

\$SAGE

New BSP/CGM algorithms for spanning trees

The International Journal of High Performance Computing Applications 2019, Vol. 33(3) 444–461
© The Author(s) 2018
Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1094342018803672 journals.sagepub.com/home/hpc

Jucele França de Alencar Vasconcellos¹, Edson Norberto Cáceres¹, Henrique Mongelli¹, Siang Wun Song², Frank Dehne³ and Jayme Luiz Szwarcfiter⁴

Abstract

Computing a spanning tree (ST) and a minimum ST (MST) of a graph are fundamental problems in graph theory and arise as a subproblem in many applications. In this article, we propose parallel algorithms to these problems. One of the steps of previous parallel MST algorithms relies on the heavy use of parallel list ranking which, though efficient in theory, is very time-consuming in practice. Using a different approach with a graph decomposition, we devised new parallel algorithms that do not make use of the list ranking procedure. We proved that our algorithms are correct, and for a graph G = (V, E), |V| = n, and |E| = m, the algorithms can be executed on a Bulk Synchronous Parallel/Coarse Grained Multicomputer (BSP/CGM) model using $O(\log p)$ communications rounds with $O(\frac{n+m}{p})$ computation time for each round. To show that our algorithms have good performance on real parallel machines, we have implemented them on graphics processing unit. The obtained speedups are competitive and showed that the BSP/CGM model is suitable for designing general purpose parallel algorithms.

Keywords

Spanning tree, minimum spanning tree, parallel algorithm, BSP/CGM model, GPU

I. Introduction

Computing a spanning tree (ST), a minimum ST (MST), and the connected components of a graph are fundamental problems in graph theory and arise as subproblems in many applications. Graham and Hell (1985) point out the importance of the MST problem in the design of computer and transportation networks, water supply networks, telecommunication networks, and electronic circuitry. A survey on the many facets of the MST problem can be found in the article by Mareš (2008).

The sequential algorithms use depth-first or breadth-first search to solve these problems efficiently (Kozen, 1992). The parallel solutions for these problems, however, do not use these search methods because they are not easy to parallelize (Reif, 1985). They are based instead on the approach proposed by Hirschberg et al. (1979), which successively combines super vertices of the graph into larger super vertices. The approach gives rise to algorithms for parallel random-access machine (PRAM) models (Karp and Ramachandran, 1990). The most efficient of these algorithms is on a Concurrent Read Concurrent Write PRAM of $O(\log n)$ time with $O((m+n)\alpha(m,n))/\log n$ processors, where n and m are, respectively, the number of vertices and edges of the input graph, and $\alpha(m,n)$ is the inverse of Ackermann's function (Karp and Ramachandran, 1990).

The ST algorithm presented by Cáceres et al. (2004) uses as input a bipartite graph since a general graph can be transformed into a corresponding bipartite graph. However, they use a graph decomposition that does not seem suitable to compute the smallest edges of the ST and consequently compute the MST of the input graph.

In this article, we propose an algorithm in which the first step creates a corresponding bipartite graph by dividing each edge of the original graph and adding a new vertex in the middle of each edge. We observed that the corresponding bipartite graph thus obtained from the original graph is a special bipartite graph where all the vertices of one of the two sets of vertices of the bipartite graph have degree two. Observing that the degree of all added vertices

Corresponding author:

Jucele França de Alencar Vasconcellos, Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, CEP 79070-900, Campo Grande – MS, Brazil.

Email: jucele@facom.ufms.br

¹ College of Computing, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil

² Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil

 ³ School of Computer Science, Carleton University, Ottawa, ON, Canada
 ⁴ NCE, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

(in the middle of each edge) in the corresponding bipartite graph is two, we devised a new approach to compute the ST of the graph by selecting the smallest edges too, which gave us the MST of the graph.

We propose, in this article, an approach to obtain an ST and an MST of a given graph that does not need to solve the Euler tour or the list ranking problem.

The parallel algorithms, described in this article, were designed using the BSP/CGM model and use $O(\log p)$ communication rounds with $O(\frac{n+m}{p})$ local computation time, where p is the number of processors. The algorithm to solve the MST problem was presented in the eighth Workshop on Applications for Multi-Core Architectures (WAMCA) in 2017 (Vasconcellos et al., 2017), without proofs and many important details. However, here we present a new way to formulate the main results presented by Cáceres et al. (2004) and provide the proofs for both the ST and the MST algorithms. We also present more experimental results.

We also show that our parallel algorithms have good performance when implemented on real parallel machines. We have tested them on several graphics processing units (GPUs). The obtained results showed that the algorithms scaled well and had competitive speedups.

Due to the availability of source code and because it presents a superior performance for not very sparse graphs, we compare the results of our implementation of the MST algorithm with a recently published efficient algorithm (Mamun and Rajasekaran, 2016), called the edge pruned MST (EPMST). This algorithm presents better performance compared to the Filter–Kruskal solution (Osipov et al., 2009). Our parallel algorithm achieves speedups greater than 100 in comparison to the implementation made available by the EPMST authors.

This article is organized as follows. In the next section, we present the proposed parallel algorithms. We discuss their correctness in the third section. Experimental results are shown in the fourth section and, finally, conclusions are given in the last section.

I.I. Related works

Dehne et al. (2002) present a BSP/CGM algorithm for computing an ST of an unweighted graph that requires $O(\log p)$ communication rounds, where p is the number of processors. The algorithm in Dehne et al. (2002) requires the calculation of the Euler tour problem which in turn bases itself on the solution of the list ranking problem, which is very time-consuming.

Cáceres et al. (2004) introduce another solution to the ST and connected component problem based on the integer sorting. This algorithm, also explained in an expanded article by Cáceres et al. (2003), does not need to solve the Euler tour or the list ranking problem. Cáceres et al. (2010), considering a bipartite graph obtained from a transformation of the input graph, present experimental results for this solution on a Beowulf cluster and on a grid.

Some works proposing parallel solutions for MST using general purpose GPU (GPGPU) can be found in the literature, such as those shown by Vineet et al. (2009), Nobari et al. (2012), and Nasre et al. (2013). The algorithm proposed by Nobari et al. (2012) is inspired by Prim's algorithm. Vineet et al. (2009) and Nasre et al. (2013) presented parallel solutions based on Borůvka's algorithm.

2. The main ideas of the parallel algorithms to obtain an ST and an MST

We initiate this section presenting basic concepts used in the algorithms, followed by the basic algorithm and details of the steps.

2.1. Preliminary concepts

Now we describe some basic concepts used in our algorithms. Consider G = (V, E) a graph where $V = \{v_1, v_2, \dots, v_n\}$ is a set of *n* vertices and *E* is a set of *m* edges (v_i, w_{ij}, v_j) , where v_i and v_j are vertices of *V* and w_{ij} is the edge weight. For simplicity, we sometimes also write an edge as (v_i, v_j) and the weight w_{ij} is implied. For the ST problem, we ignore the weight of the edges.

A path in G is a sequence of edges $(v_1, v_2), (v_2, v_3), (v_3, v_4) \dots, (v_{n-1}, v_n)$ connecting distinct vertices v_1, \dots, v_n of G. A cycle is a path connecting different vertices v_1, v_2, \dots, v_k such that $v_1 = v_k$. A connected graph has at least one path for every vertex pair $v_i, v_j, 1 \le i \ne j \le n$ in V. A tree T = (V, E) is a connected graph with no cycles. A forest is a set of trees. An ST of G = (V, E) is a tree T = (V, E'), which includes all vertices of G and is a subgraph of G, that is, all edges of T belong to $G, E' \subset E$. An ST of G can also be defined as the maximal set of G edges and |E'| = |V| - 1, which contains no cycle. An MST is an ST with the minimum possible total edge weight.

A bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets V_1 and V_2 such that every edge of the graph connects a vertex in V_1 to one vertex in V_2 . Our algorithms read the input graph G = (V, E) and create a bipartite graph H = (V, U, E')based on G, where V and U form the vertex set. Details to obtain the transformed bipartite graph from the original input graph will be shown shortly. The concept denominated strut is used in the algorithms, but different from the definition presented in Cáceres et al. (1993). In the context of the present article, a *strut*, represented by S, is defined as a forest of H = (V, U, E'), such that each vertex $v_i \in V$ is incident in S to exactly one edge (v_i, u_i) of E', such that $v_i \in V$ and $u_i \in U$. The details to choose the strut edges depend on whether we are considering the ST problem or the MST problem and will be given later on. A vertex u_i is considered a zero-difference vertex in S if $d_H(u_i)$ $d_S(u_i) = 0$, where $d_H(u_i)$ denotes the degree of u_i in H and $d_S(u_i)$ the degree of u_i in S.

Our parallel algorithms were designed using the BSP/CGM model (Dehne et al., 1996; Valiant, 1990). This model considers a set of p processors, each one having a local memory of size O(n/p), where n is the input size. An algorithm in this model performs a set of local computation steps (super steps) alternating with global communication phases, separated by a synchronization barrier. The cost of the communication considers the number of super steps required to execute the algorithm. In this model, the parallel algorithm can be executed in a CPU (one node) or in a GPU, since all the tasks in each computation round are independent.

The BSP/CGM model is appropriate for the design and analysis of parallel algorithms where there is much communication between the processes. This is a characteristic of irregular problems, that is, the input in each round of the program changes and the processors need the information that different processors computed in the last round. The ST and MST problems are in this class, which motivates the use of the model to predict the behavior and complexity of the algorithm.

The mapping of a BSP/CGM algorithm and a distributed memory environment is straightforward. The super steps consist of computation and communication rounds; the computation is done in the nodes and the communication through a network. When using the GPGPU environment, we have a shared memory environment, and we can see the invocations of each Compute Unified Device Architecture (CUDA) kernel as a super step of the BSP/CGM model as stated by Lima et al. (2016). Parallel execution of each kernel by the various threads created by CUDA constitutes a computation round, which can be alternated by communication between the threads through memory and communication between the GPU and the CPU. Considering this approach, we can predict that our algorithm will have a compatible performance, when implemented on a GPGPU, to its theoretical behavior.

2.2. The basic parallel algorithm

Algorithm 1 gives the main ideas of the proposed parallel algorithms. It uses the Single Instruction Multiple Data (SIMD) paradigm, that is, the steps are executed by several processors finding the solution collaboratively. The algorithms for ST and MST are very similar, both following Algorithm 1. The major difference consists in the way we construct the strut. As we expect to execute $O(\log p)$ rounds on BSP/CGM model, we establish that, after $\log p$ rounds, if the ST or the MST is not found, the algorithm continues the processing locally on the CPU.

2.3. Creating a bipartite graph for the input graph (Algorithm I—from line 3 to line 9)

To find an ST (or MST) of a given graph, we first create a bipartite graph corresponding to the input graph. This step is executed in parallel and can be done by adding a new

vertex on each edge (line 4) of the original graph, thereby subdividing each original edge into two new edges (line 5). If we consider the vertices of the original graph as belonging to one partition and the newly added vertices as belonging to a second partition, then we have a resulting bipartite graph.

More formally, consider a connected graph G = (V, E), where V is a set of n vertices $\{v_1, v_2, \ldots, v_n\}$ and E is a set of m edges (v_i, v_j) , where v_i and v_j are vertices of V. Each edge (v_i, v_j) has a weight denoted by w_{ij} . We can create a corresponding bipartite graph H by adding a set U of m new vertices (u_1, u_2, \ldots, u_m) and substituting each edge (v_i, v_j) of E by two edges (v_i, u_k) and (v_j, u_k) , both with weight equal to w_{ij} . Denote by E' the set of edges (v_i, u_k) for all $v_i \in V$ and $u_k \in U$. The graph H = (V, U, E'), in the algorithm denoted by $H = (V_H, U_H, E_H)$, thus obtained is bipartite. Remember that the weights are only used to find an MST. In the algorithm to compute an ST, we ignore the weight of the edges.

Figure 1 shows an example of this step. On the left, we have the original graph G = (V, E) with $V = \{1, 2, \ldots, 5\}$. In the middle, we represent the created bipartite graph $H = (V_H, U_H, E_H)$ with $U_H = \{\bar{1}, \bar{2}, \ldots, \bar{8}\}$. And on the right, the same bipartite graph is shown in another vision, where the two vertex sets V_H and U_H are illustrated separately. Observe that any vertex $u_k \in U_H$ which, by construction, was created on an edge (v_i, v_j) of the original graph G, always has degree two and both edges incident to u_k have equal weight. There is a one-to-one correspondence between an edge (v_i, v_j) of the original graph G and the added vertex u_k . We use the notation original_edge (u_k) to denote the original edge (v_i, v_j) . We also say edge (v_i, v_j) is associated with u_k .

2.4. Obtaining the strut in the calculation of the ST (Algorithm 1—from line 15 to line 24)

Consider the created bipartite graph $H = (V_H, U_H, E_H)$ with vertex sets $V_H = \{v_1, v_2, \cdots, v_n\}$ and $U_H = \{u_1, u_2, \cdots, u_m\}$, and edge set E_H where each edge joins one vertex of V_H and one vertex of U_H . For simplicity, let each vertex v_i of V_H be represented by i, that is, $V_H = \{1, 2, \dots, n\}$. Likewise, let us represent each vertex u_j of U_H by \bar{j} , that is, $U = \{\bar{1}, \bar{2}, \dots, \bar{m}\}$. To compute an ST, the strut is obtained as follows. Among all edges (v_i, u_j) incident to v_i in H, select the edge (v_i, u_k) with the smallest u_k .

Let us give an example. Consider the corresponding bipartite graph $H = (V_H, U_H, E_H)$ of Figure 1, where $V_H = \{v_1, v_2, \dots, v_5\} = \{1, 2, \dots, 5\}$ and $U_H = \{u_1, u_2, \dots, u_8\} = \{\bar{1}, \bar{2}, \dots, \bar{8}\}$. For each vertex v_i of V_H , consider all the edges (v_i, u_j) incident to v_i . Table 1 illustrates five groups of edges $(v_i u_j)$, one group for each $v_i = 1, 2, \dots, 5$.

By definition, to find an ST, the strut S is composed of the edges with the smallest u_k , for each vertex, marked with

Algorithm 1. Spanning tree (ST)/minimum spanning tree (MST).

```
Input: A connected graph G = (V, E), where V = \{v_1, v_2, \dots, v_n\} is a set of n vertices and E is a set of m edges (v_i, v_j), where v_i and v_j
   are vertices of V. Each edge (v_i, v_i) has a weight denoted by w_{ii}.
Output: A spanning tree (or a minimum spanning tree) of G whose edges are in SolutionEdgeSet.
   1: SolutionEdgeSet:= empty.
   2: // Creation of the bipartite graph H = (V_H, U_H, E_H) corresponding to input graph G.
   3: for each (e_i(v_a, v_b) \in E) in parallel do
       Add vertex u_i to U_H // u_i is a new vertex associated to edge e_i
       Add edge (v_a, u_i, w_{ab}) and (v_b, u_i, w_{ab}) to E_H
   6: end for
   7: for each (v_i \in V) in parallel do
   8: Add vertex v_i to V_H
   9: end for
  10: // Finding the ST or MST solution.
  II: condition:= true
  12: r := 0
  13: while ((r < \log p) \text{ AND } (condition)) do //p is the number of processors
        // Obtaining the strut.
  15.
        for each (u_i \in U_H) in parallel do
           d_{S}(u_{i}) = 0
  16.
  17:
        end for
        for each (v_i \in V_H) in parallel do
  18:
  19:
           Find the lightest edge among all edges of v_i
  20:
        end for
        for each (v_i \in V_H) in parallel do
  21:
  22:
           // considering that (v_i, u_i) is the lightest edge among all edges of v_i
  23:
             d_S(u_i) = d_S(u_i) + 1 // atomic function
  24:
        end for
  25:
        // Adding edges to the SolutionEdgeSet
  26:
        for each (u_i \in U_H) in parallel do // u_i is the vertex that corresponds to the edge e_i of the original graph, created in line 4
  27:
           if (d_S(u_i) > 1) then
  28:
              Add edge e_i, where e_i is original edge(u_i), to SolutionEdgeSet
  29:
           end if
  30:
        end for
  31:
        // Calculating the number of zero-difference vertices
  32.
        numdiff = 0 numdiff is the number of zero-difference vertices of \mathbf{X}_{it}
  33.
        for each (u_i \in U_H) in parallel do
  34.
           if (d_S(u_i) == 2) then
              numdiff = numdiff + I // atomic function
  35:
  36.
           end if
        end for
  37.
        if (numdiff == 1) then
  38.
  39:
           condition:= false
                   // Compaction of graph H
  40:
        else
  41:
           for ecah (vertex u_t, with edges (v_i, u_t) and (v_i, u_t) in E_H) in parallel do
  42:
              if (d_S(u_t) > 1) then
                 Contract the adjacent vertices in the strut into a super-vertex v_i, being (0.010) the smallest label among them
  43:
                Update to 0.007** the edges of E<sub>H</sub> incident to the contracted vertices
  44:
  45:
                Eliminate the other contracted vertices from V_H
  46:
              end if
  47:
           end for
  48:
           for each (vertex (0.001), with edges (v_a, u_t) and (v_b, u_t) in E_H) in parallel do
  49:
              if (v_a == v_b) then // v_a and v_b were joined in the previous "for"
  50:
                Eliminate ut from UH
  51:
                Eliminate (v_a, u_t) and (v_b, u_t) from E_H
  52:
              end if
  53.
           end for
       end if
  54
  55: r := r + 1
  56: end while
```

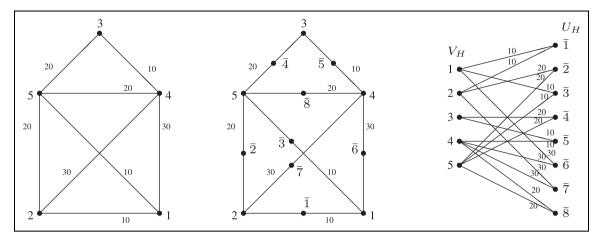


Figure 1. On the left, the original graph G = (V, E), in the middle, the created bipartite graph $H = (V_H, U_H, E_H)$ and, on the right the same bipartite graph separating V_H and U_H .

Table 1. Edges of graph H in Figure 1.^a

(v_iu_j)	(v_iu_j)	(v_iu_j)	(v_iu_j)	(v_iu_j)
(I 6) (I 3) *(I I)	*(2 Ī) (2 ₹) (2 ₹)	*(3 4̄) (3 5̄)	(4 6) (4 7) (4 8) *(4 5)	*(5 \(\bar{2}\) (5 \(\bar{3}\) (5 \(\bar{8}\) (5 \(\bar{4}\)

ST: spanning tree.

^aThe edges with the smallest $SoilQuality_{it}$ chosen to compose the ST are marked with an asterisk ("*").

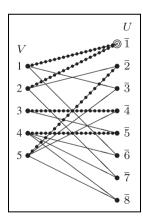


Figure 2. The strut S represented by dotted lines. Vertices $\bar{1}$, $\bar{2}$, $\bar{4}$, and $\bar{5}$ have at least one incident strut edge. Vertex $\bar{1}$ has two incident strut edge and is a zero-difference vertex (ST case). ST: spanning tree.

"*" in Table 1, namely, $(1\ 1)$, $(2\ 1)$, $(3\ 4)$, $(4\ 5)$, and $(5\ 2)$. In Figure 2, the obtained strut S is illustrated by the dotted lines. For notation purposes, we denote an edge in a strut as a *strut edge*.

2.5. Obtaining the strut in the calculation of the MST (Algorithm I—from line 15 to line 24)

Considering the calculation of an MST, now the strut is obtained as follows. Among all edges (v_i, u_i) incident to

Table 2. Edges of graph in Figure 1, considering the calculation of an MST.^a

$(v_i w_{ij} u_j)$	$(v_i w_{ij} u_j)$	(v _i w _{ij} u _j)	(v _i w _{ij} u _j)	(v _i w _{ij} u _j)
$(1 \ 30 \ \bar{6})$	*(2 10 Ī)	$(3\ 20\ \bar{4})$	(4 30 <u>6</u>)	$(5\ 20\ \bar{2})$
(1 10 3)	(2 20 (18.39))	*(3 10 5)	$(4\ 30\ \bar{7})$	*(5 10 3)
*(I I0 Ī)	$(2\ 20\ \bar{2})$		$(4\ 20\ 8)$	(5 20 8)
			*(4 I0 5)	(5 20 26.83)

ST: spanning tree; MST: minimum spanning tree.

 v_i in H, choose the edge with smallest weight, and if there are several edges (v_i, u_k) with the same smallest weight, select the edge (v_i, u_k) with the smallest u_k .

Let us see an example of strut construction considering the corresponding bipartite graph $H = (V_H, U_H, E_H)$ of Figure 1. For each vertex v_i of V, consider all the edges (v_i, u_j) incident to v_i illustrated in Table 2. To illustrate this, we extend the notation of an edge (v_i, u_j) by adding the weight w_{ij} in the middle, as $(v_i \ w_{ij} \ u_j)$. We use Table 2 to illustrate five groups of edges $(v_i \ w_{ij} \ u_j)$, one group for each $v_i = 1, 2, \ldots, 5$.

By definition used in the calculation of an MST, the strut S is composed of the lightest edge, considering the weight and the label of vertex u. Table 2 shows the chosen edges for each vertex marked with "*", namely, $(1\ 10\ 1)$, $(2\ 10\ 1)$, $(3\ 10\ 5)$, $(4\ 10\ 5)$, and $(5\ 10\ 3)$. In Figure 3, the strut S obtained is illustrated by the dotted lines.

Observe that we could have assumed, without loss of generality, that all the weights of the edges $e \in E$ of the input graph G to be different. We need only to modify the original weight of each edge as follows. Consider an edge $(v_i, v_j) \in E$ and the label of the additional vertex u_k added on this edge to obtain the bipartite graph. If we now consider the new weight of (v_i, v_j) as the concatenation of the original weight and the label u_k , then all the new edge weights of G will be different. For example, in Figure 1, the original weights of edges (1, 2), (1, 5), and (3, 4) are the

^aThe smallest edges chosen to compose the ST are marked with an asterisk (***").

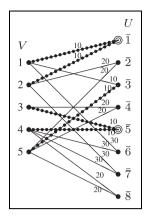


Figure 3. The strut S represented by dotted lines. Vertices $\overline{1}$, $\overline{3}$, and $\overline{5}$ have at least one incident *strut edge*. Vertices $\overline{1}$ and $\overline{5}$ have two and are zero-difference vertices (MST case). MST: minimum spanning tree.

same (equal to 10). The new weights of these edges can be 101, 103, and 105, respectively. This makes the strut construction step even easier. For each $v_i \in V$, the strut edge is the edge (v_i, u_j) with the smallest new weight. We will make this assumption in Section 5 to simplify the correctness proof. We can see that if (v_i, u_j) , with weight w_{ij} , is a strut edge, then no edge (v_i, u_k) in E_H has weight smaller than the weight w_{ij} .

2.6. Adding edges to the SolutionEdgeSet (Algorithm I—from line 26 to line 30)

Consider the solution set *SolutionEdgeSet* with the edges of the desired ST or MST. Initially, this set is empty (line 1). After obtaining the strut S, the algorithm finds all vertices u_j that are incident to strut edges (i.e. $d_S(u_j) \ge 1$) and adds $original_edge(u_j)$ to the solution set.

In Figure 2, vertices $\bar{1}, \bar{2}, \bar{4}$, and $\bar{5}$ are incident to strut edges. Thus, we add to the solution set $original_edge(\bar{1}), original_edge(\bar{2}), original_edge(\bar{4})$, and $original_edge(\bar{5})$ (edges (1, 2), (2, 5), (3, 5), and (3, 4), respectively). Figure 4 shows the edges added to the solution edge set so far, in the algorithm first round. The added edges are shown as dotted lines.

For the example of Figure 3, vertices $\bar{1}, \bar{3}$, and $\bar{5}$ are incident to strut edges. So, we add to the solution edge set $original_edge(\bar{1}), original_edge(\bar{3}),$ and $original_edge(\bar{5})$ (edges (1, 2), (1, 5) and (3, 4), respectively). Figure 5 shows the edges added to the solution edge set, after the algorithm first round, as dotted lines.

2.7. Calculating the number of zero-difference vertices (Algorithm 1—from line 32 to line 37)

Consider the bipartite graph $H = (V_H, U_H, E_H)$ and a strut S. Let u_j denote a vertex of U_H . Then we use the notation $d_H(u_j)$ to denote the degree of u_j in H and $d_S(u_j)$ to denote the degree of u_j in S. A vertex $u_j \in U_H$ is called zero

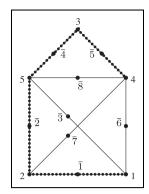


Figure 4. Solution edge set composed by strut edges, after the algorithm first round (ST case). ST: spanning tree.

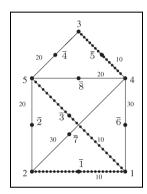


Figure 5. Intermediate solution edge set, resulting from the algorithm first round, composed by *strut edges* (MST case). MST: minimum spanning tree.

difference in the strut S if $d_H(u_j) - d_S(u_j) = 0$. As already seen, the degree of any vertex u_j in H, or $d_H(u_j)$, is always two. Thus, vertex u_j is zero difference if its degree in S is also two. In Figure 2, the vertex $\bar{1}$ has two strut edges, and thus it is zero-difference vertex. In Figure 3, the vertices $\bar{1}$ and $\bar{5}$ both have two strut edges, and thus they are zero-difference vertices. In Figures 2 and 3, the zero-difference vertices are enclosed by double circles around them.

If there is only one zero-difference vertex in the obtained strut, the problem is solved. See the proof of this in Section 5. So, the solution edge set of Figure 4 is complete and represents an ST for the input graph. However, the solution edge set presented in Figure 5 is not an MST yet. The algorithm will need another round to find the complete solution.

2.8. Compacting the bipartite graph (Algorithm I—from line 41 to line 53)

When there are two or more zero-difference vertices, we must compress the bipartite graph for the execution of a new iteration (round) of the algorithm. To do this, we must analyze each vertex $u_t \in U_H$ that is incident to a strut edge (i.e. $d_S(u_t) \ge 1$). The vertices v_i and v_j ($v_i, v_j \in V$, such that $v_i < v_j$) adjacent to u_t must be contracted into a super vertex v_i (keeping the label of the smallest vertex). Let the

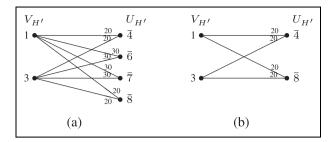


Figure 6. (a) Bipartite graph $H^{'}$ after compaction. (b) Bipartite graph $H^{'}$ after optimized compaction (MST case). MST: minimum spanning tree.

edges (v_i, u_t) , (v_j, u_t) , and (v_k, u_r) be strut edges, and assume that v_i or v_j is adjacent to u_r , then vertices v_i, v_j , and v_k will all be contracted into the same super vertex in the compacted graph. Looking at the example of Figure 3, the strut edges are $(1, \bar{1})$, $(2, \bar{1})$, $(3, \bar{5})$, $(4, \bar{5})$, and $(5, \bar{3})$. As the other edge incident to $\bar{3}$ is $(1, \bar{3})$, the resulting super vertices are $\{1, 2, 5\}$, labeled with 1, and $\{3, 4\}$, labeled with 3.

The algorithm also performs the suppression of vertices of U_H that are adjacent to contracted vertices of V_H . This is illustrated with the example of Figure 3, where vertices $\bar{1}$, $\bar{2}$, $\bar{3}$, and $\bar{5}$ must be suppressed. Figure 6(a) shows the result of the compaction, where the original vertices 2 and 5 were joined to vertex 1, and the original vertex 4 was joined to vertex 3. In the new bipartite graph $H' = (V_{H'}, U_{H'}, E'_{H'})$, resulting from compaction, $|V_{H'}|$ is equal to the number of zero-difference vertices in the strut S (see Lemma 3 in Section 5).

The resulting graph after the compaction can have multiple $U_{H'}$ vertices that are adjacent to the same pair of vertices of $V_{H'}$. As in the example of Figure 6(a), vertices $\bar{4}$, $\bar{6}$, $\bar{7}$, and $\bar{8}$ are adjacent to vertices 1 and 3. To optimize the algorithm, we can remove the $U_{H'}$ vertices that have heavier edges. Figure 6(b) shows the resulting compact graph for this optimization.

2.9. Finalizing the algorithm (another iteration of Algorithm 1)

In the compaction step, we update the vertices and edges of H, where called H'. In the second iteration (round), the algorithm obtains a new strut for H', updates the solution edges set, and repeats the entire process until there is only one zero-difference vertex. To obtain a strut for this compacted graph, we repeat the same procedure as before. For each vertex v_i of $V_{H'}$, consider all the edges (v_i, u_j) incident to v_i and choose the smallest edges. Considering the graph of Figure 6(a), the result of this choice is illustrated in Table 3, where we now have two groups $(v_i \ w_{ij} \ u_j)$, one group for each $v_i = 1$ and 3. (Notice that here vertex 1 represents the compaction of the original vertices 1, 2, and 5, and vertex 3 represents the compaction of the original vertices 3 and 4.)

In the BSP/CGM model, we expect to execute the algorithm in $O(\log p)$ rounds, so, we establish that, after $\log p$

Table 3. Edges of graph in Figure 6(a).

$(v_i w_{ij} u_j)$	$(v_i w_{ij} u_j)$
*(I 20 4)	*(3 20 4)
$(1 \ 30 \ \overline{6})$	$(3\ 30\ \bar{6})$
(I 30 7)	(3 30 7)
(I 20 8)	(3 20 8)

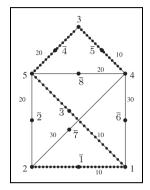


Figure 7. The resulting MST for the example of Figure 1 (MST case). MST: minimum spanning tree.

rounds, if the ST or the MST is not found, the algorithm continues the processing locally in the CPU.

The new strut is composed by the edges corresponding to the first row of each of the two groups above, namely, $(1\ 20\ 4)$, and $(3\ 20\ 4)$. Having obtained the strut, we add $original_edge(\bar{4})$ to the solution set. Observe that now we have only one zero-difference vertex and thus the algorithm terminates. Figure 7 shows the obtained MST of the original graph. The edges added to the solution set are shown as dotted lines.

3. Parallel algorithm to compute an ST

Algorithms 2 and 3 present more details of the parallel GPU algorithm to compute an ST. As previously mentioned, the algorithm was designed using the BSP/CGM model (Dehne et al., 1996; Valiant, 1990) and performs a set of local computation steps (super steps) alternating with global communication phases, separated by a synchronization barrier. Notice that in Algorithm 1, we can identify many steps that are executed in parallel, for example, from line 3 to line 9. These lines are an example of a super step of our algorithm. Algorithm 2 presents the kernel calls representing the steps described in Algorithm 1. Algorithm 3 details some of the kernel functions called in Algorithm 2.

4. Parallel algorithm to compute an MST

The proposed parallel algorithm used to compute an MST is almost the same presented to calculate the ST in Algorithm 2. The difference between them consists in the way we select the edges to compound the strut, using the weights. Algorithm 4 makes clear this distinction

Algorithm 2. High-level implementation.

```
Input: A connected graph G = (V, E), where V = \{v_1, v_2, \dots, v_n\} is a set of n vertices and E is a set of m edges (v_i, v_i), where v_i and v_i
   are vertices of V.
Output: A spanning tree of G whose edges are in SolutionEdgeSet.
   1: SolutionEdgeSet:= empty.
   2: // Creation of the bipartite graph H = (V_H, U_H, E_H) corresponding to input graph G.
   3: copy original graph vertices and edges to GPU
   4: call CreateBipartiteGraph()
   5: // Finding the ST solution.
   6: condition:= true
   7: r := 0
   8: white (r < \log p) AND (condition) do // p is the number of processors
   9:
        // Obtaining the strut S.
  10:
        call InicializeLightestEdges()
  11.
        call FindLightestEdges()
  12:
        // Obtaining the strut and calculating the number of zero-difference vertices
  13.
        numdiff = 0
        call ObtainStrutANDCalculateNumdiff()
  14.
  15.
        // Adding edges with d_S(u) \ge 1 to the SolutionEdgeSet
  16.
        call UpdateSolutionSet()
  17:
        if (numdiff == 1) then
  18:
          condition:= false
  19:
              // Compaction of graph H
        else
  20:
          call ComputeConnectedComponents()
  21:
          call MarkEdgesForDeletion()
  22:
          call ReorganizeEdges()
  23:
          call UpdateVerticesV()
  24:
          call UpdateVerticesU()
  25:
          call UpdateEdges()
  26:
        end if
  27:
       r:-r+1
  28: end while
  29: copy SolutionEdgeSet to CPU
```

detailing the procedures *CreateBipartiteGraph* and *FindLightestEdges*. All other steps of Algorithm 2 are the same for the MST.

5. Discussion of the algorithms

In this section, we address the correctness of the proposed algorithms. As noted earlier, we now assume, without loss of generality, that all the weights of the edges $e \in E$ of the input graph G = (V, E) to be different.

Lemma 1. Consider a connected graph G = (V, E). Let H = (V, U, E') be the correspondent bipartite graph and S be a strut in U, obtained at procedure ObtaingStrut of Algorithm 3. Let G' be the graph obtained by adding the edges associated with vertices u (i.e. original_edge(u)) from U such that $d_S(u) \ge 1$ (line 53 of Algorithm 3). Then, G' is acyclic. Moreover, if S contains exactly one zero-difference vertex, then G' is an ST of G.

Proof. By definition of the strut, S is a forest in H = (V, U, E'), so that there is only one incident edge of E' for each vertex $v_i \in V$. The selected edge (v_i, u_a) is the one with the smallest label u_a among the vertices of U connected to v_i . For the vertex $u_x \in U$ with the smallest label, both incident edges will be in S, so S has at least one zero-difference vertex.

Therefore, we can conclude that there will be at most |V|-1 vertices $u \in U$ with degree equal to or greater than 1 in S or $d_S(u) \ge 1$. This means that at most |V|-1 edges will be added to G', an edge incident on each vertex of V, resulting in an acyclic graph. If S has only a zero-difference vertex, we will have |V|-2 vertices with degree 1. Each one is associated with an edge in the generated graph G', resulting in an ST of G.

Lemma 2. Consider a connected graph G = (V, E). Let H = (V, U, E') be the correspondent bipartite graph and S be a strut in U, obtained at procedure ObtaingStrutANDCalculateNumdiff of Algorithm 3, after procedure FindLightestEdges of Algorithm 4 to choose the edges. Let G' be the graph obtained by adding the edges associated with vertices u (i.e. original_edge(u)) from U such that $d_S(u) \ge 1$. Then, G' is acyclic. Moreover, if S contains exactly one zero-difference vertex, then G' is an ST of G.

Proof. This proof is basically the same as presented for Lemma 1. By definition, S is a forest in H = (V, U, E') such that there is exactly one edge of E' incident to each vertex $v_i \in V$, being chosen the edge (v_i, u_x) with the smallest weight (line 28 of Algorithm 4). Let w be the smallest weight considering all edges of G and, consequently, of H. Considering the strut construction process, there will be at

Algorithm 3. ST algorithm—Description of the procedures.

```
1: Procedure CreateBipartiteGraph
 2: // thread id is the identification of each thread during a kernel execution
 3: // nOG is the number of vertices of the original graph
 4: // mOG is the number of edges of the original graph
 5: // consider each edge of the original graph represented by vertices v1 and v2
 6: // consider each edge of the bipartite graph represented by vertices v and u
 7: if (thread id < mOG) then
      if (thread id < nOG) then
 9:
         V_H[thread id].id = V[thread id].id;
10:
      end if
11:
      U_H[thread\_id].id = thread\_id;
12:
      E_H[2 * thread_id].v = E[thread_id].v1;
13: E_H[2 * thread\_id].u = U_H[thread\_id]]).id;
14: E_H[2 * thread\_id + 1].v = E[thread\_id].v2;
15: E_H[2 * thread\_id + 1].u = U_H[thread\_id]]).id;
16: end if
17: EndProcedure
18.
19: Procedure FindLightestEdges
20: // thread_id is the identification of each thread during a kernel execution
21: // mBG is the number of edges of the bipartite graph
22: // lightest_edge[v] stores the identification of the lightest edge for the vertex v
23: if (thread_id < mBG) then
24:
     v = E_H[thread\ id].v;
25: // Begin atomic function
      if (E_H[lightest\_edge[v]].u > E_H[thread\_id].u) then
26:
27:
         lightest\_edge[v] = thread\_id
28:
      end if
29: // End atomic function
30: end if
31: EndProcedure
32:
33: Procedure ObtainStrutANDCalculateNumdiff
34: // thread_id is the identification of each thread during a kernel execution
35: // nGB is the number of vertices of the bipartite graph
36: if (thread id < nBG) then
     v = V_H[thread id];
37:
      S[thread\ id].v = v;
38:
39:
      S[thread\_id].u = E_H[lightest\_edge[v]].u;
40.
      d_S[E_H[lightest\_edge[v]].u] + +;
41:
      if (d_S[E_H[lightest\_edge[v]].u] == 2) then
42:
        numdiff + +
43:
      end if
44: end if
45: EndProcedure
47: Procedure UpdateSolutionEdgeSet
48: // thread id is the identification of each thread during a kernel execution
49: // mGB is the number of edges of the bipartite graph
50: if (thread id < (mBG/2)) then
51: if (d_S[thread id] > 1) then
      // Begin atomic function
53:
        SolutionEdgeSet[SolutionLenght] = U_H[thread\_id].id
54:
         SolutionLenght + +
     // End atomic function
55:
      end if
56:
57: end if
```

least one vertex $u_t \in U$ that is incident to edges with weight w. For this vertex u_t , both its incident edges will be in S; thus, S has at least one zero-difference vertex.

Therefore, we can conclude that there will be at most |V|-1 vertices u of U with degree equal to or greater than 1 in S or $d_S(u) \ge 1$. This means that at most |V|-1 edges

Algorithm 4. MST algorithm—Description of the procedures.

```
1: Procedure CreateBipartiteGraph
 2: //thread id is the identification of each thread during a kernel
   execution
 3: // nOG is the number of vertices of the original graph
 4: // mOG is the number of edges of the original graph
 5: //. consider each edge of the original graph represented by
   vertices vI and v2 and weight w
 6: // consider each edge of the bipartite graph represented by
   vertices v and u and weight w
 7: if (thread id < mOG) then
      if (thread_id < nOG) then
         V_H[thread\_id].id = V[thread\_id].id;
 9:
10:
      end if
11.
      U_H[thread\ id].id = thread\ id;
12:
      E_H[2 * thread id].v = E[thread id].vI;
13:
      E_H[2 * thread id].w = E[thread id].w;
      E_H[2 * thread id].u = U_H[thread id]]).id;
14:
      E_H[2 * thread\_id + 1].v = E[thread\_id].v2;
15:
      E_H[2 * thread\_id + 1].w = E[thread\_id].w;
16.
17.
      E_H[2 * thread\_id + 1].u = U_H[thread\_id]]).id;
18 end if
19: EndProcedure
20:
21: Procedure FindLightestEdges
22: // thread id is the identification of each thread during a
   kernel execution
23: // mBG is the number of edges of the bipartite graph
24: //lightest_edge[v] stores the identification of the lightest edge
   for the vertex v
25: if (thread id < mBG) then
26: v = E_H[thread\ id].v;
27: // Begin atomic function
      if (E_H[lightest\_edge[v]].w > E_H[thread\_id].w) OR
28:
      ((E_H[lightest\_edge[v]].w == E_H[thread\_id].w) AND
29:
       (E_H[lightest\_edge[v]].u > E_H[thread\_id].u)) then
30:
         lightest edge[v] = thread id
31:
      end if
32: // End atomic function
33: end if
34: EndProcedure
```

will be added to G', one incident edge in each vertex of V, resulting in an acyclic graph. If S has only a zero-difference vertex, we will have |V|-2 vertices with degree 1. Each one is associated with an edge in the generated graph G', resulting in an ST of G.

Note that if S has more than one zero-difference vertex, the generated graph G' will have less than |V|-1 edges and will not be an ST. Thus, the algorithm will need more iterations to complete the graph G'.

Before we prove the following theorem, we give some definitions. A cut (W, V | W) of a graph G = (V, E), with $W \subseteq V$, is a partition of V. An edge of E crosses the cut (W, V | W) if one of its end points is in W and the other end point is in V | W. Let T be an ST of G. Then the removal of any edge $e \in T$ will result in the components (W, V | W), where one end point of e is in W and the other in V | W.

Theorem 1. Consider a connected graph G = (V, E). Let H = (V, U, E') be the correspondent bipartite graph and S be a strut in U, obtained at procedure ObtaingStrutANDCalculateNumdiff of Algorithm 3, after procedure FindLightestEdges of Algorithm 4 to choose the edges. Let G' be the graph obtained by adding the edges associated with vertices u (i.e. original_edge(u)) from U such that $d_S(u) \geq 1$ (line 53 of Algorithm 3). If S contains exactly one zero-difference vertex, then G' is an MST of G.

Proof. By Lemma 2, it is known that G' is an ST of G. Consider a vertex $v_i \in V$ and the edge $(v_i, v_j, w) \in E$ such that the weight of $(v_i, v_j, w) \in E$ is the smallest among all edges incident to v_i . By step 53 of Algorithm 3, edge (v_i, v_j, w) is added to the set of edges of the ST. Consider the cut $(\{v_i\}, V | \{v_i\})$. Assume by contradiction that edge (v_i, v_j, w) is not part of the MST. Then there is another edge $(v_i, v_k, z) \in E$, among those edges that cross the cut, that connects v_i to the MST. However, the weight of edge (v_i, v_k, z) is greater than that of edge (v_i, v_j, w) . Therefore, if we remove edge (v_i, v_k, z) and add edge (v_i, v_j, w) , the total edge weights would be smaller. This is a contradiction. Therefore, we conclude that G' is an MST of G.

Lemma 3. Let V_H and U_H be the partitions of H right before the compaction (described in steps 20–24 of Algorithm 2) and let $V_{H'}$ and $U_{H'}$ be the partitions of the compacted graph H' right after step 24. Let k be the number of zero-difference vertices in the strut S obtained using the procedure ObtaingStrutANDCalculateNumdiff, then the number of vertices in $V_{H'}$ is k.

Proof. Algorithm 2 adds to the solution set any edge associated with a vertex $u \in U$ such that $d_S(u) \ge 1$. With this, all vertices of V that are interconnected by the added edges will be united or combined into a single component, in the compaction step. Each such component will be a vertex of $V_{H'}$. Thus, each zero-difference vertex of U represents a new vertex of $V_{H'}$ in the compacted graph and, therefore, $V_{H'}$ will have at least k vertices, that is, $|V_{H'}| \ge k$.

We now prove $|V_{H'}| = k$. Suppose, by contradiction, $|V_{H'}| > k$. We have k zero-difference vertices in S, that will give rise, after compaction, to k vertices in $V_{H'}$. (Notice that 2k vertices of V are required to produce the k zero-difference vertices in S.) If $|V_{H'}| > k$, then we have at least one vertex of $V_{H'}$ that is formed by vertices of V that are not interconnected to zero-difference vertices of S. This means that there must exist X vertices of V, $1 \le x \le |V| - 2k$, identified as vertices of the set $V_X = \{v_1, v_2, \ldots, v_X\}$, that are connected in the strut to X vertices of V, identified as vertices of the set $V_X = \{u_1, u_2, \ldots, u_X\}$, where each $V_X = \{u_1, u_2, \ldots, u_X\}$, where each $V_X = \{u_1, u_2, \ldots, u_X\}$ has $V_X = \{u_1, u_2, \ldots, u_X\}$, where each $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$, where each $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$, where each $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$, where each $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$ has defined as vertices of $V_X = \{u_1, u_2, \ldots, u_X\}$

Consider the vertex in $U_x = \{u_1, u_2, \dots, u_x\}$ which is incident to edges with the smallest weight. Call this vertex u_a . Let $v_a \in V_x$ and $v_b \in V_x$ be the vertices connected to u_a in H. Let the edge (v_a, u_a) be a strut edge of S (see Figure 8(a)).

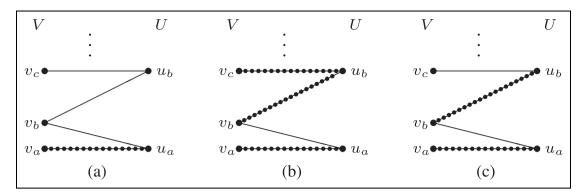


Figure 8. Part of graph H^{\dagger} used in the proof of Lemma.

Consider the strut edge incident to vertex v_b . It cannot be the edge (v_b, u_a) ; for otherwise, u_a would be a zero-difference vertex. Let (v_b, u_b) the strut edge. Now we have two cases: either u_b is incident to two strut edges (Figure 8(b)) or is incident only to one strut edge (Figure 8(c)). The first case is impossible, since $v_b \in V_x$ cannot be interconnected to zero-difference vertices. The second case implies $u_b \in U_x$. Recall that u_a was chosen to possess the smallest weight in U_x . Then the strut edge from v_b , by definition of strut, should be (v_b, u_a) . This contradiction proves the lemma.

Theorem 2. The number of zero-difference vertices in $U_{H^{'}}$ after step 24 of Algorithm 2 is at least divided by 2 in each iteration.

Proof. Let V and U be the partitions right before the compaction and let $V_{H'}$ and $U_{H'}$ be the partitions right after step 24. Let k be the number of zero-difference vertices in U. By Lemma 2, the number of vertices in $V_{H'}$ is also k.

Since each zero-difference vertex in $U_{H'}$ has degree two, the number of zero difference in $V_{H'}$ is at most $|V_{H'}|/2$, that is, k/2.

After $O(\log p)$ rounds, the number of zero-difference vertices will be n/p, with O(m/p) edges. Then we can move the remaining compacted bipartite graph to the CPU and finish the algorithm. The number of $\log n$ iterations needed for the algorithm convergence occurs in the worst case. In practice, as shown in our experiments, the number of iterations is much smaller, as we can see in second column of Table 7.

It is worth noting that the same idea present in the algorithms proposed in this article can also be used to calculate the related components of a graph. This was also studied in the doctoral thesis of Jucele Vasconcellos (in preparation).

6. Experimental analysis

We presented two parallel algorithms, one to compute the ST and another one to compute the MST. Since the computation of the MST with all the edges with equal weight one is actually an ST of an unweighted graph, we only tested the MST algorithm. Also, we did not find any implementation of an ST algorithm in order to compare our results.

To show the efficiency of our solution, we implement two versions of Algorithm 4. We developed a CPU version using ANSI C and a parallel version, for GPGPU, using CUDA. Both implementations are available for download at https://github.com/jucele/MinimumSpanningTree. It is noteworthy that our parallel implementation is a simple CUDA implementation without exploiting the various high-performance features available for GPGPU architectures. The main objective of our work was to present an efficient algorithm in the BSP/CGM model that could be easily implemented in a real parallel machine.

The CUDA version implements the algorithm steps using 12 *kernel* functions. One function is to create the bipartite graph immediately after reading the input graph and transferring the data to the GPU. We created two functions to find the smallest edge for each vertex. Two functions are used to obtain the strut. Another function was implemented to compute the connected components where we use the proposal presented by Hawick et al. (2010). And six functions have the responsibility to mark the items to be removed and to create the new bipartite graph to be used in the next iteration.

The implementation used in the experimental tests at Vasconcellos et al. (2017) has a function to optimize the compaction as exemplified in Figure 6. As this function uses a specific data structure, consuming more memory space, we suppress it to permit conducting tests with larger input graphs. Therefore, the performance presented in this article is different from the results showed in Vasconcellos et al. (2017).

We compare the results obtained by our implementation with a recently published efficient algorithm, EPMST (Mamun and Rajasekaran, 2016). EPMST chooses a subset of edges using random sampling. It uses the idea of Kruskal's algorithm (Kruskal, 1956) on the small subset of edges and, if necessary, Prim's algorithm (Prim, 1957) on a compacted graph. EPMST implementation is available for download at GitHub, which made it easier to compare results. As EPMST is a sequential solution, we have developed a CPU implementation and another parallel version of our MST algorithm. It is noteworthy that the sets of input data used to perform the tests for this article are different

	4 -		
Lable	41 Inct	anvironment	 haracteristics.

	Environment I		Environment 2		Environment 3	
	CPU	GPU	CPU	GPU	CPU	GPU
#Devices	8	I	40	I	8	I
Manufacturer	Intel	NVIDIA	Intel	NVIDIA	Intel	NVIDIA
Model	E5-1620 v3	Quadro-M4000	E5-2650 v3	Tesla-K40M	i7-4790S	GeForce-GTX 745
#Cores	4	1664	10	2880	4	384
Memory	32 GB	8 GB	126 GB	12 GB	15 GB	4 GB

from those used in Mamun and Rajasekaran (2016), possibly producing different results.

Table 4 presents the characteristics of the three execution environments that we have used. Comparison of execution times with some CUDA solutions that were published recently was difficult because these algorithms used input graphs for specific problems and different computational resources. However, we were able to compare our results with the parallel solution proposed by Manoochehri et al. (2017) since we can execute tests in a similar environment (NVIDIA Tesla K40) and with the same subset of input graphs (a subset of Ninth DIMACS Implementation Challenge (9DIMACS) input graphs).

The first set of input graphs used in our experimental tests was generated using a random graph generator (Johnsonbaugh and Kalin, 1991) available at http://con dor.depaul.edu/rjohnson/source/graph_ge.c. We generated 27 random connected graphs. The input graphs named graph10a, graph10b, graph10c, graph10d, and graph10e have 10,000 vertices and density 0.02, 0.05, 0.1, 0.15, and 0.2, respectively. The graphs identified with graph20, graph25, and graph30 have similar characteristics but with 20,000, 25,000, and 30,000 vertices, respectively. We generated seven graphs with 15,000 vertices (graph15) with densities 0.02, 0.05, 0.1, 0.15, 0.2, 0.5, and 0.75 (see the information of this set of graphs in Table 5).

Graphs of the US-road networks compound the second input set, made available in the 9DIMACS. The 9DIMACS, presented at http://www.dis.uniroma1.it/chal lenge9/, provides 12 graphs of road networks in the United States. Since our implementation works with nondirected graphs, and the available graph files have the duplicate edges (one to represent the arc between vertex a and b and another to symbol the link between b and a), we reduce the number of edges of the graphs by half. Table 6 shows the information of this set of graphs. A significant difference between the input sets is the density of the graphs. In the second set, the densities are much smaller.

For each input graph, we executed the CPU and CUDA implementations 20 times and collected each runtime result. We used the mean of the runtime to analyze the experimental behavior of the algorithm. For the EPMST algorithm, we also executed 20 times and used the lesser runtime obtained.

Table 7 presents the obtained test results for both input sets using environment 1 (see Table 4). Each row of the

Table 5. Artificially generated input graph characteristics.

	, 0			
Input graph	n (number of vertices)	m (number of edges)	Density	m/n
graph I Oa	10,000	1,000,000	0.020	100.0
graph I 0b	10,000	2,500,000	0.050	250.0
graph I Oc	10,000	5,000,000	0.100	500.0
graph I Od	10,000	7,500,000	0.150	750.0
graph I 0e	10,000	10,000,000	0.200	1000.0
graph I 5a	15,000	2,500,000	0.020	166.7
graph I 5b	15,000	5,500,000	0.050	366.7
graph I 5 c	15,000	11,500,000	0.100	766.7
graph I 5d	15,000	17,000,000	0.150	1133.3
graph I 5e	15,000	22,500,000	0.200	1500.0
graph I 5f	15,000	56,300,000	0.500	3753.3
graph I 5g	15,000	84,350,000	0.750	5623.3
graph20a	20,000	4,000,000	0.020	200.0
graph20b	20,000	10,000,000	0.050	500.0
graph20c	20,000	20,000,000	0.100	1000.0
graph20d	20,000	30,000,000	0.150	1500.0
graph20e	20,000	40,000,000	0.200	2000.0
graph25a	25,000	6,200,000	0.020	248.0
graph25b	25,000	15,500,000	0.050	620.0
graph25c	25,000	32,000,000	0.100	1280.0
graph25d	25,000	47,000,000	0.150	1880.0
graph25e	25,000	62,500,000	0.200	2500.0
graph30a	30,000	9,000,000	0.020	300.0
graph30b	30,000	22,500,000	0.050	750.0
graph30c	30,000	45,000,000	0.100	1500.0
graph30d	30,000	67,500,000	0.150	2250.0
graph30e	30,000	90,000,000	0.200	3000.0

table shows, for each input graph, the number of iterations of our algorithm, the runtime of CPU implementation, the runtime of CUDA implementation, the runtime of EPMST implementation, speedup of our CPU implementation compared with EPMST, speedup of our CUDA implementation compared with EPMST, and speedup of our CUDA implementation compared with our CPU implementation. By Theorem 2, we know that the algorithm needs log n iterations in the worst case; however, we can see that in practice this number is much smaller (see the second column of Table 7). Similarly, Tables 8 and 9 present the obtained test results for both input sets using environments 2 and 3, respectively.

We aim to present a parallel algorithm that is efficient in the BSP/CGM model $(O(\log p))$ rounds (computation/communication), where p is the number of processors) and

Table 6. Basic characteristics of the 9DIMACS graphs, considering undirected graphs and eliminating duplicate edges.

Input graph	n (number of vertices)	m (number of edges)	Density	m/n
USA-road-d.NY	264,346	366,648	0.0000105	1.4
USA-road-d.BAY	321,270	399,652	0.0000077	1.2
USA-road-d.COL	435,666	527,767	0.0000056	1.2
USA-road-d.FLA	1,070,376	1,354,681	0.0000024	1.3
USA-road-d.NW	1,207,945	1,417,704	0.0000019	1.2
USA-road-d.NE	1,524,453	1,946,326	0.0000017	1.3
USA-road-d.CAL	1,890,815	2,325,452	0.000013	1.2
USA-road-d.LKS	2,758,119	3,438,289	0.0000009	1.2
USA-road-d.E	3,598,623	4,382,787	0.0000007	1.2
USA-road-d.W	6,262,104	7,609,574	0.0000004	1.2
USA-road-d.CTR	14,081,816	17,120,937	0.0000002	1.2
USA-road-d.USA	23,947,347	29,120,580	0.000001	1.2

9DIMACS: Ninth DIMACS Implementation Challenge

suitable to work in real parallel environments. Our implementations used only standard resources of the C language and CUDA library. Besides that, we found that our algorithm has better speedup when we have a significant number of edges since our MST implementation uses more than 40% of the time in the bipartite graph creation. If the graph does not have at least 3,000,000 edges, approximately, the ST is computed very fast and the time spent in the bipartite graph creation dominates the total time. We tested it with different GPUs environments to see whether the power of the GPU would be an issue. As we found, the behavior of the algorithm in the three environments is very similar using GPUs with different computational power. We also observed that the algorithm has a better speedup with larger graphs.

With 15,000 vertices, we generated seven graphs with different densities, namely, 0.02, 0.05, 0.10, 0.15, 0.20,

Table 7. Test results using environment 1.

	Number of				Speedup	Speedup	Speedup
Input graph	iterations	CPU time (s)	CUDA time (s)	EPMST time (s)	CPU × EPMST	CUDA × EPMST	CUDA × CPL
graph I Oa	5	0.858	0.763	0.068	0.079	0.089	1.125
graph I Ob	4	1.852	0.827	0.260	0.140	0.315	2.241
graph I Oc	3	2.568	0.910	1.301	0.507	1.429	2.821
graph I Od	4	4.445	1.100	3.908	0.879	3.554	4.042
graph I 0e	3	4.686	1.117	9.517	2.031	8.520	4.195
graph I 5a	5	2.397	0.863	0.414	0.173	0.479	2.777
graph I 5b	5	4.676	1.065	1.262	0.270	1.185	4.392
graph I 5c	3	5.884	1.189	6.807	1.157	5.723	4.947
graph I 5d	3	8.322	1.406	19.812	2.381	14.092	5.919
graph I 5e	3	10.524	1.649	48.508	4.609	29.412	6.381
graph I 5f	2	15.070	2.366	92.278	6.123	38.993	6.368
graph I 5g	2	22.122	3.228	205.924	9.309	63.798	6.854
graph20a	5	3.993	0.967	0.527	0.132	0.545	4.131
graph20b	4	7.458	1.276	4.057	0.544	3.180	5.846
graph20c	4	12.533	1.788	20.737	1.655	11.600	7.010
graph20d	3	14.474	1.955	61.792	4.269	31.601	7.402
graph20e	3	18.050	2.298	153.033	8.478	66.593	7.854
graph25a	5	5.950	1.114	1.257	0.211	1.128	5.339
graph25b	4	10.845	1.565	9.700	0.894	6.197	6.929
graph25c	4	20.116	2.454	52.785	2.624	21.513	8.199
graph25d	2	13.251	2.007	151.694	11.447	75.589	6.603
graph25e	3	28.272	3.177	414.316	14.655	130.431	8.900
graph30a	6	10.176	1.459	2.657	0.261	1.821	6.973
graph30b	5	18.385	2.218	20.321	1.105	9.163	8.289
graph30c	3	22.840	2.619	104.559	4.578	39.921	8.721
graph30d	3	33.143	3.536	332.890	10.044	94.154	9.374
graph30e	3	40.840	4.448	988.326	24.200	222.193	9.182
USA-road-d.NY	9	0.158	0.730	0.082	0.515	0.112	0.217
USA-road-d.BAY	10	0.167	0.729	0.080	0.480	0.110	0.229
USA-road-d.COL	9	0.209	0.742	0.084	0.403	0.114	0.282
USA-road-d.FLA	10	0.540	0.809	0.520	0.964	0.643	0.667
USA-road-d.NW	10	0.559	0.821	0.332	0.593	0.404	0.681
USA-road-d.NE	10	0.819	0.856	0.760	0.927	0.888	0.957
USA-road-d.CAL	11	0.984	0.892	0.955	0.970	1.071	1.104
USA-road-d.LKS	H	1.466	0.988	1.766	1.204	1.787	1.484
USA-road-d.E	ii	1.831	1.066	2.584	1.411	2.424	1.718
USA-road-d.W	ii	3.233	1.323	5.224	1.616	3.949	2.444
USA-road-d.CTR	12	9.778	2.331	26.405	2.700	11.329	4.195
USA-road-d.USA	12	12.599	3.112	71.107	5.644	22.848	4.048

CUDA: Compute Unified Device Architecture; EPMST: edge pruned minimum spanning tree.

Table 8. Some test results using environment 2.

	Number of		CUDA: ()	ED140T : ()	Speedup	Speedup	Speedup
Input graph	iterations	CPU time (s)	CUDA time (s)	EPMS1 time (s)	CPU × EPMST	CUDA × EPMST	CUDA × CPU
graph I Oa	5	1.084	0.898	0.083	0.077	0.093	1.207
graph I 0b	4	2.494	1.036	0.317	0.127	0.306	2.407
graph I Oc	3	3.601	1.163	1.607	0.446	1.382	3.097
graph I Od	4	7.104	1.476	4.814	0.678	3.263	4.814
graph I 0e	3	7.916	1.540	11.754	1.485	7.634	5.141
graph I 5a	5	4.025	1.061	0.507	0.126	0.478	3.795
graph I 5b	5	8.153	1.375	1.558	0.191	1.133	5.929
graph I 5 c	3	10.323	1.644	8.407	0.814	5.114	6.279
graph I 5 d	3	14.497	2.061	24.510	1.691	11.890	7.033
graph I 5e	3	18.024	2.467	59.959	3.327	24.303	7.305
graph I 5f	2	24.700	3.866	113.986	4.615	29.481	6.388
graph I 5g	2	35.827	5.430	255.183	7.123	46.993	6.598
graph20a	5	7.227	1.220	0.651	0.090	0.534	5.922
graph20b	4	13.800	1.733	5.009	0.363	2.890	7.962
graph20c	4	21.801	2.718	25.658	1.177	9.441	8.022
graph20d	3	25.414	3.029	76.408	3.007	25.226	8.390
graph20e	3	30.611	3.598	189.168	6.180	52.582	8.509
graph25a	5	10.854	1.521	1.557	0.143	1.023	7.134
graph25b	4	19.792	2.289	11.994	0.606	5.240	8.648
graph25c	4	35.413	3.873	65.263	1.843	16.849	9.143
graph25d	2	22.130	3.389	187.733	8.483	55.393	6.530
graph25e	3	48.612	5.330	470.622	9.681	88.294	9.120
graph30a	6	19.145	2.062	3.282	0.171	1.592	9.286
graph30b	5	33.556	3.460	25.107	0.748	7.256	9.698
graph30c	3	41.477	4.433	129.282	3.117	29.162	9.356
graph30d	3	59.575	6.167	403.514	6.773	65.431	9.660
graph30e	3	70.957	7.528	1095.140	15.434	145.484	9.426
USA-road-d.NY	9	0.185	0.924	0.105	0.569	0.114	0.201
USA-road-d.BAY	10	0.196	0.950	0.097	0.495	0.102	0.207
USA-road-d.COL	9	0.270	0.965	0.114	0.421	0.118	0.280
USA-road-d.FLA	10	0.762	1.027	0.720	0.945	0.701	0.742
USA-road-d.NW	10	0.800	1.062	0.491	0.613	0.462	0.753
USA-road-d.NE	10	1.197	1.118	1.062	0.887	0.950	1.071
USA-road-d.CAL	11	1.451	1.210	1.322	0.911	1.093	1.200
USA-road-d.LKS	11	2.220	1.369	2.712	1.221	1.980	1.621
USA-road-d.E	H	2.800	1.504	3.902	1.393	2.594	1.862
USA-road-d.W	11	5.010	1.981	8.133	1.623	4.104	2.528
USA-road-d.CTR	12	16.590	3.773	39.092	2.356	10.362	4.398
USA-road-d.USA	12	19.476	5.493	99.591	5.114	18.131	3.546

CUDA: Compute Unified Device Architecture; EPMST: edge pruned minimum spanning tree.

0.50, and 0.75. Figure 9 illustrates the runtime of the tested implementations for these graphs. We can see that as the density increases, the performance of our algorithm compared to the EPMST solution is better, emphasizing that the graph uses the logarithmic scale on the *y*-axis. For density 0.02, our implementations have worse results than the EPMST, but above density 0.05, our CUDA implementation already overcomes the EPMST time. Our CPU implementation is already better than the EPMST from density 0.1. The speedup of CUDA implementation compared to EPMST increases substantially as the density of the graph is raised, ranging from 0.479 to 63.798 in the case of graphs with 15,000 vertices.

Analyzing Figure 10, which presents the runtimes for graphs with densities 0.02 and 0.1, it is possible to see that

EPMST has a better performance for the input graphs with 10,000, 15,000, and 20,000 vertices, but for the input graphs with 25,000 and 30,000 vertices, our CUDA implementation takes less time to execute. For input graphs with density from 0.1, the runtimes of our implementations are better than the EPMST times in practically all tests. As we can observe in the data presented in Tables 7 to 9, for about half of the US-road graphs, our CUDA implementation was slower than EPMST solution. The US-road graphs are very sparse graphs. Since the EPMST algorithm uses heuristics, the final MST is almost found after the application of this heuristic, since in several situations, there is only one road connecting two cities. Our algorithm uses a step that is very time-consuming (bipartite graph creation), and if the number of edges is smaller than approximately 3,000,000

Table 9. Some tests results using environment 3.

Input graph	Number of iterations	CPU time (s)	CUDA time (s)	EPMST time (s)	$\begin{array}{c} \text{Speedup} \\ \text{CPU} \times \text{EPMST} \end{array}$	$\begin{array}{c} \text{Speedup} \\ \text{CUDA} \times \text{EPMST} \end{array}$	$\begin{array}{c} Speedup \\ CUDA \times CPU \end{array}$
graph I Oa	5	0.778	0.315	0.061	0.079	0.195	2.470
graph I Ob	4	1.617	0.440	0.234	0.145	0.532	3.680
graph10c	3	2.207	0.707	2.272	0.531	1.657	3.121
graph I Od	4	3.799	1.165	3.521	0.927	3.023	3.262
graph I 0e	3	3.995	1.100	8.575	2.147	7.793	3.630
graph I 5a	5	2.099	0.554	0.192	0.091	0.346	3.788
graph I 5b	5	4.091	1.050	1.136	0.278	1.081	3.894
graph I 5 c	3	4.994	1.243	6.133	1.228	4.934	4.018
graph I 5 d	3	7.070	1.927	17.855	2.525	9.267	3.670
graph I 5e	3	9.723	2.578	43.677	4.492	16.945	3.772
graph I 5f	2	17.001	Insufficient memory	83.129	4.890	-	-
graph I 5g	2	25.282	Insufficient memory	196.735	7.782	-	-
graph20a	5	3.499	0.931	0.475	0.136	0.510	3.757
graph20b	4	6.453	1.466	3.654	0.566	2.492	4.401
graph20c	4	10.752	3.269	18.691	1.738	5.718	3.289
graph20d	3	12.076	3.984	55.723	4.615	13.987	3.031
graph20e	3	15.631	4.938	139.219	8.907	28.191	3.165
graph25a	5	5.051	1.206	1.132	0.224	0.939	4.188
graph25b	4	9.177	2.660	8.742	0.953	3.286	3.450
graph25c	4	16.969	5.377	47.599	2.805	8.852	3.156
graph25d	2	11.345	4.678	137.808	12.147	29.461	2.425
graph25e	3	29.636	Insufficient memory	382.659	12.912	_	_
graph30a	6	8.845	1.811	2.392	0.270	1.320	4.883
graph30b	5	15.884	4.477	18.309	1.153	4.177	3.572
graph30c	3	23.203	5.884	94.278	4.063	16.022	3.943
graph30d	3	36.268	Insufficient memory	316.135	8.717	-	-
graph30e	3	45.430	Insufficient memory	839.328	18.475	-	-
USA-road-d.NY	9	0.132	0.443	0.067	0.511	0.152	0.298
USA-road-d.BAY	10	0.138	0.441	0.069	0.498	0.156	0.314
USA-road-d.COL	9	0.180	0.459	0.076	0.424	0.166	0.391
USA-road-d.FLA	10	0.474	0.578	0.439	0.927	0.760	0.819
USA-road-d.NW	10	0.494	0.578	0.302	0.611	0.523	0.856
USA-road-d.NE	10	0.724	0.675	0.677	0.934	1.002	1.073
USA-road-d.CAL	11	0.876	0.735	0.809	0.923	1.100	1.191
USA-road-d.LKS	H	1.306	0.927	1.523	1.166	1.643	1.409
USA-road-d.E	H	1.631	1.096	2.226	1.365	2.030	1.488
USA-road-d.W	H	2.877	1.573	4.519	1.571	2.873	1.829
USA-road-d.CTR	12	8.835	3.452	23.815	2.695	6.899	2.560
USA-road-d.USA	12	12.687	4.554	63.047	4.969	13.845	2.786

CUDA: Compute Unified Device Architecture; EPMST: edge pruned minimum spanning tree.

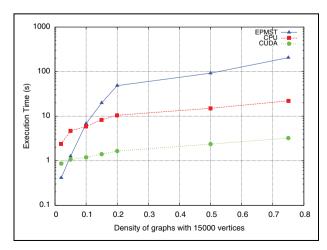


Figure 9. Execution time for graphs with 15,000 vertices using environment 1.

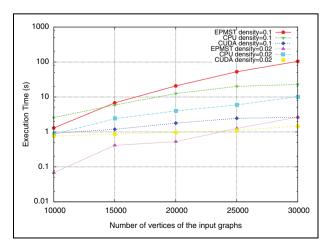


Figure 10. Execution time for graphs with densities 0.02 and 0.1 using environment 1.

Table 10. Comparing some of the execution times of our CUDA implementation with data available in Manoochehri et al. (2017).

	Manoochehri et al. (2017)	Our implementation	
Input graph	Implementation using TeslaK40 GPU	using environment 2	Speedup
			<u> </u>
USA-road-d.NY	0.217	0.924	0.235
USA-road-d.FLA	0.736	1.027	0.717
USA-road-d.E	1.959	1.504	1.302
USA-road-d.W	3.451	1.981	1.742
USA-road-d.USA	13.407	5.493	2.441

CUDA: Compute Unified Device Architecture.

edges, this step dominates the final execution time. When we compare with huge graphs, the time used in the bipartite graph creation is compensated.

The standard MST algorithm has a lot of interdependence among the sequential steps. This problem belongs to a class of problems with a very strong relationship among its input data. We devised an efficient parallel algorithm where we can deal with all these dependencies in parallel. Even so, we have to synchronize at the end of each computation round in order to assure the correctness of the input of the next round. To accomplish this, we need a lot of communication in all process. Our implementation only uses the standard resources of the CUDA library. We aimed to show that the algorithm can be implemented in real machines. When compared with one the fastest sequential algorithm (using -O3 compilation directive), our algorithm reached speedups of 222 for synthetic graphs and 22.8 for real graphs. These occurred when we have graphs with more than 29,000,000 and 90,000,000 edges, respectively. We also implemented our parallel algorithm using a CPU (one node). The GPU results were much better than the CPU times, and we reached a speedup of 9 when the graph has a considerable amount of edges. Our parallel algorithms behave better when using a GPU environment.

Manoochehri et al. (2017) present an efficient transaction-based implementation of Borůvka's algorithm on GPU. One of the test environments used by them is based on an NVIDIA Tesla K40, similar to our environment 2. Table 10 presents the comparison of our results and the available results in Manoochehri et al. (2017). Again, as we can see, our implementation presents better results for larger input graphs. The creation of the bipartite graph causes our algorithm to present gains for large input graphs with at least 3,000,000 edges.

7. Conclusions and future works

In this work, we presented parallel algorithms to compute an ST and an MST. A CPU and a parallel version of the MST algorithm were implemented and compared with the results of other recent efficient algorithm, named EPMST (Mamun and Rajasekaran, 2016). The experiments show that the proposed algorithm presents a good performance for not very sparse graphs, resulting in very good speedups. For larger input graphs, the execution time of our algorithm is also better than the solution presented by Manoochehri et al. (2017).

From the experiments, it was evident that the efficiency of our algorithm increases when we have not very sparse graphs or with a large amount of vertices. Nowadays, where we have an enormous volume of information to be treated, this is a great advantage.

As future work, we intend to develop a pruning approach to reduce the input set of edges, which can improve the algorithm results and enable us to work with greater input graphs. Another possibility is to evaluate the performance of the algorithm with the use of multiple GPUs to reduce the runtime. We also have the purpose of using real graphs as input data to observe the performance of the algorithm.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially supported by CNPq Proc. No. 482736/2012-7, 30.2620/2014-1 and 465446/2014-0, and Proc. FAPESP 2014/50937-1. It is also part of the INCT of the Future Internet for Smart Cities funded by CNPq proc. 465446/2014-0, CAPES proc. 88887.136422/2017-00, and FAPESP proc. 14/50937-1 and FAPESP proc. 15/24485-9.

References

Cáceres EN, Dehne F, Mongelli H, et al. (2003) A coarse-grained parallel algorithm for spanning tree and connected components. *Technical Report RT-MAC-2003-06*. São Paulo, Brazil: Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo.

Cáceres EN, Dehne F, Mongelli H, et al. (2004) A coarse-grained parallel algorithm for spanning tree and connected components. In: (eds Marco D, Marco V and Domenico L) *Proceedings of Euro-Par 2004. lecture notes in computer science.* Berlin: Springer, vol. 3149, pp. 828–831.

Cáceres EN, Deo N, Sastry S, et al. (1993) On finding Euler tours in parallel. *Parallel Processing Letters* 3(3): 223–231.

Cáceres EN, Mongelli H, Nishibe C, et al. (2010) Experimental results of a coarse-grained parallel algorithm for spanning tree and connected components. In: 2010 International conference on high performance computing simulation. pp. 631–637. IEEE.

Dehne F, Fabri A and Rau-Chaplin A (1996) Scalable parallel computational geometry for coarse grained multicomputers. *International Journal on Computational Geometry and Appli*cations 6(3): 298–307.

- Dehne F, Ferreira A, Cáceres E, et al. (2002) Efficient parallel graph algorithms for coarse grained multicomputers and BSP. *Algorithmica* 33(2): 183–200.
- Graham RL and Hell P (1985) On the history of the minimum spanning tree problem. In: *Annals of the history of computing*, vol. 7. pp. 43–57. IEEE.
- Hawick KA, Leist A and Playne D (2010) Parallel graph component labelling with GPUs and CUDA. *Parallel Computing* 36(12): 655–678.
- Hirschberg DS, Chandra AK and Sarwate DV (1979) Computing connected components on parallel computers. *Comm ACM* 22(8): 461–464.
- Johnsonbaugh R and Kalin M (1991) A graph generation software package. In: Proceedings of the twenty-second SIGCSE technical symposium on computer science education, vol. 23. pp. 151–154. New York, NY: ACM.
- Karp RM and Ramachandran V (1990) *Handbook of Theoretical Computer Science*. vol. A. Cambridge: The MIT Press.
- Kozen D (1992) The Design and Analysis of Algorithms. Berlin: Springer.
- Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. *Proceedings of the American Mathematical Society* 7(1): 48–50.
- Lima ACD, Branco RG, Ferraz S, et al. (2016) Solving the maximum subsequence sum and related problems using BSP/CGM model and multi-GPU CUDA. *Journal of The Brazilian Computer Society (Online)* 22: 1–13.
- Mamun A and Rajasekaran S (2016) An efficient minimum spanning tree algorithm. In: 2016 IEEE symposium on computers and communication (ISCC), Piscataway, pp. 1047–1052. IEEE.
- Manoochehri S, Goodarzi B and Goswami D (2017) An efficient transaction-based GPU implementation of minimum spanning forest algorithm. In: 2017 International conference on high performance computing & simulation (HPCS), pp. 643–650. DOI: 10.1109/HPCS.2017.100. IEEE.
- Mareš M (2008) The saga of minimum spanning trees. *Computer Science Review* 2(3): 165–221.
- Nasre R, Burtscher M and Pingali K (2013) Morph algorithms on GPUs. In: Proceedings of the 18th ACM SIGPLAN symposium on principles and practice of parallel programming, pp. 147–156. New York, NY: ACM.
- Nobari S, Cao TT, Karras P, et al. (2012) Scalable parallel minimum spanning forest computation. In: *Proceedings of the* 17th ACM SIGPLAN symposium on principles and practice of parallel programming, pp. 205–214. New York, NY: ACM.
- Osipov V, Sanders P and Singler J (2009) The Filter-Kruskal minimum spanning tree algorithm. In: *Proceedings of the eleventh workshop on algorithm engineering and experiments (ALENEX). society for industrial and applied mathematics (SIAM)*, pp. 52–61. Philadelphia, USA: Society for Industrial and Applied Mathematics.
- Prim RC (1957) Shortest connection networks and some generalizations. *Bell Labs Technical Journal* 36(6): 1389–1401.
- Reif JH (1985) Depth-first search is inherently sequential. *Information Processing Letters* 20(5): 229–234.

- Valiant LG (1990) A bridging model for parallel computation. *Commun ACM* 33(8): 103–111.
- Vasconcellos JFdA, Cáceres EN, Mongelli H, et al. (2017) A parallel algorithm for minimum spanning tree on GPU. In: 2017 International symposium on computer architecture and high performance computing workshops (SBAC-PADW), pp. 67–72. Campinas, Brazil: IEEE.
- Vineet V, Harish P, Patidar S, et al. (2009) Fast minimum spanning tree for large graphs on the GPU. In: *Proceedings of the conference on high performance graphics 2009*, HPG '09, pp. 167–171. New York, NY: ACM.

Author biographies

Jucele França de Alencar Vasconcellos is a doctoral student in computer science at Federal University of Mato Grosso do Sul (UFMS). She received a BSc degree in computer science in 1995 from UFMS, Brazil, and an MSc degree in computer science in 1998 from the State University of Campinas, Brazil. She is an assistant professor of the College of Computing, UFMS, Campo Grande, Brazil, since 2013. Her research interests are parallel algorithms, graph theory, bioinformatics, and software engineering.

Edson Norberto Cáceres is a full professor of the School of Computer Science of the Federal University of Mato Grosso do Sul, where he has been a former Pro-Rector of Undergraduate Studies and International Affairs Coordinator. He holds a PhD in computer science obtained at the Federal University of Rio de Janeiro in 1992. His research interests include the design of parallel algorithms, especially graph algorithms, cloud computing, and metaheuristics. He was the Director of Publicity and Marketing and Director of Education of the Brazilian Computer Society. He also held a former position with the Brazilian Ministry of Education as the General Coordinator of Student Relations and was the Adjunct Coordinator of the Computing Committee of Graduate Studies from CAPES/Ministry of Education.

Henrique Mongelli is a full professor of the Faculty of Computing, Federal University of Mato Grosso do Sul, Brazil, where he is a former dean of the Faculty of Computing. He holds a PhD in computer science obtained at University of São Paulo in 2000. His area of interest is the design of parallel algorithms.

Siang Wun Song is a full professor of the Department of Computer Science, University of São Paulo, Brazil, where he has been a former dean of the Institute of Mathematics and Statistics. He holds a PhD in computer science obtained at Carnegie Mellon University in 1981. He was on the editorial boards of Parallel Computing, Parallel Processing Letters, Parallel and Distributed Computing Practices, Scalable Computing: Practice and Experience,

and *Journal of the Brazilian Computer Society*. His area of interest is the design of parallel algorithms.

Frank Dehne received an MCS (Dipl. Inform.) from RWTH Aachen University, Germany, and a PhD from the University of Würzburg, Germany. He is currently chancellor's professor of Computer Science at Carleton University in Ottawa, Canada. His research interests include the design and implementation of efficient parallel algorithms, the interrelationship between the theoretical analysis of parallel algorithms and the performance observed on current parallel architectures, and the use of efficient parallel algorithms for large-scale data analytics and computational biology/bioinformatics. He is serving or has served on the Editorial Boards of IEEE Transaction on Computers, Information Processing Letters, Journal of Bioinformatics Research and Applications, and International Journal of Data Warehousing and Mining. He is a fellow of the IBM

Centre for Advanced Studies Canada, a member and the former vice-chair of the IEEE Technical Committee on Parallel Processing, a member of the ACM Symposium on Parallel Algorithms & Architectures Steering Committee, and a cofounder of the Algorithms and Data Structures Symposium.

Jayme Luiz Szwarcfiter is an emeritus professor at the Federal University of Rio de Janeiro, Brazil. He completed his PhD at the University of Newcastle upon Tyne, England, in 1975. Afterward, he visited University of California, Berkeley, USA, from 1979 to 1980; University of Cambridge, England, from 1984 to 1985; and University of Paris XI (Orsay), France, from 1992 to 1994. Besides, he has visited many different institutions, for short periods. His interests are mainly in algorithms and discrete mathematics, areas where he is an author of over 150 journal papers and has supervised more than 40 PhD students. He is a member of the Brazilian Academy of Sciences.