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Abstract
Computing a spanning tree (ST) and a minimum ST (MST) of a graph are fundamental problems in graph theory and arise as a
subproblem in many applications. In this article, we propose parallel algorithms to these problems. One of the steps of
previous parallel MST algorithms relies on the heavy use of parallel list ranking which, though efficient in theory, is very time-
consuming in practice. Using a different approach with a graph decomposition, we devised new parallel algorithms that do not
make use of the list ranking procedure. We proved that our algorithms are correct, and for a graph G ¼ ðV ;EÞ, jV j ¼ n, and
jEj ¼ m, the algorithms can be executed on a Bulk Synchronous Parallel/Coarse Grained Multicomputer (BSP/CGM) model
using Oðlog pÞ communications rounds with Oðnþm

p
Þ computation time for each round. To show that our algorithms have

good performance on real parallel machines, we have implemented them on graphics processing unit. The obtained speedups
are competitive and showed that the BSP/CGM model is suitable for designing general purpose parallel algorithms.
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1. Introduction

Computing a spanning tree (ST), a minimum ST (MST),

and the connected components of a graph are fundamental

problems in graph theory and arise as subproblems in many

applications. Graham and Hell (1985) point out the impor-

tance of the MST problem in the design of computer and

transportation networks, water supply networks, telecom-

munication networks, and electronic circuitry. A survey on

the many facets of the MST problem can be found in the

article by Mareš (2008).

The sequential algorithms use depth-first or breadth-first

search to solve these problems efficiently (Kozen, 1992).

The parallel solutions for these problems, however, do not

use these search methods because they are not easy to par-

allelize (Reif, 1985). They are based instead on the approach

proposed by Hirschberg et al. (1979), which successively

combines super vertices of the graph into larger super ver-

tices. The approach gives rise to algorithms for parallel

random-access machine (PRAM) models (Karp and Rama-

chandran, 1990). The most efficient of these algorithms is on

a Concurrent Read Concurrent Write PRAM of Oðlog nÞ
time with Oððmþ nÞaðm; nÞÞ=log n processors, where n

and m are, respectively, the number of vertices and edges

of the input graph, and aðm; nÞ is the inverse of Acker-

mann’s function (Karp and Ramachandran, 1990).

The ST algorithm presented by Cáceres et al. (2004)

uses as input a bipartite graph since a general graph can

be transformed into a corresponding bipartite graph. How-

ever, they use a graph decomposition that does not seem

suitable to compute the smallest edges of the ST and con-

sequently compute the MST of the input graph.

In this article, we propose an algorithm in which the first

step creates a corresponding bipartite graph by dividing

each edge of the original graph and adding a new vertex

in the middle of each edge. We observed that the corre-

sponding bipartite graph thus obtained from the original

graph is a special bipartite graph where all the vertices of

one of the two sets of vertices of the bipartite graph have

degree two. Observing that the degree of all added vertices
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(in the middle of each edge) in the corresponding bipartite

graph is two, we devised a new approach to compute the ST

of the graph by selecting the smallest edges too, which gave

us the MST of the graph.

We propose, in this article, an approach to obtain an ST

and an MST of a given graph that does not need to solve the

Euler tour or the list ranking problem.

The parallel algorithms, described in this article, were

designed using the BSP/CGM model and use Oðlog pÞ
communication rounds with Oðnþm

p
Þ local computation

time, where p is the number of processors. The algorithm

to solve the MST problem was presented in the eighth

Workshop on Applications for Multi-Core Architectures

(WAMCA) in 2017 (Vasconcellos et al., 2017), without

proofs and many important details. However, here we

present a new way to formulate the main results presented

by Cáceres et al. (2004) and provide the proofs for both

the ST and the MST algorithms. We also present more

experimental results.

We also show that our parallel algorithms have good

performance when implemented on real parallel machines.

We have tested them on several graphics processing units

(GPUs). The obtained results showed that the algorithms

scaled well and had competitive speedups.

Due to the availability of source code and because it

presents a superior performance for not very sparse graphs,

we compare the results of our implementation of the MST

algorithm with a recently published efficient algorithm

(Mamun and Rajasekaran, 2016), called the edge pruned

MST (EPMST). This algorithm presents better perfor-

mance compared to the Filter–Kruskal solution (Osipov

et al., 2009). Our parallel algorithm achieves speedups

greater than 100 in comparison to the implementation made

available by the EPMST authors.

This article is organized as follows. In the next section,

we present the proposed parallel algorithms. We discuss

their correctness in the third section. Experimental results

are shown in the fourth section and, finally, conclusions are

given in the last section.

1.1. Related works

Dehne et al. (2002) present a BSP/CGM algorithm for

computing an ST of an unweighted graph that requires

Oðlog pÞ communication rounds, where p is the number

of processors. The algorithm in Dehne et al. (2002) requires

the calculation of the Euler tour problem which in turn

bases itself on the solution of the list ranking problem,

which is very time-consuming.

Cáceres et al. (2004) introduce another solution to the

ST and connected component problem based on the integer

sorting. This algorithm, also explained in an expanded arti-

cle by Cáceres et al. (2003), does not need to solve the

Euler tour or the list ranking problem. Cáceres et al.

(2010), considering a bipartite graph obtained from a trans-

formation of the input graph, present experimental results

for this solution on a Beowulf cluster and on a grid.

Some works proposing parallel solutions for MST using

general purpose GPU (GPGPU) can be found in the liter-

ature, such as those shown by Vineet et al. (2009), Nobari

et al. (2012), and Nasre et al. (2013). The algorithm pro-

posed by Nobari et al. (2012) is inspired by Prim’s algo-

rithm. Vineet et al. (2009) and Nasre et al. (2013) presented

parallel solutions based on Borůvka’s algorithm.

2. The main ideas of the parallel algorithms
to obtain an ST and an MST

We initiate this section presenting basic concepts used in

the algorithms, followed by the basic algorithm and details

of the steps.

2.1. Preliminary concepts

Now we describe some basic concepts used in our algo-

rithms. Consider G ¼ ðV ;EÞ a graph where

V ¼ fv1; v2; . . . ; vng is a set of n vertices and E is a set

of m edges ðvi;wij; vjÞ, where vi and vj are vertices of V and

wij is the edge weight. For simplicity, we sometimes also

write an edge as ðvi; vjÞ and the weight wij is implied. For

the ST problem, we ignore the weight of the edges.

A path in G is a sequence of edges ðv1; v2Þ; ðv2; v3Þ;
ðv3; v4Þ . . . ; ðvn�1; vnÞ connecting distinct vertices

v1; . . . ; vn of G. A cycle is a path connecting different

vertices v1; v2; . . . ; vk such that v1 ¼ vk . A connected

graph has at least one path for every vertex pair vi; vj,

1 � i 6¼ j � n in V . A tree T ¼ ðV ;EÞ is a connected graph

with no cycles. A forest is a set of trees. An ST of

G ¼ ðV ;EÞ is a tree T ¼ ðV ;E0 Þ, which includes all ver-

tices of G and is a subgraph of G, that is, all edges of T

belong to G, E
0 � E. An ST of G can also be defined as the

maximal set of G edges and jE0 j ¼ jV j � 1, which contains

no cycle. An MST is an ST with the minimum possible total

edge weight.

A bipartite graph is a graph whose vertices can be

divided into two disjoint and independent sets V1 and V2

such that every edge of the graph connects a vertex in V1 to

one vertex in V2. Our algorithms read the input graph

G ¼ ðV ;EÞ and create a bipartite graph H ¼ ðV ;U ;E0 Þ
based on G, where V and U form the vertex set. Details

to obtain the transformed bipartite graph from the original

input graph will be shown shortly. The concept denomi-

nated strut is used in the algorithms, but different from the

definition presented in Cáceres et al. (1993). In the context

of the present article, a strut, represented by S, is defined as

a forest of H ¼ ðV ;U ;E0 Þ, such that each vertex vi 2 V is

incident in S to exactly one edge ðvi; ujÞ of E
0
, such that

vi 2 V and uj 2 U . The details to choose the strut edges

depend on whether we are considering the ST problem or

the MST problem and will be given later on. A vertex uj is

considered a zero-difference vertex in S if dH ðujÞ�
dSðujÞ ¼ 0, where dH ðujÞ denotes the degree of uj in H and

dSðujÞ the degree of uj in S.
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Our parallel algorithms were designed using the BSP/

CGM model (Dehne et al., 1996; Valiant, 1990). This

model considers a set of p processors, each one having a

local memory of size Oðn=pÞ, where n is the input size. An

algorithm in this model performs a set of local computa-

tion steps (super steps) alternating with global communi-

cation phases, separated by a synchronization barrier. The

cost of the communication considers the number of super

steps required to execute the algorithm. In this model, the

parallel algorithm can be executed in a CPU (one node) or

in a GPU, since all the tasks in each computation round are

independent.

The BSP/CGM model is appropriate for the design and

analysis of parallel algorithms where there is much com-

munication between the processes. This is a characteristic

of irregular problems, that is, the input in each round of the

program changes and the processors need the information

that different processors computed in the last round. The

ST and MST problems are in this class, which motivates the

use of the model to predict the behavior and complexity of

the algorithm.

The mapping of a BSP/CGM algorithm and a distributed

memory environment is straightforward. The super steps

consist of computation and communication rounds; the

computation is done in the nodes and the communication

through a network. When using the GPGPU environment,

we have a shared memory environment, and we can see the

invocations of each Compute Unified Device Architecture

(CUDA) kernel as a super step of the BSP/CGM model as

stated by Lima et al. (2016). Parallel execution of each

kernel by the various threads created by CUDA constitutes

a computation round, which can be alternated by commu-

nication between the threads through memory and commu-

nication between the GPU and the CPU. Considering this

approach, we can predict that our algorithm will have a

compatible performance, when implemented on a GPGPU,

to its theoretical behavior.

2.2. The basic parallel algorithm

Algorithm 1 gives the main ideas of the proposed parallel

algorithms. It uses the Single Instruction Multiple Data

(SIMD) paradigm, that is, the steps are executed by several

processors finding the solution collaboratively. The algo-

rithms for ST and MST are very similar, both following

Algorithm 1. The major difference consists in the way we

construct the strut. As we expect to execute Oðlog pÞ
rounds on BSP/CGM model, we establish that, after log p

rounds, if the ST or the MST is not found, the algorithm

continues the processing locally on the CPU.

2.3. Creating a bipartite graph for the input graph
(Algorithm 1—from line 3 to line 9)

To find an ST (or MST) of a given graph, we first create a

bipartite graph corresponding to the input graph. This step

is executed in parallel and can be done by adding a new

vertex on each edge (line 4) of the original graph, thereby

subdividing each original edge into two new edges (line

5). If we consider the vertices of the original graph as

belonging to one partition and the newly added vertices

as belonging to a second partition, then we have a result-

ing bipartite graph.

More formally, consider a connected graph G ¼ ðV ;EÞ,
where V is a set of n vertices fv1; v2; . . . ; vng and E is a set

of m edges ðvi; vjÞ, where vi and vj are vertices of V . Each

edge ðvi; vjÞ has a weight denoted by wij. We can create a

corresponding bipartite graph H by adding a set U of m

new vertices ðu1; u2; . . . ; umÞ and substituting each edge

ðvi; vjÞ of E by two edges ðvi; ukÞ and ðvj; ukÞ, both with

weight equal to wij. Denote by E
0
the set of edges ðvi; ukÞ for

all vi 2 V and uk 2 U . The graph H ¼ ðV ;U ;E0 Þ, in the

algorithm denoted by H ¼ ðVH ;UH ;EH Þ, thus obtained is

bipartite. Remember that the weights are only used to find

an MST. In the algorithm to compute an ST, we ignore the

weight of the edges.

Figure 1 shows an example of this step. On the left,

we have the original graph G ¼ ðV ;EÞ with V ¼
f1; 2; . . . ; 5g. In the middle, we represent the

created bipartite graph H ¼ ðVH ;UH ;EH Þ with UH ¼
f�1; �2; . . . ; �8g. And on the right, the same bipartite graph

is shown in another vision, where the two vertex sets VH

and UH are illustrated separately. Observe that any vertex

uk 2 UH which, by construction, was created on an edge

ðvi; vjÞ of the original graph G, always has degree two and

both edges incident to uk have equal weight. There is a one-

to-one correspondence between an edge ðvi; vjÞ of the orig-

inal graph G and the added vertex uk . We use the notation

original edgeðukÞ to denote the original edge ðvi; vjÞ. We

also say edge ðvi; vjÞ is associated with uk .

2.4. Obtaining the strut in the calculation of the ST
(Algorithm 1—from line 15 to line 24)

Consider the created bipartite graph H ¼ ðVH ;UH ;EH Þ
with vertex sets VH ¼ fv1; v2; � � � ; vng and UH ¼
fu1; u2; � � � ; umg, and edge set EH where each edge joins

one vertex of VH and one vertex of UH . For simplicity, let

each vertex vi of VH be represented by i, that is,

VH ¼ f1; 2; . . . ; ng. Likewise, let us represent each vertex

uj of UH by �j, that is, U ¼ f�1; �2; . . . ; �mg. To compute an

ST, the strut is obtained as follows. Among all edges ðvi; ujÞ
incident to vi in H , select the edge ðvi; ukÞ with the

smallest uk .

Let us give an example. Consider the corresponding

bipartite graph H ¼ ðVH ;UH ;EH Þ of Figure 1, where

VH ¼ fv1; v2; . . . ; v5g ¼ f1; 2; . . . ; 5g and UH ¼
fu1; u2; . . . ; u8g ¼ f�1; �2; . . . ; �8g. For each vertex vi of

VH , consider all the edges ðvi; ujÞ incident to vi. Table 1

illustrates five groups of edges ðviujÞ, one group for each

vi ¼ 1; 2; . . . ; 5.

By definition, to find an ST, the strut S is composed of

the edges with the smallest uk , for each vertex, marked with

446 The International Journal of High Performance Computing Applications 33(3)



Algorithm 1. Spanning tree (ST)/minimum spanning tree (MST).

Input: A connected graph G ¼ ðV; EÞ, where V ¼ fv1; v2; . . . ; vng is a set of n vertices and E is a set of m edges ðvi; vjÞ, where vi and vj

are vertices of V. Each edge ðvi; vjÞ has a weight denoted by wij.
Output: A spanning tree (or a minimum spanning tree) of G whose edges are in SolutionEdgeSet.

1: SolutionEdgeSet:¼ empty.
2: // Creation of the bipartite graph H ¼ ðVH;UH; EHÞ corresponding to input graph G.
3: for each (eiðva; vbÞ 2 E) in parallel do
4: Add vertex ui to UH // ui is a new vertex associated to edge ei

5: Add edge ðva; ui;wabÞ and ðvb; ui;wabÞ to EH

6: end for
7: for each (vi 2 V) in parallel do
8: Add vertex vi to VH

9: end for
10: // Finding the ST or MST solution.
11: condition:¼ true
12: r :¼ 0
13: while ((r < log p) AND (condition)) do //p is the number of processors
14: // Obtaining the strut.
15: for each (ui 2 UH) in parallel do
16: dSðuiÞ ¼ 0
17: end for
18: for each (vi 2 VH) in parallel do
19: Find the lightest edge among all edges of vi

20: end for
21: for each (vi 2 VH) in parallel do
22: // considering that ðvi; ujÞ is the lightest edge among all edges of vi

23: dSðujÞ ¼ dSðujÞ þ 1 // atomic function
24: end for
25: // Adding edges to the SolutionEdgeSet
26: for each (uj 2 UH) in parallel do // uj is the vertex that corresponds to the edge ej of the original graph, created in line 4
27: if (dSðujÞ � 1) then
28: Add edge ej, where ej is original edgeðujÞ, to SolutionEdgeSet
29: end if
30: end for
31: // Calculating the number of zero-difference vertices
32: numdiff ¼ 0 numdiff is the number of zero-difference vertices of Xit

33: for each (uj 2 UH) in parallel do
34: if (dSðujÞ ¼¼ 2) then
35: numdiff ¼ numdiff þ1 // atomic function
36: end if
37: end for
38: if (numdiff ¼= 1) then
39: condition:¼ false
40: else // Compaction of graph H
41: for ecah (vertex ut, with edges ðvi; utÞ and ðvj; utÞ in EH) in parallel do
42: if (dSðutÞ � 1) then
43: Contract the adjacent vertices in the strut into a super-vertex vi, being ð0:010Þ the smallest label among them
44: Update to 0:007�� the edges of EH incident to the contracted vertices
45: Eliminate the other contracted vertices from VH

46: end if
47: end for
48: for each (vertex ð0:001Þ, with edges ðva; utÞ and ðvb; utÞ in EH) in parallel do
49: if (va ¼¼ vb) then // va and vb were joined in the previous “for”
50: Eliminate ut from UH

51: Eliminate ðva; utÞ and ðvb; utÞ from EH

52: end if
53: end for
54 end if
55: r :¼ r þ 1
56: end while
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“*” in Table 1, namely, ð1 1Þ, ð2 1Þ, ð3 4Þ, ð4 5Þ, and ð5 2Þ.
In Figure 2, the obtained strut S is illustrated by the dotted

lines. For notation purposes, we denote an edge in a strut as

a strut edge.

2.5. Obtaining the strut in the calculation of the MST
(Algorithm 1—from line 15 to line 24)

Considering the calculation of an MST, now the strut is

obtained as follows. Among all edges ðvi; ujÞ incident to

vi in H , choose the edge with smallest weight, and if there

are several edges ðvi; ukÞ with the same smallest weight,

select the edge ðvi; ukÞ with the smallest uk .

Let us see an example of strut construction considering

the corresponding bipartite graph H ¼ ðVH ;UH ;EH Þ of

Figure 1. For each vertex vi of V , consider all the edges

ðvi; ujÞ incident to vi illustrated in Table 2. To illustrate this,

we extend the notation of an edge ðvi; ujÞ by adding the

weight wij in the middle, as ðvi wij ujÞ. We use Table 2 to

illustrate five groups of edges ðvi wij ujÞ, one group for each

vi ¼ 1; 2; . . . ; 5.

By definition used in the calculation of an MST, the strut

S is composed of the lightest edge, considering the weight

and the label of vertex u. Table 2 shows the chosen edges

for each vertex marked with “*”, namely, ð1 10 1Þ,
ð2 10 1Þ, ð3 10 5Þ, ð4 10 5Þ, and ð5 10 3Þ. In Figure 3, the

strut S obtained is illustrated by the dotted lines.

Observe that we could have assumed, without loss of

generality, that all the weights of the edges e 2 E of the

input graph G to be different. We need only to modify the

original weight of each edge as follows. Consider an edge

ðvi; vjÞ 2 E and the label of the additional vertex uk added

on this edge to obtain the bipartite graph. If we now con-

sider the new weight of ðvi; vjÞ as the concatenation of the

original weight and the label uk , then all the new edge

weights of G will be different. For example, in Figure 1,

the original weights of edges ð1; 2Þ, ð1; 5Þ, and ð3; 4Þ are the

Figure 2. The strut S represented by dotted lines. Vertices �1, �2,
�4, and �5 have at least one incident strut edge. Vertex �1 has two
incident strut edge and is a zero-difference vertex (ST case). ST:
spanning tree.

Table 2. Edges of graph in Figure 1, considering the calculation of
an MST.a

(viwijuj) (viwijuj) (viwijuj) (viwijuj) (viwijuj)

(1 30 �6) *(2 10 �1) (3 20 �4) (4 30 �6) (5 20 �2)
(1 10 �3) (2 20 ð18:39Þ) *(3 10 �5) (4 30 �7) *(5 10 �3)
*(1 10 �1) (2 20 �2) (4 20 �8) (5 20 �8)

*(4 10 �5) (5 20 26:83)

ST: spanning tree; MST: minimum spanning tree.
aThe smallest edges chosen to compose the ST are marked with an
asterisk (“*”).

Figure 1. On the left, the original graph G ¼ ðV; EÞ, in the middle, the created bipartite graph H ¼ ðVH;UH; EHÞ and, on the right the
same bipartite graph separating VH and UH.

Table 1. Edges of graph H in Figure 1.a

(viuj) (viuj) (viuj) (viuj) (viuj)

(1 �6) *(2 �1) *(3 �4) (4 �6) *(5 �2)
(1 �3) (2 �7) (3 �5) (4 �7) (5 �3)
*(1 �1) (2 �2) (4 �8) (5 �8)

*(4 �5) (5 �4)

ST: spanning tree.
aThe edges with the smallest SoilQualityit chosen to compose the ST are
marked with an asterisk (“*”).
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same (equal to 10). The new weights of these edges can be

101, 103, and 105, respectively. This makes the strut con-

struction step even easier. For each vi 2 V , the strut edge is

the edge ðvi; ujÞ with the smallest new weight. We will

make this assumption in Section 5 to simplify the correct-

ness proof. We can see that if ðvi; ujÞ, with weight wij, is a

strut edge, then no edge ðvi; ukÞ in EH has weight smaller

than the weight wij.

2.6. Adding edges to the SolutionEdgeSet (Algorithm
1—from line 26 to line 30)

Consider the solution set SolutionEdgeSet with the edges of

the desired ST or MST. Initially, this set is empty (line 1).

After obtaining the strut S, the algorithm finds all vertices

uj that are incident to strut edges (i.e. dSðujÞ � 1) and adds

original edgeðujÞ to the solution set.

In Figure 2, vertices �1; �2; �4, and �5 are incident to strut

edges. Thus, we add to the solution set

original edgeð�1Þ; original edgeð�2Þ; original edgeð�4Þ, and

original edgeð�5Þ (edges (1, 2), (2, 5), (3, 5), and (3, 4),

respectively). Figure 4 shows the edges added to the solu-

tion edge set so far, in the algorithm first round. The added

edges are shown as dotted lines.

For the example of Figure 3, vertices �1; �3, and �5 are

incident to strut edges. So, we add to the solution edge set

original edgeð�1Þ; original edgeð�3Þ, and original edgeð�5Þ
(edges (1, 2), (1, 5) and (3, 4), respectively). Figure 5 shows

the edges added to the solution edge set, after the algorithm

first round, as dotted lines.

2.7. Calculating the number of zero-difference
vertices (Algorithm 1—from line 32 to line 37)

Consider the bipartite graph H ¼ ðVH ;UH ;EH Þ and a strut

S. Let uj denote a vertex of UH . Then we use the notation

dH ðujÞ to denote the degree of uj in H and dSðujÞ to denote

the degree of uj in S. A vertex uj 2 UH is called zero

difference in the strut S if dH ðujÞ � dSðujÞ ¼ 0. As already

seen, the degree of any vertex uj in H , or dH ðujÞ, is always

two. Thus, vertex uj is zero difference if its degree in S is

also two. In Figure 2, the vertex �1 has two strut edges, and

thus it is zero-difference vertex. In Figure 3, the vertices �1
and �5 both have two strut edges, and thus they are zero-

difference vertices. In Figures 2 and 3, the zero-difference

vertices are enclosed by double circles around them.

If there is only one zero-difference vertex in the

obtained strut, the problem is solved. See the proof of this

in Section 5. So, the solution edge set of Figure 4 is com-

plete and represents an ST for the input graph. However,

the solution edge set presented in Figure 5 is not an MST

yet. The algorithm will need another round to find the

complete solution.

2.8. Compacting the bipartite graph
(Algorithm 1—from line 41 to line 53)

When there are two or more zero-difference vertices, we

must compress the bipartite graph for the execution of a

new iteration (round) of the algorithm. To do this, we must

analyze each vertex ut 2 UH that is incident to a strut edge

(i.e. dSðutÞ � 1). The vertices vi and vj (vi; vj 2 V , such that

vi < vj) adjacent to ut must be contracted into a super ver-

tex vi (keeping the label of the smallest vertex). Let the

Figure 3. The strut S represented by dotted lines. Vertices �1, �3,
and �5 have at least one incident strut edge. Vertices �1 and �5 have
two and are zero-difference vertices (MST case). MST: minimum
spanning tree.

Figure 4. Solution edge set composed by strut edges, after the
algorithm first round (ST case). ST: spanning tree.

Figure 5. Intermediate solution edge set, resulting from the
algorithm first round, composed by strut edges (MST case). MST:
minimum spanning tree.
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edges ðvi; utÞ, ðvj; utÞ, and ðvk ; urÞ be strut edges, and

assume that vi or vj is adjacent to ur, then vertices vi, vj,

and vk will all be contracted into the same super vertex

in the compacted graph. Looking at the example of

Figure 3, the strut edges are ð1; �1Þ, ð2; �1Þ, ð3; �5Þ, ð4; �5Þ, and

ð5; �3Þ. As the other edge incident to �3 is ð1; �3Þ, the resulting

super vertices are f1; 2; 5g, labeled with 1, and f3; 4g,
labeled with 3.

The algorithm also performs the suppression of vertices

of UH that are adjacent to contracted vertices of VH . This is

illustrated with the example of Figure 3, where vertices �1,
�2, �3, and �5 must be suppressed. Figure 6(a) shows the result

of the compaction, where the original vertices 2 and 5 were

joined to vertex 1, and the original vertex 4 was joined to

vertex 3. In the new bipartite graph H
0 ¼ ðVH

0 ;UH
0 ;E

0
H
0 Þ,

resulting from compaction, jVH
0 j is equal to the number of

zero-difference vertices in the strut S (see Lemma 3 in

Section 5).

The resulting graph after the compaction can have mul-

tiple UH
0 vertices that are adjacent to the same pair of

vertices of VH
0 . As in the example of Figure 6(a), vertices

�4, �6, �7, and �8 are adjacent to vertices 1 and 3. To optimize

the algorithm, we can remove the UH
0 vertices that have

heavier edges. Figure 6(b) shows the resulting compact

graph for this optimization.

2.9. Finalizing the algorithm (another iteration
of Algorithm 1)

In the compaction step, we update the vertices and edges of

H , where called H
0
. In the second iteration (round), the

algorithm obtains a new strut for H
0
, updates the solution

edges set, and repeats the entire process until there is only

one zero-difference vertex. To obtain a strut for this com-

pacted graph, we repeat the same procedure as before. For

each vertex vi of VH
0 , consider all the edges ðvi; ujÞ incident

to vi and choose the smallest edges. Considering the graph of

Figure 6(a), the result of this choice is illustrated in Table 3,

where we now have two groups ðvi wij ujÞ, one group for

each vi ¼ 1 and 3. (Notice that here vertex 1 represents the

compaction of the original vertices 1, 2, and 5, and vertex 3

represents the compaction of the original vertices 3 and 4.)

In the BSP/CGM model, we expect to execute the algo-

rithm in Oðlog pÞ rounds, so, we establish that, after log p

rounds, if the ST or the MST is not found, the algorithm

continues the processing locally in the CPU.

The new strut is composed by the edges corresponding

to the first row of each of the two groups above, namely,

ð1 20 4Þ, and ð3 20 4Þ. Having obtained the strut, we add

original edgeð�4Þ to the solution set. Observe that now we

have only one zero-difference vertex and thus the algorithm

terminates. Figure 7 shows the obtained MST of the orig-

inal graph. The edges added to the solution set are shown as

dotted lines.

3. Parallel algorithm to compute an ST

Algorithms 2 and 3 present more details of the parallel

GPU algorithm to compute an ST. As previously men-

tioned, the algorithm was designed using the BSP/CGM

model (Dehne et al., 1996; Valiant, 1990) and performs a

set of local computation steps (super steps) alternating with

global communication phases, separated by a synchroniza-

tion barrier. Notice that in Algorithm 1, we can identify

many steps that are executed in parallel, for example, from

line 3 to line 9. These lines are an example of a super step of

our algorithm. Algorithm 2 presents the kernel calls repre-

senting the steps described in Algorithm 1. Algorithm 3

details some of the kernel functions called in Algorithm 2.

4. Parallel algorithm to compute an MST

The proposed parallel algorithm used to compute an MST

is almost the same presented to calculate the ST in Algo-

rithm 2. The difference between them consists in the way

we select the edges to compound the strut, using the

weights. Algorithm 4 makes clear this distinction

Figure 6. (a) Bipartite graph H
0
after compaction. (b) Bipartite

graph H
0
after optimized compaction (MST case). MST: minimum

spanning tree.

Table 3. Edges of graph in Figure 6(a).

(viwijuj) (viwijuj)

*(1 20 �4) *(3 20 �4)
(1 30 �6) (3 30 �6)
(1 30 �7) (3 30 �7)
(1 20 �8) (3 20 �8)

Figure 7. The resulting MST for the example of Figure 1 (MST
case). MST: minimum spanning tree.
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detailing the procedures CreateBipartiteGraph and

FindLightestEdges. All other steps of Algorithm 2 are the

same for the MST.

5. Discussion of the algorithms

In this section, we address the correctness of the proposed

algorithms. As noted earlier, we now assume, without loss

of generality, that all the weights of the edges e 2 E of the

input graph G ¼ ðV ;EÞ to be different.

Lemma 1. Consider a connected graph G ¼ ðV ;EÞ. Let

H ¼ ðV ;U ;E0 Þ be the correspondent bipartite graph and S

be a strut in U , obtained at procedure ObtaingStrut of

Algorithm 3. Let G
0

be the graph obtained by adding the

edges associated with vertices u (i.e. original edgeðuÞ)
from U such that dSðuÞ � 1 (line 53 of Algorithm 3). Then,

G
0

is acyclic. Moreover, if S contains exactly one zero-

difference vertex, then G
0

is an ST of G.

Proof. By definition of the strut, S is a forest in

H ¼ ðV ;U ;E0 Þ, so that there is only one incident edge of

E
0

for each vertex vi 2 V . The selected edge ðvi; uaÞ is the

one with the smallest label ua among the vertices of U

connected to vi. For the vertex ux 2 U with the smallest

label, both incident edges will be in S, so S has at least one

zero-difference vertex.

Therefore, we can conclude that there will be at most

jV j � 1 vertices u 2 U with degree equal to or greater than

1 in S or dSðuÞ � 1. This means that at most jV j � 1 edges

will be added to G
0
, an edge incident on each vertex of V ,

resulting in an acyclic graph. If S has only a zero-difference

vertex, we will have jV j � 2 vertices with degree 1. Each

one is associated with an edge in the generated graph G
0
,

resulting in an ST of G.

Lemma 2. Consider a connected graph G ¼ ðV ;EÞ.
Let H ¼ ðV ;U ;E0 Þ be the correspondent bipartite

graph and S be a strut in U , obtained at procedure

ObtaingStrutANDCalculateNumdiff of Algorithm 3, after

procedure FindLightestEdges of Algorithm 4 to choose the

edges. Let G
0

be the graph obtained by adding the edges

associated with vertices u (i.e. original edgeðuÞ) from U

such that dSðuÞ � 1. Then, G
0

is acyclic. Moreover, if S

contains exactly one zero-difference vertex, then G
0

is an

ST of G.

Proof. This proof is basically the same as presented for

Lemma 1. By definition, S is a forest in H ¼ ðV ;U ;E0 Þ
such that there is exactly one edge of E

0
incident to each

vertex vi 2 V , being chosen the edge ðvi; uxÞ with the smal-

lest weight (line 28 of Algorithm 4). Let w be the smallest

weight considering all edges of G and, consequently, of H .

Considering the strut construction process, there will be at

Algorithm 2. High-level implementation.

Input: A connected graph G ¼ ðV; EÞ, where V ¼ fv1; v2; . . . ; vng is a set of n vertices and E is a set of m edges ðvi; vjÞ, where vi and vj

are vertices of V.
Output: A spanning tree of G whose edges are in SolutionEdgeSet.

1: SolutionEdgeSet:¼ empty.
2: // Creation of the bipartite graph H ¼ ðVH;UH; EHÞ corresponding to input graph G.
3: copy original graph vertices and edges to GPU
4: call CreateBipartiteGraph()
5: // Finding the ST solution.
6: condition:¼ true
7: r :¼ 0
8: white (r < log p) AND (condition) do // p is the number of processors
9: // Obtaining the strut S.

10: call InicializeLightestEdges()
11: call FindLightestEdges()
12: // Obtaining the strut and calculating the number of zero-difference vertices
13: numdiff ¼ 0
14: call ObtainStrutANDCalculateNumdiff()
15: // Adding edges with dSðuÞ � 1 to the SolutionEdgeSet
16: call UpdateSolutionSet()
17: if (numdiff ¼= 1) then
18: condition:¼ false
19: else // Compaction of graph H
20: call ComputeConnectedComponents()
21: call MarkEdgesForDeletion()
22: call ReorganizeEdges()
23: call UpdateVerticesV()
24: call UpdateVerticesU()
25: call UpdateEdges()
26: end if
27: r : �r þ 1
28: end while
29: copy SolutionEdgeSet to CPU
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least one vertex ut 2 U that is incident to edges with weight

w. For this vertex ut, both its incident edges will be in S;

thus, S has at least one zero-difference vertex.

Therefore, we can conclude that there will be at most

jV j � 1 vertices u of U with degree equal to or greater than

1 in S or dSðuÞ � 1. This means that at most jV j � 1 edges

Algorithm 3. ST algorithm—Description of the procedures.

1: Procedure CreateBipartiteGraph
2: // thread id is the identification of each thread during a kernel execution
3: // nOG is the number of vertices of the original graph
4: // mOG is the number of edges of the original graph
5: // consider each edge of the original graph represented by vertices v1 and v2
6: // consider each edge of the bipartite graph represented by vertices v and u
7: if (thread id < mOG) then
8: if (thread id < nOG) then
9: VH½thread id�:id ¼ V½thread id�:id;

10: end if
11: UH½thread id�:id ¼ thread id;
12: EH½2 � thread id�:v ¼ E½thread id�:v1;
13: EH½2 � thread id�:u ¼ UH½thread id��Þ:id;
14: EH½2 � thread idþ 1�:v ¼ E½thread id�:v2;
15: EH½2 � thread idþ 1�:u ¼ UH½thread id��Þ:id;
16: end if
17: EndProcedure
18:
19: Procedure FindLightestEdges
20: // thread id is the identification of each thread during a kernel execution
21: // mBG is the number of edges of the bipartite graph
22: // lightest edge½v� stores the identification of the lightest edge for the vertex v
23: if (thread id < mBG) then
24: v ¼ EH½thread id�:v;
25: // Begin atomic function
26: if (EH½lightest edge½v��:u > EH½thread id�:u) then
27: lightest edge½v� ¼ thread id
28: end if
29: // End atomic function
30: end if
31: EndProcedure
32:
33: Procedure ObtainStrutANDCalculateNumdiff
34: // thread id is the identification of each thread during a kernel execution
35: // nGB is the number of vertices of the bipartite graph
36: if (thread id < nBG) then
37: v ¼ VH½thread id�;
38: S½thread id�:v ¼ v;
39: S½thread id�:u ¼ EH½lightest edge½v��:u;
40: dS½EH½lightest edge½v��:u� þ þ;
41: if (dS½EH½lightest edge½v��:u� ¼¼ 2) then
42: numdiff þþ
43: end if
44: end if
45: EndProcedure
46:
47: Procedure UpdateSolutionEdgeSet
48: // thread id is the identification of each thread during a kernel execution
49: // mGB is the number of edges of the bipartite graph
50: if (thread id < ðmBG=2Þ) then
51: if (dS½thread id� � 1) then
52: // Begin atomic function
53: SolutionEdgeSet½SolutionLenght� ¼ UH½thread id�:id
54: SolutionLenght þþ
55: // End atomic function
56: end if
57: end if
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will be added to G
0
, one incident edge in each vertex of V ,

resulting in an acyclic graph. If S has only a zero-difference

vertex, we will have jV j � 2 vertices with degree 1. Each

one is associated with an edge in the generated graph G
0
,

resulting in an ST of G.

Note that if S has more than one zero-difference vertex,

the generated graph G
0

will have less than jV j � 1 edges

and will not be an ST. Thus, the algorithm will need more

iterations to complete the graph G
0
.

Before we prove the following theorem, we give some

definitions. A cut ðW ;V\WÞ of a graph G ¼ ðV ;EÞ, with

W 	 V , is a partition of V . An edge of E crosses the cut

ðW ;V\WÞ if one of its end points is in W and the other end

point is in V\W . Let T be an ST of G. Then the removal of any

edge e 2 T will result in the components (W ;V\W ), where

one end point of e is in W and the other in V\W .

Theorem 1. Consider a connected graph G ¼ ðV ;EÞ.
Let H ¼ ðV ;U ;E0 Þ be the correspondent bipartite graph

and S be a strut in U, obtained at procedure

ObtaingStrutANDCalculateNumdiff of Algorithm 3, after

procedure FindLightestEdges of Algorithm 4 to choose the

edges. Let G
0

be the graph obtained by adding the edges

associated with vertices u (i.e. original edgeðuÞ) from U

such that dSðuÞ � 1 (line 53 of Algorithm 3). If S contains

exactly one zero-difference vertex, then G
0
is an MST of G.

Proof. By Lemma 2, it is known that G
0

is an ST of G.

Consider a vertex vi 2 V and the edge ðvi; vj;wÞ 2 E such

that the weight of ðvi; vj;wÞ 2 E is the smallest among all

edges incident to vi. By step 53 of Algorithm 3, edge

ðvi; vj;wÞ is added to the set of edges of the ST. Consider

the cut ðfvig;V\fvigÞ. Assume by contradiction that edge

ðvi; vj;wÞ is not part of the MST. Then there is another edge

ðvi; vk ; zÞ 2 E, among those edges that cross the cut, that

connects vi to the MST. However, the weight of edge

ðvi; vk ; zÞ is greater than that of edge ðvi; vj;wÞ. Therefore,

if we remove edge ðvi; vk ; zÞ and add edge ðvi; vj;wÞ, the

total edge weights would be smaller. This is a contradic-

tion. Therefore, we conclude that G
0

is an MST of G.

Lemma 3. Let VH and UH be the partitions of H right

before the compaction (described in steps 20–24 of Algo-

rithm 2) and let VH
0 and UH

0 be the partitions of the com-

pacted graph H
0
right after step 24. Let k be the number of

zero-difference vertices in the strut S obtained using the

procedure ObtaingStrutANDCalculateNumdiff , then the

number of vertices in VH
0 is k.

Proof. Algorithm 2 adds to the solution set any edge

associated with a vertex u 2 U such that dSðuÞ � 1. With

this, all vertices of V that are interconnected by the added

edges will be united or combined into a single component,

in the compaction step. Each such component will be a

vertex of VH
0 . Thus, each zero-difference vertex of U rep-

resents a new vertex of VH
0 in the compacted graph and,

therefore, VH
0 will have at least k vertices, that is,

jVH
0 j � k.

We now prove jVH
0 j ¼ k. Suppose, by contradiction,

jVH
0 j > k. We have k zero-difference vertices in S, that

will give rise, after compaction, to k vertices in VH
0 .

(Notice that 2k vertices of V are required to produce the

k zero-difference vertices in S.) If jVH
0 j > k, then we have

at least one vertex of VH
0 that is formed by vertices of V

that are not interconnected to zero-difference vertices of S.

This means that there must exist x vertices of V ,

1 � x � jV j � 2k, identified as vertices of the set

Vx ¼ fv1; v2; . . . ; vxg, that are connected in the strut to

x vertices of U , identified as vertices of the set

Ux ¼ fu1; u2; . . . ; uxg, where each ui, 1 � i � x, has

dSðuiÞ ¼ 1. Since in graph H all vertices of U have degree

two, the other vertex that is connected to one of the vertices

of Ux should be one of Vx.

Consider the vertex in Ux ¼ fu1; u2; . . . ; uxg which is

incident to edges with the smallest weight. Call this

vertex ua. Let va 2 Vx and vb 2 Vx be the vertices con-

nected to ua in H . Let the edge ðva; uaÞ be a strut edge of

S (see Figure 8(a)).

Algorithm 4. MST algorithm—Description of the procedures.

1: Procedure CreateBipartiteGraph
2: //thread id is the identification of each thread during a kernel

execution
3: // nOG is the number of vertices of the original graph
4: // mOG is the number of edges of the original graph
5: //. consider each edge of the original graph represented by

vertices v1 and v2 and weight w
6: // consider each edge of the bipartite graph represented by

vertices v and u and weight w
7: if (thread id < mOG) then
8: if (thread id < nOG) then
9: VH½thread id�:id ¼ V½thread id�:id;

10: end if
11: UH½thread id�:id ¼ thread id;
12: EH½2 � thread id�:v ¼ E½thread id�:v1;
13: EH½2 � thread id�:w ¼ E½thread id�:w;
14: EH½2 � thread id�:u ¼ UH½thread id��Þ:id;
15: EH½2 � thread idþ 1�:v ¼ E½thread id�:v2;
16: EH½2 � thread idþ 1�:w ¼ E½thread id�:w;
17: EH½2 � thread idþ 1�:u ¼ UH½thread id��Þ:id;
18: end if
19: EndProcedure
20:
21: Procedure FindLightestEdges
22: // thread id is the identification of each thread during a

kernel execution
23: // mBG is the number of edges of the bipartite graph
24: //lightest edge½v� stores the identification of the lightest edge

for the vertex v
25: if (thread id < mBG) then
26: v ¼ EH½thread id�:v;
27: // Begin atomic function
28: if (EH½lightest edge½v��:w > EH½thread id�:w) OR
29: ((EH½lightest edge½v��:w ¼¼ EH½thread id�:w) AND

(EH½lightest edge½v��:u > EH½thread id�:u)) then
30: lightest edge½v� ¼ thread id
31: end if
32: // End atomic function
33: end if
34: EndProcedure
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Consider the strut edge incident to vertex vb. It cannot

be the edge ðvb; uaÞ; for otherwise, ua would be a zero-

difference vertex. Let ðvb; ubÞ the strut edge. Now we have

two cases: either ub is incident to two strut edges (Figure

8(b)) or is incident only to one strut edge (Figure 8(c)).

The first case is impossible, since vb 2 Vx cannot be inter-

connected to zero-difference vertices. The second case

implies ub 2 Ux. Recall that ua was chosen to possess the

smallest weight in Ux. Then the strut edge from vb, by

definition of strut, should be ðvb; uaÞ. This contradiction

proves the lemma.

Theorem 2. The number of zero-difference vertices in

UH
0 after step 24 of Algorithm 2 is at least divided by 2

in each iteration.

Proof. Let V and U be the partitions right before the

compaction and let VH
0 and UH

0 be the partitions right after

step 24. Let k be the number of zero-difference vertices in

U . By Lemma 2, the number of vertices in VH
0 is also k.

Since each zero-difference vertex in UH
0 has degree two,

the number of zero difference in VH
0 is at most jVH

0 j=2,

that is, k=2. c

After Oðlog pÞ rounds, the number of zero-difference

vertices will be n=p, with Oðm=pÞ edges. Then we can

move the remaining compacted bipartite graph to the CPU

and finish the algorithm. The number of log n iterations

needed for the algorithm convergence occurs in the worst

case. In practice, as shown in our experiments, the number

of iterations is much smaller, as we can see in second

column of Table 7.

It is worth noting that the same idea present in the algo-

rithms proposed in this article can also be used to calculate

the related components of a graph. This was also studied in

the doctoral thesis of Jucele Vasconcellos (in preparation).

6. Experimental analysis

We presented two parallel algorithms, one to compute the

ST and another one to compute the MST. Since the com-

putation of the MST with all the edges with equal weight

one is actually an ST of an unweighted graph, we only

tested the MST algorithm. Also, we did not find any

implementation of an ST algorithm in order to compare

our results.

To show the efficiency of our solution, we implement

two versions of Algorithm 4. We developed a CPU version

using ANSI C and a parallel version, for GPGPU, using

CUDA. Both implementations are available for download

at https://github.com/jucele/MinimumSpanningTree. It is

noteworthy that our parallel implementation is a simple

CUDA implementation without exploiting the various

high-performance features available for GPGPU architec-

tures. The main objective of our work was to present an

efficient algorithm in the BSP/CGM model that could be

easily implemented in a real parallel machine.

The CUDA version implements the algorithm steps

using 12 kernel functions. One function is to create the

bipartite graph immediately after reading the input graph

and transferring the data to the GPU. We created two func-

tions to find the smallest edge for each vertex. Two func-

tions are used to obtain the strut. Another function was

implemented to compute the connected components where

we use the proposal presented by Hawick et al. (2010). And

six functions have the responsibility to mark the items to be

removed and to create the new bipartite graph to be used in

the next iteration.

The implementation used in the experimental tests at

Vasconcellos et al. (2017) has a function to optimize the

compaction as exemplified in Figure 6. As this function

uses a specific data structure, consuming more memory

space, we suppress it to permit conducting tests with larger

input graphs. Therefore, the performance presented in this

article is different from the results showed in Vasconcellos

et al. (2017).

We compare the results obtained by our implementation

with a recently published efficient algorithm, EPMST

(Mamun and Rajasekaran, 2016). EPMST chooses a subset

of edges using random sampling. It uses the idea of Krus-

kal’s algorithm (Kruskal, 1956) on the small subset of

edges and, if necessary, Prim’s algorithm (Prim, 1957) on

a compacted graph. EPMST implementation is available

for download at GitHub, which made it easier to compare

results. As EPMST is a sequential solution, we have devel-

oped a CPU implementation and another parallel version of

our MST algorithm. It is noteworthy that the sets of input

data used to perform the tests for this article are different

Figure 8. Part of graph Hy used in the proof of Lemma.
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from those used in Mamun and Rajasekaran (2016), possi-

bly producing different results.

Table 4 presents the characteristics of the three execu-

tion environments that we have used. Comparison of exe-

cution times with some CUDA solutions that were

published recently was difficult because these algorithms

used input graphs for specific problems and different com-

putational resources. However, we were able to compare

our results with the parallel solution proposed by Manoo-

chehri et al. (2017) since we can execute tests in a similar

environment (NVIDIA Tesla K40) and with the same sub-

set of input graphs (a subset of Ninth DIMACS Implemen-

tation Challenge (9DIMACS) input graphs).

The first set of input graphs used in our experimental

tests was generated using a random graph generator

(Johnsonbaugh and Kalin, 1991) available at http://con

dor.depaul.edu/rjohnson/source/graph_ge.c. We generated

27 random connected graphs. The input graphs named gra-

ph10a, graph10b, graph10c, graph10d, and graph10e have

10,000 vertices and density 0.02, 0.05, 0.1, 0.15, and 0.2,

respectively. The graphs identified with graph20, graph25,

and graph30 have similar characteristics but with 20,000,

25,000, and 30,000 vertices, respectively. We generated

seven graphs with 15,000 vertices (graph15) with densities

0.02, 0.05, 0.1, 0.15, 0.2, 0.5, and 0.75 (see the information

of this set of graphs in Table 5).

Graphs of the US-road networks compound the second

input set, made available in the 9DIMACS. The

9DIMACS, presented at http://www.dis.uniroma1.it/chal

lenge9/, provides 12 graphs of road networks in the United

States. Since our implementation works with nondirected

graphs, and the available graph files have the duplicate

edges (one to represent the arc between vertex a and b and

another to symbol the link between b and a), we reduce the

number of edges of the graphs by half. Table 6 shows the

information of this set of graphs. A significant difference

between the input sets is the density of the graphs. In the

second set, the densities are much smaller.

For each input graph, we executed the CPU and CUDA

implementations 20 times and collected each runtime

result. We used the mean of the runtime to analyze the

experimental behavior of the algorithm. For the EPMST

algorithm, we also executed 20 times and used the lesser

runtime obtained.

Table 7 presents the obtained test results for both input

sets using environment 1 (see Table 4). Each row of the

table shows, for each input graph, the number of iterations

of our algorithm, the runtime of CPU implementation, the

runtime of CUDA implementation, the runtime of EPMST

implementation, speedup of our CPU implementation com-

pared with EPMST, speedup of our CUDA implementation

compared with EPMST, and speedup of our CUDA imple-

mentation compared with our CPU implementation. By

Theorem 2, we know that the algorithm needs log n itera-

tions in the worst case; however, we can see that in practice

this number is much smaller (see the second column of

Table 7). Similarly, Tables 8 and 9 present the obtained

test results for both input sets using environments 2 and 3,

respectively.

We aim to present a parallel algorithm that is efficient in

the BSP/CGM model (Oðlog pÞ rounds (computation/com-

munication), where p is the number of processors) and

Table 4. Test environments characteristics.

Environment 1 Environment 2 Environment 3

CPU GPU CPU GPU CPU GPU

#Devices 8 1 40 1 8 1
Manufacturer Intel NVIDIA Intel NVIDIA Intel NVIDIA
Model E5-1620 v3 Quadro-M4000 E5-2650 v3 Tesla-K40M i7-4790S GeForce-GTX 745
#Cores 4 1664 10 2880 4 384
Memory 32 GB 8 GB 126 GB 12 GB 15 GB 4 GB

Table 5. Artificially generated input graph characteristics.

Input graph
n (number
of vertices)

m (number
of edges) Density m=n

graph10a 10,000 1,000,000 0.020 100.0
graph10b 10,000 2,500,000 0.050 250.0
graph10c 10,000 5,000,000 0.100 500.0
graph10d 10,000 7,500,000 0.150 750.0
graph10e 10,000 10,000,000 0.200 1000.0
graph15a 15,000 2,500,000 0.020 166.7
graph15b 15,000 5,500,000 0.050 366.7
graph15c 15,000 11,500,000 0.100 766.7
graph15d 15,000 17,000,000 0.150 1133.3
graph15e 15,000 22,500,000 0.200 1500.0
graph15f 15,000 56,300,000 0.500 3753.3
graph15g 15,000 84,350,000 0.750 5623.3
graph20a 20,000 4,000,000 0.020 200.0
graph20b 20,000 10,000,000 0.050 500.0
graph20c 20,000 20,000,000 0.100 1000.0
graph20d 20,000 30,000,000 0.150 1500.0
graph20e 20,000 40,000,000 0.200 2000.0
graph25a 25,000 6,200,000 0.020 248.0
graph25b 25,000 15,500,000 0.050 620.0
graph25c 25,000 32,000,000 0.100 1280.0
graph25d 25,000 47,000,000 0.150 1880.0
graph25e 25,000 62,500,000 0.200 2500.0
graph30a 30,000 9,000,000 0.020 300.0
graph30b 30,000 22,500,000 0.050 750.0
graph30c 30,000 45,000,000 0.100 1500.0
graph30d 30,000 67,500,000 0.150 2250.0
graph30e 30,000 90,000,000 0.200 3000.0
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suitable to work in real parallel environments. Our imple-

mentations used only standard resources of the C language

and CUDA library. Besides that, we found that our algo-

rithm has better speedup when we have a significant num-

ber of edges since our MST implementation uses more

than 40% of the time in the bipartite graph creation. If the

graph does not have at least 3,000,000 edges, approxi-

mately, the ST is computed very fast and the time spent

in the bipartite graph creation dominates the total time.

We tested it with different GPUs environments to see

whether the power of the GPU would be an issue. As we

found, the behavior of the algorithm in the three environ-

ments is very similar using GPUs with different computa-

tional power. We also observed that the algorithm has a

better speedup with larger graphs.

With 15,000 vertices, we generated seven graphs with

different densities, namely, 0.02, 0.05, 0.10, 0.15, 0.20,

Table 6. Basic characteristics of the 9DIMACS graphs,
considering undirected graphs and eliminating duplicate edges.

Input graph
n (number
of vertices)

m (number
of edges) Density m=n

USA-road-d.NY 264,346 366,648 0.0000105 1.4
USA-road-d.BAY 321,270 399,652 0.0000077 1.2
USA-road-d.COL 435,666 527,767 0.0000056 1.2
USA-road-d.FLA 1,070,376 1,354,681 0.0000024 1.3
USA-road-d.NW 1,207,945 1,417,704 0.0000019 1.2
USA-road-d.NE 1,524,453 1,946,326 0.0000017 1.3
USA-road-d.CAL 1,890,815 2,325,452 0.0000013 1.2
USA-road-d.LKS 2,758,119 3,438,289 0.0000009 1.2
USA-road-d.E 3,598,623 4,382,787 0.0000007 1.2
USA-road-d.W 6,262,104 7,609,574 0.0000004 1.2
USA-road-d.CTR 14,081,816 17,120,937 0.0000002 1.2
USA-road-d.USA 23,947,347 29,120,580 0.0000001 1.2

9DIMACS: Ninth DIMACS Implementation Challenge

Table 7. Test results using environment 1.

Input graph
Number of
iterations CPU time (s) CUDA time (s) EPMST time (s)

Speedup
CPU 
 EPMST

Speedup
CUDA 
 EPMST

Speedup
CUDA 
 CPU

graph10a 5 0.858 0.763 0.068 0.079 0.089 1.125
graph10b 4 1.852 0.827 0.260 0.140 0.315 2.241
graph10c 3 2.568 0.910 1.301 0.507 1.429 2.821
graph10d 4 4.445 1.100 3.908 0.879 3.554 4.042
graph10e 3 4.686 1.117 9.517 2.031 8.520 4.195
graph15a 5 2.397 0.863 0.414 0.173 0.479 2.777
graph15b 5 4.676 1.065 1.262 0.270 1.185 4.392
graph15c 3 5.884 1.189 6.807 1.157 5.723 4.947
graph15d 3 8.322 1.406 19.812 2.381 14.092 5.919
graph15e 3 10.524 1.649 48.508 4.609 29.412 6.381
graph15f 2 15.070 2.366 92.278 6.123 38.993 6.368
graph15g 2 22.122 3.228 205.924 9.309 63.798 6.854
graph20a 5 3.993 0.967 0.527 0.132 0.545 4.131
graph20b 4 7.458 1.276 4.057 0.544 3.180 5.846
graph20c 4 12.533 1.788 20.737 1.655 11.600 7.010
graph20d 3 14.474 1.955 61.792 4.269 31.601 7.402
graph20e 3 18.050 2.298 153.033 8.478 66.593 7.854
graph25a 5 5.950 1.114 1.257 0.211 1.128 5.339
graph25b 4 10.845 1.565 9.700 0.894 6.197 6.929
graph25c 4 20.116 2.454 52.785 2.624 21.513 8.199
graph25d 2 13.251 2.007 151.694 11.447 75.589 6.603
graph25e 3 28.272 3.177 414.316 14.655 130.431 8.900
graph30a 6 10.176 1.459 2.657 0.261 1.821 6.973
graph30b 5 18.385 2.218 20.321 1.105 9.163 8.289
graph30c 3 22.840 2.619 104.559 4.578 39.921 8.721
graph30d 3 33.143 3.536 332.890 10.044 94.154 9.374
graph30e 3 40.840 4.448 988.326 24.200 222.193 9.182
USA-road-d.NY 9 0.158 0.730 0.082 0.515 0.112 0.217
USA-road-d.BAY 10 0.167 0.729 0.080 0.480 0.110 0.229
USA-road-d.COL 9 0.209 0.742 0.084 0.403 0.114 0.282
USA-road-d.FLA 10 0.540 0.809 0.520 0.964 0.643 0.667
USA-road-d.NW 10 0.559 0.821 0.332 0.593 0.404 0.681
USA-road-d.NE 10 0.819 0.856 0.760 0.927 0.888 0.957
USA-road-d.CAL 11 0.984 0.892 0.955 0.970 1.071 1.104
USA-road-d.LKS 11 1.466 0.988 1.766 1.204 1.787 1.484
USA-road-d.E 11 1.831 1.066 2.584 1.411 2.424 1.718
USA-road-d.W 11 3.233 1.323 5.224 1.616 3.949 2.444
USA-road-d.CTR 12 9.778 2.331 26.405 2.700 11.329 4.195
USA-road-d.USA 12 12.599 3.112 71.107 5.644 22.848 4.048

CUDA: Compute Unified Device Architecture; EPMST: edge pruned minimum spanning tree.
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0.50, and 0.75. Figure 9 illustrates the runtime of the tested

implementations for these graphs. We can see that as the

density increases, the performance of our algorithm com-

pared to the EPMST solution is better, emphasizing that the

graph uses the logarithmic scale on the y-axis. For density

0.02, our implementations have worse results than the

EPMST, but above density 0.05, our CUDA implementa-

tion already overcomes the EPMST time. Our CPU imple-

mentation is already better than the EPMST from density

0.1. The speedup of CUDA implementation compared to

EPMST increases substantially as the density of the graph

is raised, ranging from 0.479 to 63.798 in the case of graphs

with 15,000 vertices.

Analyzing Figure 10, which presents the runtimes for

graphs with densities 0.02 and 0.1, it is possible to see that

EPMST has a better performance for the input graphs with

10,000, 15,000, and 20,000 vertices, but for the input

graphs with 25,000 and 30,000 vertices, our CUDA imple-

mentation takes less time to execute. For input graphs with

density from 0.1, the runtimes of our implementations are

better than the EPMST times in practically all tests. As we

can observe in the data presented in Tables 7 to 9, for about

half of the US-road graphs, our CUDA implementation was

slower than EPMST solution. The US-road graphs are very

sparse graphs. Since the EPMST algorithm uses heuristics,

the final MST is almost found after the application of this

heuristic, since in several situations, there is only one road

connecting two cities. Our algorithm uses a step that is very

time-consuming (bipartite graph creation), and if the num-

ber of edges is smaller than approximately 3,000,000

Table 8. Some test results using environment 2.

Input graph
Number of
iterations CPU time (s) CUDA time (s) EPMST time (s)

Speedup
CPU 
 EPMST

Speedup
CUDA 
 EPMST

Speedup
CUDA 
 CPU

graph10a 5 1.084 0.898 0.083 0.077 0.093 1.207
graph10b 4 2.494 1.036 0.317 0.127 0.306 2.407
graph10c 3 3.601 1.163 1.607 0.446 1.382 3.097
graph10d 4 7.104 1.476 4.814 0.678 3.263 4.814
graph10e 3 7.916 1.540 11.754 1.485 7.634 5.141
graph15a 5 4.025 1.061 0.507 0.126 0.478 3.795
graph15b 5 8.153 1.375 1.558 0.191 1.133 5.929
graph15c 3 10.323 1.644 8.407 0.814 5.114 6.279
graph15d 3 14.497 2.061 24.510 1.691 11.890 7.033
graph15e 3 18.024 2.467 59.959 3.327 24.303 7.305
graph15f 2 24.700 3.866 113.986 4.615 29.481 6.388
graph15g 2 35.827 5.430 255.183 7.123 46.993 6.598
graph20a 5 7.227 1.220 0.651 0.090 0.534 5.922
graph20b 4 13.800 1.733 5.009 0.363 2.890 7.962
graph20c 4 21.801 2.718 25.658 1.177 9.441 8.022
graph20d 3 25.414 3.029 76.408 3.007 25.226 8.390
graph20e 3 30.611 3.598 189.168 6.180 52.582 8.509
graph25a 5 10.854 1.521 1.557 0.143 1.023 7.134
graph25b 4 19.792 2.289 11.994 0.606 5.240 8.648
graph25c 4 35.413 3.873 65.263 1.843 16.849 9.143
graph25d 2 22.130 3.389 187.733 8.483 55.393 6.530
graph25e 3 48.612 5.330 470.622 9.681 88.294 9.120
graph30a 6 19.145 2.062 3.282 0.171 1.592 9.286
graph30b 5 33.556 3.460 25.107 0.748 7.256 9.698
graph30c 3 41.477 4.433 129.282 3.117 29.162 9.356
graph30d 3 59.575 6.167 403.514 6.773 65.431 9.660
graph30e 3 70.957 7.528 1095.140 15.434 145.484 9.426
USA-road-d.NY 9 0.185 0.924 0.105 0.569 0.114 0.201
USA-road-d.BAY 10 0.196 0.950 0.097 0.495 0.102 0.207
USA-road-d.COL 9 0.270 0.965 0.114 0.421 0.118 0.280
USA-road-d.FLA 10 0.762 1.027 0.720 0.945 0.701 0.742
USA-road-d.NW 10 0.800 1.062 0.491 0.613 0.462 0.753
USA-road-d.NE 10 1.197 1.118 1.062 0.887 0.950 1.071
USA-road-d.CAL 11 1.451 1.210 1.322 0.911 1.093 1.200
USA-road-d.LKS 11 2.220 1.369 2.712 1.221 1.980 1.621
USA-road-d.E 11 2.800 1.504 3.902 1.393 2.594 1.862
USA-road-d.W 11 5.010 1.981 8.133 1.623 4.104 2.528
USA-road-d.CTR 12 16.590 3.773 39.092 2.356 10.362 4.398
USA-road-d.USA 12 19.476 5.493 99.591 5.114 18.131 3.546

CUDA: Compute Unified Device Architecture; EPMST: edge pruned minimum spanning tree.
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Table 9. Some tests results using environment 3.

Input graph
Number of
iterations

CPU
time (s) CUDA time (s)

EPMST
time (s)

Speedup
CPU 
 EPMST

Speedup
CUDA 
 EPMST

Speedup
CUDA 
 CPU

graph10a 5 0.778 0.315 0.061 0.079 0.195 2.470
graph10b 4 1.617 0.440 0.234 0.145 0.532 3.680
graph10c 3 2.207 0.707 2.272 0.531 1.657 3.121
graph10d 4 3.799 1.165 3.521 0.927 3.023 3.262
graph10e 3 3.995 1.100 8.575 2.147 7.793 3.630
graph15a 5 2.099 0.554 0.192 0.091 0.346 3.788
graph15b 5 4.091 1.050 1.136 0.278 1.081 3.894
graph15c 3 4.994 1.243 6.133 1.228 4.934 4.018
graph15d 3 7.070 1.927 17.855 2.525 9.267 3.670
graph15e 3 9.723 2.578 43.677 4.492 16.945 3.772
graph15f 2 17.001 Insufficient memory 83.129 4.890 - -
graph15g 2 25.282 Insufficient memory 196.735 7.782 - -
graph20a 5 3.499 0.931 0.475 0.136 0.510 3.757
graph20b 4 6.453 1.466 3.654 0.566 2.492 4.401
graph20c 4 10.752 3.269 18.691 1.738 5.718 3.289
graph20d 3 12.076 3.984 55.723 4.615 13.987 3.031
graph20e 3 15.631 4.938 139.219 8.907 28.191 3.165
graph25a 5 5.051 1.206 1.132 0.224 0.939 4.188
graph25b 4 9.177 2.660 8.742 0.953 3.286 3.450
graph25c 4 16.969 5.377 47.599 2.805 8.852 3.156
graph25d 2 11.345 4.678 137.808 12.147 29.461 2.425
graph25e 3 29.636 Insufficient memory 382.659 12.912 - -
graph30a 6 8.845 1.811 2.392 0.270 1.320 4.883
graph30b 5 15.884 4.477 18.309 1.153 4.177 3.572
graph30c 3 23.203 5.884 94.278 4.063 16.022 3.943
graph30d 3 36.268 Insufficient memory 316.135 8.717 - -
graph30e 3 45.430 Insufficient memory 839.328 18.475 - -
USA-road-d.NY 9 0.132 0.443 0.067 0.511 0.152 0.298
USA-road-d.BAY 10 0.138 0.441 0.069 0.498 0.156 0.314
USA-road-d.COL 9 0.180 0.459 0.076 0.424 0.166 0.391
USA-road-d.FLA 10 0.474 0.578 0.439 0.927 0.760 0.819
USA-road-d.NW 10 0.494 0.578 0.302 0.611 0.523 0.856
USA-road-d.NE 10 0.724 0.675 0.677 0.934 1.002 1.073
USA-road-d.CAL 11 0.876 0.735 0.809 0.923 1.100 1.191
USA-road-d.LKS 11 1.306 0.927 1.523 1.166 1.643 1.409
USA-road-d.E 11 1.631 1.096 2.226 1.365 2.030 1.488
USA-road-d.W 11 2.877 1.573 4.519 1.571 2.873 1.829
USA-road-d.CTR 12 8.835 3.452 23.815 2.695 6.899 2.560
USA-road-d.USA 12 12.687 4.554 63.047 4.969 13.845 2.786

CUDA: Compute Unified Device Architecture; EPMST: edge pruned minimum spanning tree.
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edges, this step dominates the final execution time. When

we compare with huge graphs, the time used in the bipartite

graph creation is compensated.

The standard MST algorithm has a lot of interdepen-

dence among the sequential steps. This problem belongs

to a class of problems with a very strong relationship

among its input data. We devised an efficient parallel algo-

rithm where we can deal with all these dependencies in

parallel. Even so, we have to synchronize at the end of each

computation round in order to assure the correctness of the

input of the next round. To accomplish this, we need a lot of

communication in all process. Our implementation only

uses the standard resources of the CUDA library. We aimed

to show that the algorithm can be implemented in real

machines. When compared with one the fastest sequential

algorithm (using -O3 compilation directive), our algorithm

reached speedups of 222 for synthetic graphs and 22.8 for

real graphs. These occurred when we have graphs with

more than 29,000,000 and 90,000,000 edges, respectively.

We also implemented our parallel algorithm using a CPU

(one node). The GPU results were much better than the

CPU times, and we reached a speedup of 9 when the graph

has a considerable amount of edges. Our parallel algo-

rithms behave better when using a GPU environment.

Manoochehri et al. (2017) present an efficient

transaction-based implementation of Borůvka’s algorithm

on GPU. One of the test environments used by them is

based on an NVIDIA Tesla K40, similar to our environ-

ment 2. Table 10 presents the comparison of our results and

the available results in Manoochehri et al. (2017). Again, as

we can see, our implementation presents better results for

larger input graphs. The creation of the bipartite graph

causes our algorithm to present gains for large input graphs

with at least 3,000,000 edges.

7. Conclusions and future works

In this work, we presented parallel algorithms to compute

an ST and an MST. A CPU and a parallel version of the

MST algorithm were implemented and compared with the

results of other recent efficient algorithm, named EPMST

(Mamun and Rajasekaran, 2016). The experiments show

that the proposed algorithm presents a good performance

for not very sparse graphs, resulting in very good speedups.

For larger input graphs, the execution time of our algorithm

is also better than the solution presented by Manoochehri

et al. (2017).

From the experiments, it was evident that the efficiency

of our algorithm increases when we have not very sparse

graphs or with a large amount of vertices. Nowadays,

where we have an enormous volume of information to be

treated, this is a great advantage.

As future work, we intend to develop a pruning

approach to reduce the input set of edges, which can

improve the algorithm results and enable us to work with

greater input graphs. Another possibility is to evaluate the

performance of the algorithm with the use of multiple

GPUs to reduce the runtime. We also have the purpose of

using real graphs as input data to observe the performance

of the algorithm.
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