pBI881 and BI880 plasmids were selected on –leu/-trp minimal media plates.  

F-primer: Psk1 
5’ AGC ACC ↓TCG AGC CCC TAC ATC GGT GCT TCC AAC CTC TCA GAA CAT 
 
R-primer: Psk1 
5’ ACT GAG CGG CCG CCA TCA TCA AAT AAC CAA CCA TTT GTC GTT ATT 
 
F-primer: Pin4 
5’ AGC ACC TCG AGC GAG ACC AGT TCT TTT GAG AAT GCT CCT CCT GCA 
 
R-primer: Pin4 
5’ ACT GAG CGG CCG CCA TTA TTA CCA TAG ATT CTT CTT GTT TTG GTT   

 

F-primer: Anti-Pin4 

5’ AGC AGC AGC AGC AGC AGC AGC AGC AGC ACC TCG AGC ATT TTC ATC TAC GGT GAT 

AGA TTA TTG GAT CAA  

 

R-primer: Anti-Pin4 

5’ ACT AGC GGC CGC TTA TTA ATG ATG GTG ATG GTG GTG ATG ATG GTG ATG ATG ATG 

GGC  
 

F-primer: Anti-Psk1 

5’ AGC AGC AGC AGC AGC AGC ACC ↓TCG AGC TCT GAT AAT GAA CAC TTG CAT AAG 

TGC CAA 

 

R-primer: Anti-Psk1 

5’ ACT AGC ↓GGC CGC TTA TTA ATG ATG GTG ATG GTG GTG ATG ATG GTG ATG ATG 

ATG CTG  

 

Y2H Assays 

Analysis of Y2H interactions was performed using three reporter assays which measure the expression of 

designated ORFs under the control of unique promoter sites influenced by the presence of a reconstituted 

Gal4 transcription factor. In MAV203, Gal4 activates transcription of URA3, HIS3 (competitively 

inhibited by 3-aminotriazole), and Beta-Galactosidase. The first reporter assay monitors the ability of 



pBI880(bait)/pBI881(prey) double-transformants to grow in auxotrophic media lacking uracil. Growth in 

–ura suggests activation at the SPO13 promoter which has 10 Gal4p binding sites driving URA3 

expression (Vidal et al., 1996). The other two reporter genes are controlled by the GAL1 promoter, which 

drives the expression of either HIS3 that is competitively inhibited by 3-aminotriazole or lacZ which 

cleaves ONPG to produce a quantifiable signal. 

Firstly, to measure URA3 expression, a growth curve was constructed using liquid minimal media lacking 

uracil and containing 2% galactose. 5mL cultures were grown to saturation in –leucine/-tryptophan and 

used to inoculate 40mL of –Ura+ 2% galactose media. Cultures were grown at 30oC shaking at 160RPM 

over 8 hours. Samples were taken every 60 minutes and OD600 was read. Secondly, CFU counts on media 

containing 25mM 3-AT were performed. Again, 5mL cultures were grown to saturation in –leu/-tryp. 10-4 

dilutions were plated on synthetic complete (SC) media and 10-3 dilutions were plated on SC+3AT. 

Results are expressed as the number of colonies on SC+3AT plates (x10) over the number of colonies on 

SC and the mean +/- standard deviation. Thirdly, Beta-galactosidase activity was measured using the 

liquid culture ONPG substrate assay with 30 minutes selected as an endpoint as previously described 

(Clonetech Laboratories Inc, 2009). Fresh 5mL cultures are incubated at 30oC shaking until an OD600 of 

0.5-0.8 is reached. 1.5mL aliquots (3X) are taken, cells are pelleted resuspended in Z-buffer with ONPG 

for 30 minutes before stopping with Na2CO3. 

Protein Purification 

Proteins were expressed from a E. coli with a 6X-HIS tag were affinity purified using Ni-NTA agarose 

resin using a Bio-Rad gravity flow column according to manufacturer protocols. 750mL of LB media 

containing 30μg/mL of kanamycin was inoculated with BL21 + pET281 expressing either anti-Psk1 or 

anti-Pin4 and grown to OD600 ~0.4 and then induced with 500μM IPTG and grown overnight at 16oC. 

Cells were harvested via centrifugation, flash frozen, and lysed using lysozyme and sonication. Lysate 

was run through 1mL Ni-NTA agarose columns, washed with PBS + 40mM imidazole wash buffer and 

eluted with PBS + 250mM elution buffer. Polyacrylamide electrophoresis identified fractions with high 

purity and a Bio-Rad® Bradford assay was used to determine protein concentration.  

Peptide SPOT arrays 

Individual peptides were synthesized at 0.1-mmol scale on a Multipep RSi peptide synthesizer (Intavis 

Inc.) using standard Fmoc (N-(9-fluorenyl) methoxycarbonyl) chemistry. For fluorescein labeling, an 

appropriate amount of 5-(and-6)-carboxyfluorescein succinimidyl ester was added to a peptide resin, and 

the coupling reaction was allowed to proceed for 1 h at room temperature. Upon cleavage of a peptide 

from the resin using trifluoroacetic acid, the fluorescein-labeled peptide was separated from the unlabeled 

       a



peptide by HPLC on a C18 column. Identities of the peptides were confirmed by mass spectrometry. 

Peptides were arranged in to a SPOT array on a cellulose membrane (Jia et al., 2005). 

All peptide SPOT arrays were blocked with 5% BSA in TBST (0.1 M Tris-HCl, pH 7.4, 150 mM NaCl, 

and 0.1% Tween 20) for 1 h. Purified protein was added directly in the blocking buffer to a final 

concentration of 1 μM and incubated with the SPOT array at room temperature for 1 h. The array was 

then washed 3 × 5 min with TBST before a rabbit anti-His antibody (1:4000 dilution in TBST; Cat# 

ab3553, abcam) was added. The membrane was allowed to incubate at room temperature for 30 min prior 

to 3 × 5-min washes with TBST. After final 3 × 5-min washes in TBST, the SPOT arrays were visualized 

by enhanced HRP-based chemiluminescence. 

Fluorescent polarization 

A varied amount of a purified 6xHis-anti-Psk1 was titrated to a fluorescent peptide solution in 20 mM 

PBS, pH 7.0, 100 mM NaCl. The mixtures were allowed to incubate in a dark environment for 30 min 

prior to fluorescent anisotropy measurements at 20 °C. Binding curves were generated by fitting the 

isothermal binding data to a hyperbola nonlinear regression model using Prism 3.0 (GraphPad Software, 

Inc., San Diego, CA), which also produced the corresponding dissociation constants (Kd). 

Supplemental References: 

Clonetech Laboratories Inc (2009). Clonetech - Yeast Protocols Handbook. 

Gelperin, D., White, M., and Wilkinson, M. (2005). Biochemical and genetic analysis of the yeast 
proteome with a movable ORF collection. Genes &. 

Jia, C.Y.H., Nie, J., Wu, C., Li, C., and Li, S.S.-C. (2005). Novel Src Homology 3 Domain-binding 
Motifs Identified from Proteomic Screen of a Pro-rich Region. Mol. Cell. Proteomics 4, 1155–1166. 

Kohalmi, S., Nowak, J., and Crosby, W. (2002). The yeast two-hybrid system (London: Taylor and 
Francis Ltd.). 

Park, Y. (2009). Critical assessment of sequence-based protein-protein interaction prediction methods that 
do not require homologous protein sequences. BMC Bioinformatics. 

Pitre, S., North, C., Alamgir, M., Jessulat, M., Chan, A., Luo, X., Green, J.R., Dumontier, M., Dehne, F., 
and Golshani, A. (2008). Global investigation of protein-protein interactions in yeast Saccharomyces 
cerevisiae using re-occurring short polypeptide sequences. Nucleic Acids Res. 36, 4286–4294. 

Pitre, S., Hooshyar, M., Schoenrock, A., Samanfar, B., Jessulat, M., Green, J.R., Dehne, F., and Golshani, 
A. (2012). Short Co-occurring Polypeptide Regions Can Predict Global Protein Interaction Maps. Sci. 
Rep. 2, 1–10. 

Schoenrock, A., Samanfar, B., Pitre, S., Hooshyar, M., Jin, K., Phillips, C. a, Wang, H., Phanse, S., 
Omidi, K., Gui, Y., et al. (2014). Efficient prediction of human protein-protein interactions at a global 
scale. BMC Bioinformatics 15, 1–22. 



Vidal, M., Braun, P., Chen, E., Boeke, J.D., and Harlow, E. (1996). Genetic characterization of a 
mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc. Natl. 
Acad. Sci. U. S. A. 93, 10321–10326. 

 


	In Silico Engineering of Synthetic Binding Proteins from Random Amino Acid Sequences
	Introduction
	Results
	InSiPS Designs SBPs against Three Target Proteins
	Anti-Psk1 and Anti-Pin4 Show Functional Inhibition of Targets In Vivo
	Yeast Two-Hybrid Analysis Indicates Binary Interactions between Target/Anti-target Proteins
	Peptide SPOT Array Analysis Shows that Binding on Targets Occurs at Predicated Loci
	Permutation Array Shows High Specificity of Subsequence in the Psk1-Binding Motif

	Discussion
	Limitations of the Study

	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declarations of Interests
	References




