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PIPE4: Fast PPI Predictor for 
Comprehensive Inter- and Cross-
Species Interactomes
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Frank Dehne6 & James R. Green   1*

The need for larger-scale and increasingly complex protein-protein interaction (PPI) prediction tasks 
demands that state-of-the-art predictors be highly efficient and adapted to inter- and cross-species 
predictions. Furthermore, the ability to generate comprehensive interactomes has enabled the 
appraisal of each PPI in the context of all predictions leading to further improvements in classification 
performance in the face of extreme class imbalance using the Reciprocal Perspective (RP) framework. 
We here describe the PIPE4 algorithm. Adaptation of the PIPE3/MP-PIPE sequence preprocessing step 
led to upwards of 50x speedup and the new Similarity Weighted Score appropriately normalizes for 
window frequency when applied to any inter- and cross-species prediction schemas. Comprehensive 
interactomes for three prediction schemas are generated: (1) cross-species predictions, where 
Arabidopsis thaliana is used as a proxy to predict the comprehensive Glycine max interactome, (2) inter-
species predictions between Homo sapiens-HIV1, and (3) a combined schema involving both cross- and 
inter-species predictions, where both Arabidopsis thaliana and Caenorhabditis elegans are used as 
proxy species to predict the interactome between Glycine max (the soybean legume) and Heterodera 
glycines (the soybean cyst nematode). Comparing PIPE4 with the state-of-the-art resulted in improved 
performance, indicative that it should be the method of choice for complex PPI prediction schemas.

The elucidation of protein-protein interaction (PPI) networks is central to molecular biology research. Necessary 
to producing mechanistic models of cellular processes, PPI networks additionally contribute to challenges 
such as the prediction of gene function1–3, identification of disease genes4, and pharmaceutical discovery5,6. 
Computational PPI prediction techniques have been developed to supplement and guide wet-laboratory exper-
imental work. The last decade has seen increased computational demand in both scale and complexity of PPI 
predictors. Predicting comprehensive interactomes (the set of all possible pairwise PPIs in or between proteomes) 
has only recently become possible with the advent of high-performance computing infrastructure and algorith-
mic optimizations. While methodologically diverse in their implementation, PPI prediction tools generally 
exploit information from the set of known PPIs (previously confirmed using classical wet-laboratory techniques) 
to determine whether any two query proteins will physically interact. The utility and scalability of any one method 
is subject to the information it leverages.

Structure-based methods, at one extreme, require the three-dimensional (3D) characterization of each protein 
and therefore suffer from low coverage of the proteome. While useful to determining highly specific PPI networks, 
many methods require template-based modelling which tend to be computationally taxing7–9. Furthermore, even 
with complete 3D structural information of each protein in an organism’s proteome, the computational time 
complexity to elucidate a single putative PPI make these methods prohibitive beyond modestly sized networks10. 
At the other extreme, sequence-based predictors rely solely upon primary sequence data making them amenable 
to the investigation of proteome-wide networks. Furthermore, these methods tend to be highly efficient, where 
individual PPIs can be predicted in the fraction of a second. The first comprehensive predictions of intra-species 
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interactomes for a number of organisms have been reported from sequence-based methods11,12. In particular, the 
Protein-protein Interaction Prediction Engine (PIPE; the latest version, MP-PIPE11, is denoted PIPE3 in this work 
for clarity) has been at the forefront of the these advances and has resulted in the elucidation of comprehensive 
interactomes for a large number of organisms including Homo sapiens, Saccharomyces cerevisiae, Caenorhabditis 
elegans, Arabidopsis thaliana, Drosophila melanogaster, Mus musculus, and Glycine max3,11–17.

Increasing Scale and Complexity of Prediction Schemas
Comprehensive intra-species interactomes are highly useful to elucidate molecular biological processes within 
a given organism. Well-studied organisms with a large number of previously validated PPIs are amenable to 
these analyses, whereas under-studied organisms, with few PPIs from which to train a predictor, are problematic. 
Moreover, many under-studied species are of critical importance to human health and the elucidation of com-
plete interactomes is necessary to investigate disease pathogenesis such as the Zika Virus18. We present a refined 
version of PIPE to address these challenges here.

Beyond providing insight into the cellular process within an organism, the application of PPI predictors to 
networks between organisms (i.e. inter-species) have led to the determination of disease pathogenesis19–21, devel-
opment of novel pharmaceuticals6,18, and insights into the evolution of interactomes22. This work focuses on the 
computational challenges related to predicting extremely large interactomes and defining the best practices for 
combining inter- and cross-species prediction schemas to make predictions for organisms that might not nor-
mally be amenable to the generation of comprehensive interactomes.

Cross-species predictions.  Understudied organisms with very few experimentally validated PPIs, such as 
G. max, are not amenable to the study of comprehensive interactomes due to insufficient training data. To cir-
cumvent this, an evolutionarily similar, well-studied organism can serve as a proxy. That is, the experimentally 
validated intra-species PPIs from the proxy species are used to train the PPI predictor; predictions are then made 
for the proteome of the understudied target organism. Due to the limited availability of known G. max PPIs, we 
here use Arabidopsis thaliana as a well-studied and evolutionarily similar proxy to generate these cross-species 
predictions as depicted in Fig. 1A.

Inter-species predictions.  While PIPE has demonstrated preliminary successes when applied to 
inter-species prediction tasks19, this problem requires that the scoring function, which might account for the 
frequency of short, contiguous subsequences, is appropriate since proteome sizes can vary considerably between 
organisms, and we expect the number of similar subsequences to vary greatly as a result. This schema, depicted 
in Fig. 1B, requires that the prediction score of a PPI between two organisms normalizes the evidence from a 
given window in a protein by that window’s prevalence within its respective proteome. This work describes the 
Similarity Weighted Score which accounts for this.

Predicted interactome size.  Historically, PIPE has been applied to increasingly larger and more complex 
PPI prediction problems. Originally, PIPE was designed to predict a small number of pairs within a single species. 
It was progressively optimized to predict comprehensive interactomes that scale as the triangular number of a 
proteome of size n, +n n( 1)/2. In the original organism, S. cerevisiae, with proteome size ≈n 6, 700, this com-
prised a comprehensive interactome of 22 million uniquely predicted PPIs. Following considerable optimization 
through distributed computing, the application of PIPE to H. sapiens, with ≈n 21, 000, comprised an interac-
tome one greater order of magnitude: 220 million. Now, with a G. max proteome of ≈n 75, 700, we operate at 
one greater order of magnitude still with 2.8 billion intra-species predictions. To rapidly compute such complex 
interactomes in a timely manner, the PIPE preprocessing data representation is adapted as described in the 
Methods section.

In combination, the appropriate organization of these increasingly complex prediction schemas promise to 
enable improved prediction of these highly useful entire interactomes. For example, although both the soybean 

Figure 1.  Inter- and Cross-Species Prediction Schemas. (A) Cross-species schema where the intra-species PPIs of 
a well-studied organism can be used as a proxy to predict the comprehensive interactome of another under-studied, 
but evolutionarily close, organism. (B) Typical inter-species prediction schema where PPIs within and/or between 
two well-studied organisms are used to predict the comprehensive interactome between the two organisms to 
identify novel putative PPIs. (C) Combination of the cross- and inter-species prediction schema where the intra-
species PPIs of two well-studied organisms are used to train a model capable of predicting the comprehensive 
inter-species interactome of two under-studied organisms. N indicates the approximate size of the proteome.
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legume, G. max, and the soybean cyst nematode (SCN), Heterodera glycines, are understudied organisms, we 
wish to identify actionable PPIs that might be disrupted to protect crop yields. Fortunately, A. thaliana and C. 
elegans are, respectively, evolutionarily similar and well-studied model organisms capable of serving as proxies to 
these two organisms of interest. This prediction schema, involving both inter- and cross-species PPI predictions 
is depicted in Fig. 1C.

Finally, high-throughput predictors have enabled the prediction of the comprehensive set of all possible inter-
actions that has given rise to context: the ability to appraise a given PPI prediction relative to all possible inter-
actions. Applying the Reciprocal Perspective for PPI (RP-PPI) cascaded machine learning layer to these data has 
led to significantly improved predictive performance in the face of extreme class imbalance16. As a meta-method 
applicable to any PPI predictor, here we looked to additionally validate RP-PPI for use in cross-species prediction 
schemas.

Methods
The last decade has seen increased computational demand of PPI prediction tasks, both in scale and complex-
ity11,13,14,23. The existing PIPE implementation, MP-PIPE2 published in11, which for the sake of clarity we denote 
as PIPE3 in this work, has been sufficient for these tasks. However, the comprehensive prediction of the G. max 
interactome necessitates scoring of 2,871,417,871 putative PPIs, which is more than a ten-fold increase in size 
over the comprehensive human interactome. We, here, introduce a more efficient version of PIPE, aptly named 
PIPE4, capable of handling prediction tasks involving the soybean legume in both inter- and cross-species predic-
tion tasks. Briefly, the fundamental PIPE algorithm examines each sliding window of each protein to determine 
if they are sequence-similar to protein pairs known to physically interact. The preprocessing step tabulates which 
windows in proteins that are sequence-similar in order to accelerate the prediction step.

Mathematical notation to describe algorithmic changes.  We, here, clarify the notation used to 
describe the subsequent algorithmic changes to the PIPE algorithm. A bold symbol depicts a collection such as a 
vector, list, or set of elements. The subscripts are tailored to reflect inter-species applications and identify a certain 
protein within a given organism’s proteome. To simplify the notation, where appropriate, the subscripts are 
dropped. Unless otherwise stated, examples using one organism are implied for the other. Superscripts are used 
to identify the starting position of a certain contiguous subsequence within a given protein. Greek symbols (e.g. 
σ ϕ γΦ Γ, , , , ) are used to represent functions and, where appropriate, their capital notation (e.g. Φ, Γ) refer-
ences the function while their lowercase notation (e.g. ϕ, γ) are used to conveniently indicate the size of the col-
lection resulting from the application of that function. Following general convention, vertical bars, |·|, are used to 
represent the size of a given collection, and the overbar notation, ⋅, is used for the average size of a collection. 
Finally, while the ⊕ symbol is conventionally used as the XOR function, we here use it as a concatentation 
operator.

For an intuitive visualization of the notation used in the main text, Fig. 2 depicts an example comparison 
between two arbitrary proteins, pai and pbj, wherein the two windows are compared against all other windows 
within each organism’s proteome. In this case, the set of similar proteins are shown to be disjoint as would be 
expected in inter- and cross-species predictions; however, for intra-species prediction schemas, we can expect 
overlap in the sets of similar proteins. In this example case, the number of “hits” for this one pair of windows (the 
size of the intersection) is 6 and this value is normalized as described in the main text.

Preprocessing protein sequences for window similarity.  We first describe PIPE3′s preprocessing step, 
which identifies similar subsequences within a given proteome. We consider the proteome of organism a to be of 
size n and having both a list of protein names (represented as integer indices), = … …p p p p p[ , , , , , ]a a a ai an1 2 , and 
list of amino acid sequences, sa = [sa1, sa2, …, sai, …, san], with correspondence →p sa a to indicate that pai has 
sequence sai. Similarly, organism b with proteome of size m has = 


… … 


p p p p p, , , , ,b b b bj bm1 2 , and 

= … …s s s s s[ , , , , , ]b b b bj bm1 2  with →p sb b. We denote the amino acid sequence length of any s as k (i.e. →s k 
for a, b). A contiguous sequence of amino acids of length l, where l ≤ k, of s is denoted a “window”, w. Applying a 
sliding window of length l along sequence sai, permitting overlap and shifting by one amino acid at a time, gener-
ates a list of windows: = … … − +w w w w w[ , , , , , ]ai

h k l1 2 ( ) 1 . To clarify the notation, an example arbitrary window 
from protein pai with sequence sai and length kai in organism a’s proteome is given as wai

x  and analogously for 
protein pbj as wbj

y .
A similarity function, σ w w( , )ref query , is used to determine whether any two arbitrary windows in the proteome 

are deemed “similar”, as defined by a value v obtained via the PAM120 amino acid substitution matrix and simi-
larity threshold, τ. The function takes as input two windows, where the first, wref, is a reference window from one 
proteome and the second, wquery, is the query window from another proteome. The function outputs the protein 
index of the protein containing wquery if the windows are similar. Furthermore, the function is defined to support 
vectors of windows as input (emphasized using boldface) and returns the corresponding set of proteins from the 
other proteome, where similar:

w w
p v w w

p v and w w( , )
, if and

, if
, otherwise

,

(1)
ai
x

bj
y

bj ref a

ai ref bσ

τ
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
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
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≥ ∈

≥ ∈

∅
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It is important to note that the window originating from proteome a returns a protein index from proteome b, 
and vice versa. Each window, wai

x  and wbj
y , therefore has its own corresponding list of proteins, Φ of length ϕ, hav-

ing at least one window similar to it (ϕ ≥ 1). With respective lengths ai
xϕ  and ϕbj

y, these lists are denoted 
p p p[ , , , ]ai

x
bj bj b1Φ = … ϕ+

 and Φ = … ϕ+p p p[ , , , ]bj
y

ai ai a1 . To efficiently store these window similarities, a database 
file, d, for each protein is written as a ragged array of unsigned integers representing the indices of proteins found 
to be similar to its windows. The data for an arbitrary protein p is written with the following format:

ϕ ϕ⊕ ⊕ Φ ⊕ … ⊕ ⊕ Φ− + − +d k: (2)p
k l k l1 1 ( ) 1 ( ) 1

This preprocessing step is run for all proteins in each organism’s proteome to produce a data structure enabling 
constant time access during the prediction of the complete interactome. Analysis of the computational runtime 
complexity of a single pair of proteins (where the overbar denotes the average) of this preprocessing step yields:

ϕO k k( ) (3)a b

Here, ka and kb, are the average sequence length from species a and b respectively. Preprocessing is only run once 
and, having a runtime several orders of magnitude less than the remainder of the PIPE algorithm, it is accepted as 
a flat start-up cost and thus negligible when analysing the remaining PIPE runtime.

The landscape generation algorithm.  For any pair of proteins, pai and pbj, we generate a score represent-
ative of their likelihood of physical interaction. A sufficiently large score, exceeding some globally defined deci-
sion threshold, results in a positive classification. The score for any pair is the result of applying an aggregation 
function to a landscape, defined as matrix ∈ ×M k kai bj. The landscape generation algorithm can be summarized 
as follows: To determine the landscape value at position (x, y), examine the pair of windows, w w,ai

x
bj
y , and count the 

number of known interactions involving a pair of proteins with similar windows.
Algorithm 1 illustrates an implementation of this process and Figure 2 serves as an additional pictoral depic-

tion. For clarity, we define the interactor function, Γ(·), which takes as input a protein index, p, and returns a list 
of length γ containing all proteins participating in a known interaction with p. For example:

Γ

γ
γ

γ
=










∅ =
=

… >
p p

p p
( )

if 0
[ ], if 1

[ , , ], if 1
,

(4)
ai by

bj by

Analysis of the computational complexity of the PIPE landscape generation algorithm, OL, yields:

Algorithm 1.  PIPE Landscape Generation Algorithm.
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ϕ γO k k( ) (5)a b

The terms ka and kb, through correspondence, arise from lines 2 and 3 of Algorithm 1, where each pair of 
windows in proteins pai and pbj are considered. Since these windows overlap, the number of windows is propor-
tional to the length of each protein. Lines 5 and 7 denote the average number of similar proteins to a given win-
dow, φ , and the average number of interactions for a given protein, γ , respectively. Note that the subscripts are 
dropped to emphasize that the averaging occurs over both proteomes. Lines 9 and 10 comprise O(1) time set 
membership operations and matrix increments. With the landscape for a given PPI computed, the final score is 
obtained with the application of an aggregation function. Of particular importance to this function, when lever-
aged for inter-species predictions, is the normalization of windows by their prevalence in each respective organ-
ism’s proteome.

The similarity weighted score.  The Similarity Weighted Score (SW-score) was originally proposed as part 
of Catalin Patulea’s seminal 2011 work24. Having initially led to significant improvement over the traditional PIPE 
Score of the time, it has renewed implication when used for inter-species and cross-species predictions. The 
Similarity Weighting function, λ x y( , ), takes as input the coordinates of a cell, with indices x and y, in the land-
scape matrix and has the form:

λ σ σ= | || |x y w ww w( , ) ( , ) ( , ) (6)ai
x

bj
y

a b

The SW-score is an aggregated value of the average of the landscape following the application of λ x y( , ) to all 
cells in the landscape. The function normalizes the height of the landscape at a point by counting the number of 
possible interactions arising if every pair of similar proteins were to interact. This suppresses the effect of highly 
prevalent windows that are not associated with interactions and amplifies the effect of windows that are relatively 
rare, yet are frequently occurring in known interactions. Consequential to inter-species applications, the set of all 
windows in organism a, wa, can differ greatly from the set of organism b, wb; whereas, for intra-species applica-
tions, by definition =w wa b.

Furthermore, when applied to cross-species predictions, training data may be pooled from multiple organ-
isms, in which case this normalization requires modification due to the potentially dramatic differences in the 
number of training examples from each species. In this work, we consider using A. thaliana as a well-studied 
proxy to make cross-species predictions on behalf of G. max, for which very limited training data is available. 
Similarly, we use C. elegans as a proxy for H. glycines to ultimately predict the inter-species interactome between 
the latter two. Naïve application of Eq. (6) to this PPI prediction schema, using subscripts A, G, C, and H to 
respectively denote the proteomes of A. thaliana, G. max, C. elegans, and H. glycines, we obtain:

λ σ σ σ σ

σ σ σ σ

= | | + | | + | | + | |

| | + | | + | | + | |( )
x y w w w w

w w w w
w w w w
w w w w

( , ) ( ( , ) ( , ) ( , ) ( , ) )
( , ) ( , ) ( , ) ( , ) (7)

Ai
x

Gi
x

Ci
x

Hi
x

Aj
y

Gj
y

Cj
y

Hj
y

A G C H

A G C H

Simplifying the frequency of window wAi
x  in the A. thaliana proteome as σ= | |f w w( , )Ai

x
Ai
x

A , Eq. (7) becomes:

Figure 2.  Visual Representation of Mathematical Notation. The comparison of two windows between two 
arbitrary proteins (pai and pbj) yeilds two disjoint (inter-species) sets comprising proteins with similar 
subsequences to those windows. Grey proteins linked with arrows indicate known PPIs.
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λ = + + + + + +x y f f f f f f f f( , ) ( )( ) (8)Ai
x

Gi
x

Ci
x

Hi
x

Aj
y

Gj
y

Cj
y

Hj
y

Formulated in this way, Eq. (8) implies that there are possible interactions between A.thaliana – G.max, A. 
thaliana – C. elegans, A. thaliana – H. glycines, C. elegans – H. glycines, and C. elegans – G. max, and normalizes 
it as such. While in vitro interactions are certainly possible for any combination of these organisms, no such 
interactions are included in the training data which unfairly penalizes any windows that are similar to windows in 
multiple species. With the incorporation of additional species with similar proteins, this effect becomes increas-
ingly pronounced. Furthermore, a window is normalized not only by how frequently it appears in the training 
data, but also in the target organism proteome for which very little or no interaction data is known. Consequently, 
the normalization factor does not reflect the true number of possible interactions among similar proteins in the 
training data. We here propose a cross-species variant of Eq. (8), which normalizes window frequency only in 
species for which there are available PPI training data:

λ = + +x y f f f f( , ) ( )( ) (9)Ai
x

Ci
x

Aj
y

Cj
y

A number of experiments validating this modification to the SW-score are described in Supplementary File. 
Irrespective of its form, loading the database files into RAM enables constant-time lookup to similar windows in 
respective proteomes. The complexity for computing the SW-score for a given putative PPI between pa and pb (say 
between G. max and H. glycines) applies λ x y( , ) to each cell and the subsequent aggregation yield an average runt-
ime of:

O k k( ) (10)a b

The modified PIPE algorithm.  Considering the end-to-end time complexity of PIPE, we obtain:

ϕ ϕ γ= + +( ) ( ) ( )O O k k mn O k k O k k
2

( ) (11)PIPE a b a b a b3

The one-time precomputation term is negligible in size in comparison to the landscape and aggregation func-
tion terms which must be computed for all mn/2 possible interactions. Due to the current inescapability of the 
terms ka and kb from the necessity to compare all pairwise windows, the only free terms for optimization are φ  
(average number of similar proteins to a given window) and γ  (average number of interactions for a given pro-
tein). Analysis of Algorithm 1 indicates that lines 5–10 compute the height of the landscape at a single point and 
can be reformulated as: Given windows wai

x  and wbj
y, count the number of proteins in the intersection of σΓ w w( ( , ))ai

x
a  

and σ w w( , )bj
y

b :

∩σ σ= Γm w w( (w , )) (w , ) (12)x y a b, ai
x

bj
y

The first set, σΓ w w( ( , ))ai
x

a , comprise proteins from species b that interact with the proteins from species a 
containing one or more windows similar to the window wai

x . The second set, σ w w( , )bj
y

b , comprise proteins that 
contain one or more windows similar to the window wbj

y . A protein at this intersection represents a known inter-
action between a protein similar to wai

x  and a protein similar to wbj
y . The runtime to perform this set intersection 

with PIPE3 (Algorithm 1) is:

¯ ¯O w Ow( ( ( , ))) ( ) (13)ai
x

aσ ϕ γΓ =

The probability, p(·), of any one protein, ⁎pb , residing in this intersection is given as:

( )p w
w

m n m n
w

w
p ( , )

( , )
(14)b bj

y bj
y

b
b ¯σ

σ ϕ
∈ =

| |

+
≈

+∗

Where, by definition φ ≤ +m n and generally φ + m n. Therefore, while looping through each protein in 
σΓ w w( ( , ))ai

x
a , only very rarely will it occur in the intersection. These costly set intersections are unavoidable for 

any given pair of sets. Moreover, they must be repeated mn k k1/2( )a b  times. To circumvent this costly intersec-
tion computation, an alternate preprocessing data representation is proposed.

With the intent of directly precomputing these set intersections (such that membership checks of this inter-
section are never false), we look to first generate a hash table data representation having a key:value pair where the 
key comprises each potential protein of the set intersection, 

ψp , while its associated value comprises a list of the 
indices of the sliding windows where this protein occurs within each input protein. We define the indices retrieval 
function, Ψ(·), which takes as input a protein and returns a list of all the indices of the similar windows occurring 
within a set of proteins (note the boldface):

σ

σΨ =










∈ Γ ∀ …

∈ ∀ …

∅
ψ

ψ

ψ

( )
p

x p w i n

y p w j m

w

w( )
, if ( , ) : 1, ,

, if ( , ) : 1, ,

, otherwise

,

(15)

ai
x

bj
y

a

b
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Instead of storing the set of proteins σ w(w , )bbj
y  for each window location y in protein pbj, we instead store 

Ψ p( )b  which is the set of all locations y for which the set σ w w( , )bj
y

b  contains 
ψp . Similarly, we store Ψ p( )a  which is 

the set of all locations x for which the set σΓ w w( ( , ))ai
x

a  contain 
ψp . In essence, rather than list all proteins similar 

to a given window, we list all windows similar to a given protein, enabling the direct acquisition of common sub-
sets (and thereby an interaction landscape) for every pair of windows by examining each 

ψp  and incrementing the 
landscape for every pair of windows between Ψ p( )a  and Ψ p( )b . A desirable consequence is that we never perform 
a membership check which returns false and the expected reduction in computational landscape generation time 
is a factor of:

O
O m n (16)

PIPE

PIPE

4

3

ϕ
=

+

The speedup of PIPE4 determined here is a notable increase over the PIPE3 algorithm11, which had previously 
improved over the former PIPE2 algorithm23. Implementation of these modifications requires two new database 
file representations. To simplify the notation, we define a list of indices as Ψ = Ψ p( )ai ai  and having length Ψai . The 
first database file, denoted ′d w, follows the same format as the original preprocessed version in (2), only instead of 
storing the proteins similar to each window of the database protein, we store the similar windows for each protein 
in the proteome. The format of ′d w is as follows:

Ψ Ψ Ψ Ψ′ ⊕ ⊕ ⊕ … ⊕ ⊕d m: (17)b bm bmw b1 1

The second database file, denoted ″dw , for a given protein, p, lists the window locations in p that are similar to a 
protein that interacts with each 

ψp :

Ψ Ψ Ψ Ψ″ ⊕ ⊕ ⊕ … ⊕ ⊕d n: (18)a an anw a1 1

The modified PIPE landscape generation algorithm leveraging these representations is detailed in Algorithm 
2. Analysis of the computational complexity of the modified landscape generation algorithm, ′O L, yields:

Ψ Ψ| | | |¯ ¯O( ) (19)a b

Where Ψa  is the average number of similar windows for a protein in a ′dw database file and Ψb  is the average 
number of similar windows for a protein in a ″dw  database file. These terms can be further broken down into:

ϕ
γΨ| | =




 +






¯ k

m n (20)
a

a

ϕ
Ψ| | =

+
¯ k

m n (21)b
b

Which, when substituted into (19), gives:

ϕ γ



 +






O k k

m n (22)

a b
2

Incorporating the original landscape generation complexity, OL, we determine that the modified landscape 
generation complexity, ′O L, is:

Figure 3.  Estimated Evolutionary Divergence Timeline.
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O O
m n (23)L

ϕ



×
+





Hence, we confirm the assertions from (14) and (16). Since φ + m n, generally, the new landscape gener-
ation algorithm is expected to be considerably faster at a rate proportional to the size of the proteomes of the 
organisms involved in the PPI prediction schema. Additional details of the experimental validation of the modi-
fied PIPE algorithm are available in the Supplementary File.

Predicting the comprehensive soybean, human-HIV1, and soy-SCN interactomes.  To predict 
comprehensive interactomes, we require known PPI data and sequence data. All PPI training data were obtained 
from BioGRID, where interaction data were filtered to only include physical PPIs. These data were assembled in 
accordance to the three schemas represented in Fig. 1: the A. thaliana intra-species interactions were obtained 
for Fig. 1A, the H. sapiens-HIV1 inter-species (only) interactions were obtained for Fig. 1B, and both A.thaliana 
and C. elegans intra-species interactions were obtained for Fig. 1C. Any duplicate interactions were removed. 
The amino acid sequences for the H. sapiens, A. thaliana, C. elegans, and HIV1 proteomes were obtained from 
the UniProt database selecting only the manually annotated and reviewed Swiss-Prot proteins. In the event that 
a known interaction from BioGRID did not correspond to a Swiss-Prot protein, the sequence was instead taken 
from the larger TrEMBL UniProt database, which comprises automatically annotated and reviewed proteins. The 
G. max and H. glycines sequences were each obtained from SoyBase and SCNbase respectively. The three interac-
tomes defined in Fig. 1 were then predicted using the PIPE4 algorithm as described above.

Dataset preparation for multi-organism inter- and cross-species experiments.  A high-quality 
dataset of previously known interacting PPIs was required for each of the organisms considered in this work. 
For each organism, we downloaded from BioGRID25 those intra-species PPI data that comprise physical PPIs 
(eliminating genetic interactions, co-localization, or functional associations). Intra-species PPIs were selected to 
simulate the use of one organism’s intra-species PPIs to predict another organism’s intra-species PPIs. Duplicate 
interactions were removed from the data and finally filtered to exclude species with ten or fewer PPIs. The seven-
teen species that met this criterion are tabulated with their dataset compositions in Supplementary Table S4. The 
amino acid sequences of every protein within these PPI datasets was downloaded from the UniProt database26. 
The Swiss-Prot database of manually annotated and reviewed proteins was used, and only when a known inter-
action from BioGRID did not correspond to a Swiss-Prot protein, did we extract the sequence from the larger 
TrEMBL UniProt database (comprising automatically annotated and reviewed proteins).

Cross-species validation experiments.  A preliminary demonstration of PIPE’s ability to complete 
cross-species PPI prediction was presented in27, wherein the known PPIs from S. cerevisiae could be used to 
predict H. sapiens PPIs and vice-versa. While it was shown that the predictions improved over random chance, 
general best practices for making cross-species predictions were not examined further. The central hypothesis of 
this work considered the performance rank to be inversely correlated with evolutionary distance rank; i.e. it is 
expected that more closely related species would perform better in cross-species prediction tasks due to evolu-
tionary conservation of protein sequence, function, and structure.

Algorithm 2.  Modified PIPE Landscape Algorithm.
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One-to-Many Cross-Species predictions use the trained model of one source organism to make predictions for 
other target organisms to examine the relationship of evolutionary distance with classification performance using 
area under the precision-recall curve (AUPRC) and precision at 25% recall (Pr@25Re) metric. Many-to-One 
Cross-Species predictions use the trained model of multiple pooled organisms to make predictions for a single 
target organism. For these latter experiments, Kendall’s Tau-b and Spearman rank correlation tests were used to 
examine whether relative evolutionary distance correlated to predictive performance. The training data for each 
organisms was obtained from BioGRID and the protein sequences from UniProt; their specific composition is 
tabulated in Supplementary Table S4.

Evolutionary distance relation to classification performance.  A central hypothesis to this work is 
that evolutionary distance will influence predictive performance such that more closely related organisms will 
produce improved cross-species PPI prediction. This was tested by estimating the evolutionary distance between 
each organism using a phylogenetic tree and correlating that distance with the resulting predictive performance 
for each condition (Fig. 3), however only the eight species amenable to random subsampling of 2000 training PPIs 
(to control for amount of training data) were considered. Of particular note, certain species may be evolutionarily 
equidistant to others such as H. sapiens with both of M. musculus and R. norvegicus. In this case, we expect the 
resulting rank to be the same. For example, when predicting M. musculus PPIs, the highest performance would 
be expected when training with M. musculus PPIs, followed by training with R. norvegicus PPIs, followed by H. 
sapiens PPIs and so forth. The comprehensive interactomes for all pairwise combinations of these eight organisms 
were predicted. Using a random subsample of 100,000 non-interacting pairs as the negative set, ROC curves were 
generated for all combinations and repeated 20 times (to control for the random sampling procedure); the aver-
age ROC curve was reported. Correlation between evolutionary distance and performance was measured using 
Spearman and Kendall’s Tau-b rank correlation tests.

Kendall’s Tau-b rank correlation test and the Spearman rank correlation test were both used to test the corre-
lation between evolutionary distance and performance (both AUPRC and Pr@25Re) with each training species. 
We selected a class imbalance of 10:1 (negative:positive) when computing prevalence-corrected precision for the 
AUPRC metric. The prevalence-corrected precision (PCPR) is defined as:

=
+ −

=PCPR Sn
Sn r Sp(1 )

, where r 10 for 1: 10 imbalance
(24)

which conveniently enforces the selected class-imbalance, regardless of the number of positive or negative test 
samples. The class imbalance can influence the relative ordering of the AUPRC metric, but has no bearing on the 
Pr@25Re metric. Kendall’s Tau-b rank correlation equation has the form:

τ =
−

− −

n n
n n n n( )( ) (25)

B
c d

0 1 0 2

where nc and nd are the number of concordant and discordant pairs of rank. These respectively count the number 
of times when the expected and actual ranks are homogenously larger or smaller in one row (concordant) and the 
number of times they are not (discordant). The divisor corrects for the number of non-duplicate rank pairs, where 
n1 and n2 are the number of duplicate ranks for each column and = −n n n( 1)/20 . Here, we adapted this correla-
tion coefficient by counting the nc and nd for each test species independently and then summing the results for a 
single Tau-b coefficient which encompasses every pair of the training and test species. Since this adaptation may 
invalidate the assumptions of a conventional p-value estimation of the Tau-b test (specifically multiple-testing), 
we corroborate our findings with the permutation-based estimation, described below.

Evaluation of statistical significance was achieved using two independent methods. The first (implemented 
in the R language) approximated the Tau-b and Spearman distributions. The second generated the distribution 
through permutation tests where the evolutionary ranks are shuffled randomly over multiple iterations and the 
correlation coefficients calculated in each instance and the resulting p-value comprises the percentage of shuffled 
ranks producing a correlation coefficient equal to or more extreme than the experimentally observed value. An 
example PR curve for H. sapiens is depicted in Supplementary Fig. S5 and suggests that those organisms more 
closely related to the test species provide higher cross-species prediction accuracy. The summary of the statistical 
tests for both the AUPRC and Pr@25Re experiments are listed in Supplementary Tables S7 and S8, respectively.

Inter-species validation experiments.  The H. sapiens-HIV1 inter-species schema involves two 
well-studied organisms with sufficient inter-species training samples to predict the comprehensive interactome. 
While the majority of these PPIs result from in vitro experiments, the comprehensive inter-species interactome 
is valuable for providing insights into disease pathogenesis and the discovery of putative drug targets. Given the 
large evolutionary distance between Human and HIV1, this inter-species schema is ideally suited to evaluating 
the performance of PIPE4 over its previous version. Moreover, the set of predictions promises to be highly val-
uable to the design, development, and testing of human therapeutics. Intra-species PPIs for both H. sapiens and 
HIV1 were pooled together to create the training dataset. The previously published inter-species PPIs were then 
used to evaluate the performance of the PPI predictors. The negative dataset comprised a randomly sampled set 
of PPIs equivalent in size to the set of known positives. The performance of the new PIPE4 scoring function is 
compared to the SPRINT PPI-predictor, the SPPS predictor, the former PIPE3 PIPE-Score, and original Similarity 
Weighted score using a Prevalence-corrected Precision-Recall (PR) curve. Given that there is no consensus to 
the prevalence of negative PPIs within the Human-HIV interactome, we opt to use 10:1 following from previous 
estimates in other species and for consistency with other experiments presented. See section “Comparison to the 
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State of the Art” for results. The comprehensive set of predictions between Human-HIV1 were deposited in the 
Dataverse for use by the broader community28.

Reciprocal perspective.  The RP-PPI meta-method, as described in16, is a cascaded machine learning layer 
which leverages context-based features to improve the classification performance of PPI predictors. We applied it 
to each of the interactomes generated in this work.

To validate the RP-PPI method for cross-species predictions, the cascaded classifier trained and evaluated on 
one species was used to make predictions for another using only the Rank- and Fold-Type features, as described 
in16; Score-type features were excluded to control for score biases between organisms. This was performed for 
all combinations of intra-species datasets over five organisms: H. sapiens, M. musculus, C. elegans, S. cerevi-
siae, A. thaliana. The average increase in AUPRC, following 1,000 bootstrap iterations, over the baseline PIPE4 
cross-species performance was summarized as a heatmap (see section “Reciprocal Perspective for Inter- and 
Cross-Species Predictions”).

Comparing PIPE4 with the state-of-the-Art PPI predictors.  Finally, we compare the improved PIPE4 
method against comparable PPI prediction methods with respect to computational speed, predictive perfor-
mance, and requisite computational resources (e.g. amount of RAM required). While a broad suite of methods 
exists, we restrict our comparison to only those methods capable of predicting all possible pairs of interaction 
within or between organisms and are thus available to leverage the RP-PPI method that leads to improved pre-
dictive performance. Following previous benchmark comparisons10, we considered the method of Guo et al.29,  
Martin et al.30, a more recent SVM-based method based on Shen et al.31 denoted “Sequence-based Protein 
Partners Search” (SPPS)32, and the recently released SPRINT method33.

The Guo predictor makes use of a support vector machine (SVM) that leverages a feature vector for a protein 
sequence comprising the auto-correlation values of seven physicochemical properties which are concatenated 
for a given protein pair. The Martin predictor relies on feature vectors encoding sequence information within the 
product of signatures that are defined to be a culled set of subsequences; these are then used in an SVM to classify 
PPIs. The SPPS method is a more recent sequenced-based SVM predictor of PPIs wherein the encoded PPI infor-
mation from the protein sequences is projected into a vector space of frequencies of conjoint triads (physiochem-
ical properties of an amino acid and its vicinal amino acids are examined as a unit); these are then amenable for 
use in an SVM predictor. The SPRINT method uses spaced-seeds to encode similarity within subsequences and 
then processes these elements to eliminate those that occur too often to be involved in interactions.

Based upon the benchmark results determined in the SPRINT paper, where their performance was compared 
to both the Martin and Guo methods, the time and memory requirements (>2 weeks compute time, and/or 
>256GB of memory) of these two methods were too extreme for further consideration. Neither of these methods 
is capable of predicting the entire human interactome (~203 million possible pairs) in a reasonable time frame, 
and by extension, are unable to predict the entire soybean interactome (~2.8 billion possible pairs). Moreover, 
the Guo and Martin methods were previously compared with the PIPE2 method, finding the ancestral version 
of PIPE to exhibit superior performance10. By transitive property, it is superfluous to compare PIPE4 to Martin 
and Guo. For these reasons, for the large-scale comprehensive interactome prediction tasks (e.g. soy vs. SCN), we 
restrict our comparison to the only other method reported capable of predicting comprehensive interactomes, 
SPRINT. However, for a more modestly-sized inter-species prediction task (Human-HIV1), we compared the 
PIPE3, SPRINT, and SPPS predictor against PIPE4.

These experiments were conducted on the Agriculture and Agri-Foods’ high-performance cluster, denoted 
BioCluster, comprising 9 Dell PowerEdge R930’s in Dual Socket configuration, Intel(R) Xeon(R) CPU E7-8870 
v4 at 2.10 GHz, 1TB of RAM at 1600 MHz, 1.7 TB SATA SSD. To fairly compare the runtime of each method, 
each predictor was allocated 20 parallel threads, each with 256GB of RAM. See section “Comparison to the State 
of the Art” for results.

Benchmark Measure

H. sapiens A. thaliana S. cerevisiae

PIPE4 PIPE3 PIPE4 PIPE3 PIPE4 PIPE3

Database Size (GB) 18 1.6 5.6 0.7 1.9 0.2

Database Processing (s) 3191 3194 1358 1325 263 255

Predicted Positive Pair (s) 0.0155 0.7700 0.0061 0.1103 0.0113 0.1280

Predicted Negative Pair (s) 0.0084 0.4447 0.0049 0.0615 0.0054 0.0448

All-to-All Prediction (h) 3.3 175.9 1.4 17.6 0.2 2.0

Landscape Generation (s) 0.0056 0.4405 0.0022 0.0586 0.0029 0.0427

Total Speedup (~x) 53.2× 12.5× 8.4×

Landscape Generation (~x) 79.2× 26.4× 14.8×

Proteome Size, n 20,236 17,226 6,721

Table 1.  Intra-Species Benchmark Results on a Medium Sized Cluster. All experiments run using 18 nodes with 
8 threads/node.
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Results
With the need for increasingly large-scale and complex PPI prediction schemas, contemporary algorithms must 
be adapted to efficiently predict comprehensive interactomes. Here, the next iteration of the PIPE algorithm is 
adapted for application to inter- and cross-species predictions with improvements in computational time com-
plexity and predictive performance. To our knowledge, PIPE4 is the first PPI predictor developed specifically with 
complex PPI prediction schemas in mind. In addition to its computational efficiency and PPI prediction accuracy 
being competitive with the state-of-the-art, PIPE can additionally propose the putative site of interaction using 
the PIPE-Sites algorithm, previously described.

The comparative study by Park was one of the first evaluations of PPI predictive performance for intra-, inter-, 
and cross-species schemas. While only Human and Yeast were considered at the time, the PIPE2 algorithm that 
was used in the study was demonstrated to outperform the competing methods when considering precision and 
recall10. The subsequent PIPE311 sought to massively scale the PIPE algorithm for use in comprehensive predic-
tion tasks (predicting proteome-wide interaction networks) and now in its fourth iteration, the PIPE4 algorithm 
is adapted to inter-species and cross-species prediction schemas. Here, we look to build extensively upon the pre-
vious findings of Park by taking a more thorough examination of the factors involved in these complex schemas.

PIPE4 speedup experiments.  PPI prediction is embarrassingly parallel and therefore the total algorithmic 
runtime is a function of the time required to calculate the score for an individual PPI. Written in the C language 
and using MPI and OpenMP for parallelization, the PIPE4 algorithm was run on a medium-sized local com-
puting cluster. Comprising 18 compute nodes, each contains a 100 GB SSD, 32 GB of RAM, and an Intel Core 
i7-3770 8-core processor at 3.40 GHz. Comparing the previous PIPE3 with the current PIPE4 methods on the 
same benchmark datasets (intra-species predictions to appropriately appraise each version) we observe findings 
congruent with the derived asymptotic complexity (Table 1). That is, the relationship between the speedup and 
proteome size is linear; the larger the predicted proteomes, the greater the speedup.

Example ROC Curves of Many-to-One & One-to-Many Experiments
A: Many-to-One

Train: Multiple; Test: Mouse 
B: One-to-Many

Train: Mouse; Test: Human 

PIPE3 SW

PIPE4 SW

C:

0.00 1.000.25 0.50 0.75 0.00 1.000.25 0.50 0.75
0.00

0.25

0.50

0.75

1.00

TP
R

FPR FPR
P

re
ci

si
on

Recall

Figure 4.  Example ROC and PR Curves of Many-to-One and One-to-Many Experiments. (A) depicts the 
ROC performance when using several organisms to evaluate Mouse PPIs. (B) depicts ROC performance using 
evolutionarily proximal Mouse to predict Human PPIs. (C) ranks PR performance when predicting Human 
PPIs when training on another organism.
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The computational space-time trade-off resulted in a substantial increase in database file size. The corre-
sponding data structure must fit into available RAM; however, we note that even for the largest proteome, this 
does not exceed the modest capacity of the machines used. Since the vast majority of use cases are expected to 
be performed on proteomes equal to or smaller than the human proteome, the increase in database size is an 
acceptable trade-off for the improvements in computational time. Moreover, when compared to contemporary 
sequence-based methods, such as SPRINT, the PIPE4 algorithm now makes predictions within an order of mag-
nitude using comparable infrastructure.

Evolutionary distance relation to classification.  One-to-Many cross-species predictions for all 56 pair-
wise combinations were summarized using AUPRC and Pr@25Re for both PIPE3 and PIPE4. A paired t-test on 
the differences in means revealed a statistically significant difference (p < 0.001) with a true increase in mean 
precision of 1.1% and 1.9% of AUPRC and Pr@25Re respectively for PIPE 4 (Supplementary Table S5). Thus, 
the new PIPE4 scoring method significantly outperforms the PIPE3 version when using a single training spe-
cies. Similarly, Many-to-One cross-species predictions for the 8 group-wise combinations were summarized 
(Supplementary Table S6). A paired t-test revealed a statistically significant difference (p < 0.01) with a true dif-
ference in mean precision estimated to be 9.6% for AUPRC and 16.4% for Pr@25Re. Since the modified SW-score 
enables the combination of multiple training species, we examined the relationship of evolutionary distance to 
classification performance. In the majority of cases, evolutionary distance is significantly correlated to perfor-
mance at the p < 0.05 level (16/32, Supplementary Table S7; 19/32, Supplementary Table S8). Qualitatively, the 

Figure 5.  Reciprocal Perspective Increase in AUPRC using One-to-Many Cross-Species Predictions on PIPE4.

Figure 6.  Comparison of PR Curves between PIPE3, PIPE4, SPRINT, and SPPS with on the H. sapiens-HIV1 
Inter-Species Interactions.
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closer related organisms perform well in cross-species predictions with a steep drop-off in performance there-
after (Fig. 4). These findings suggest that One-to-Many cross-species prediction are suitable in both close and 
distantly-related species whereas Many-to-One predictions are beneficial only in very closely related organisms. 
While future research in the pursuit of systemically applicable rules are warranted, researchers interested in per-
forming their own inter- and cross-species predictions might consider three key findings from this work when 
preparing their training datasets:

	(1)	 Organisms more closely related to the test species provide higher cross-species prediction accuracy.
	(2)	 One-to-Many cross-species prediction are suitable in both close and distantly-related species.
	(3)	 Many-to-One cross-species predictions are beneficial only in very closely related organisms.

Reciprocal perspective for inter- and cross-species predictions.  When RP is applied to cross-species 
predictions, only the Rank- and Fold-type features are considered; the original score is excluded from the 
model. Therefore, we cannot expect a comparable increase in performance as for intra-species application. A 
non-negative, at times modest increase in AUPRC over PIPE4 is observed for most train/test species pairings 
(Fig. 5). The largest gains in performance occur for instances where PIPE4 performed particularly poorly (e.g. 
train on A. thaliana and test on H. sapiens) and where the two organisms have similarly sized proteomes (e.g. A. 
thaliana and M. musculus) indicative that these organisms may share similar distributions of protein interaction 
profiles. By the definitions of the RP method, we would not expect performance gains to correlate with evolution-
ary distance, but rather with proteome size and the rank-order distribution of relative PPI scores for each protein. 
Those organisms with the smallest proteome sizes do not lead to sizeable gains in classification performance for 
organisms with larger proteomes.

The RP meta-method is thus best suited to augmenting inter-species predictive performance and can generally 
be applied to cross-species schemas with varying degrees of success. Most notably, for cross-species predictions 
where the initial classifier performs poorly, RP can substantially improve performance and where the initial clas-
sifier performs well, modest increase or equivalent performance is expected from applying RP.

Comparison to the state of the art.  Comparing the PIPE3, PIPE4, SPRINT, and SPPS methods over the 
Human-HIV1 inter-species PPI prediction task, we note that the SW-score improves precision over the PIPE3 
PIPE-Score and SPRINT score across the range of recall values (Fig. 6). Moreover, the PIPE4 SW-score perfor-
mance dominates throughout the range of precision values we desire most, i.e. Pr ≥ 0.5, where at least half of the 
positive predictions are true. The PIPE3 and SPRINT scores perform similarly to each other within this range. The 
SPPS method performs the worst of all methods. The hardware requirements to generate these comprehensive 
interactomes are comparable between PIPE4 and SPRINT. Evaluating the requisite RAM for the largest prediction 
task (G. max-H. glycines) resulted in both methods using ~150GB: 153 and 151, respectively. The SPPS method 
was not amenable to this study as it far exceeded the limitations on RAM; > 250GB.

The PIPE4 algorithm was explicitly designed to accommodate inter- and cross-species prediction schemas. 
The vast majority of existing sequence-based PPI predictors were not implemented with inter- and cross-species 
prediction in mind, including the PIPE3 algorithm. Consequently, the comparison in an inter-species con-
text may be unfair to competing methods. However, in agreement with the findings of Park using PIPE210, we 
observe that the PIPE3 SW-score consistently outperforms the competing methods, without accounting for the 
inter-species context (Fig. 6). The SPRINT and SPPS methods may both benefit from adapting their algorithms 
for use in these complex prediction schemas.

Summary.  With increasingly accurate and efficient PPI predictors applicable to complex prediction schemas, 
researchers can generate comprehensive interactomes which were originally prohibitive. For example, generating 
the H. glycines-G. max interactome can offer unprecedented insight into the molecular mechanisms between 
these species (such as with host-pathogen interactions) which may have far-reaching agricultural and economic 
impact.

In this work we introduced the PIPE4 algorithm, finding it to be significantly faster than its predecessor 
PIPE3, with speedups of 53.2, 12.5, and 8.4 times observed in H. sapiens, A. thaliana, and S. cerevisiae respectively. 
The modified SW-score was shown to improve performance in complex PPI prediction schemas involving cross- 
and inter-species predictions. The meta-method RP was shown to be effective for these complex cross-species 
prediction schemas. Finally, competing PPI predictors are expected to exhibit an improvement in predictive per-
formance within these complex schemas if their PPI scoring algorithms can account for the origin of training 
samples. We published the all-to-all predictions of the inter-species Human-HIV1 predictions for the benefit of 
the scientific community; available at https://doi.org/10.5683/SP2/PVOTRN.

Data availability
All datasets are publicly available from the databases (BioGRID, SoyBase and SCNbase) listed in the manuscript. 
The Human-HIV1 all-to-all predictions are publicly available at https://doi.org/10.5683/SP2/PVOTRN.
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