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Abstract: Leveraging computation in the development of peptide therapeutics has garnered increas-
ing recognition as a valuable tool to generate novel therapeutics for disease-related targets. To this
end, computation has transformed the field of peptide design through identifying novel therapeu-
tics that exhibit enhanced pharmacokinetic properties and reduced toxicity. The process of in-silico
peptide design involves the application of molecular docking, molecular dynamics simulations, and
machine learning algorithms. Three primary approaches for peptide therapeutic design including
structural-based, protein mimicry, and short motif design have been predominantly adopted. De-
spite the ongoing progress made in this field, there are still significant challenges pertaining to pep-
tide design including: enhancing the accuracy of computational methods; improving the success
rate of preclinical and clinical trials; and developing better strategies to predict pharmacokinetics
and toxicity. In this review, we discuss past and present research pertaining to the design and de-
velopment of in-silico peptide therapeutics in addition to highlighting the potential of computation
and artificial intelligence in the future of disease therapeutics.

Keywords: peptide drugs; peptide design; computational biology; artificial intelligence;
protein—protein interaction; InSiPS

1. Background

Proteins are molecular machines that perform a diverse set of cellular processes, fre-
quently forming complexes via protein—protein interactions (PPIs). As a result, PPIs have
emerged as important targets for drug development, with peptide therapeutics designed
to disrupt these interactions garnering attention due to their high specificity and low im-
munogenicity [1-3]. Most PPIs are thought to be formed as a direct result of the docking
of 3D structures between proteins. However, growing evidence suggests that a notable
subset of interactions is mediated by short motifs (SMs) constituting an alternative mode
of PPIL. SMs are involved in a variety of endogenous processes ranging from receptor sig-
naling cascades to host-pathogen interactions [4], mediating approximately 15-40% of
PPIs [5].

Chemical inhibitors (drug compounds, antibiotics, etc.) have been historically pre-
ferred for therapeutics due to their ease of synthesis and cell membrane permeability [2].
However, they generally suffer from low specificity leading to off-target interactions and
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side effects. Peptide therapeutics have been found to exhibit high specificity [1]. However,
predicting their structure and interacting partners is challenging, impeding their general
applications. To address this challenge, several commercial and research groups (i.e.,
DeepMind, Baker’s Lab) have employed high-throughput machine learning algorithms
trained on numerous known protein structures to better study the biology of peptide ther-
apeutics on these structures [6,7]. Although these methods have demonstrated their effi-
cacy, they require significant computational resources and exhibit substantial complexity,
posing a barrier to their widespread adoption. Recently, algorithms based on SMs that
disrupt PPIs have emerged as a promising alternative [5,8-10]. These suggest that it may
not be necessary to consider a protein drug’s structure to assess its capacity for specific
interaction with a target, providing an accessible avenue for drug development, particu-
larly for proteins with poorly understood structures and interactions.

Generating highly specific peptide therapeutics based on protein structure is compu-
tationally intense [11]. Computational methods—such as a molecular dynamics simula-
tion—can model molecular behavior over time thereby providing insights into peptide
function and interactions. Structural-based peptide design utilizes insights from protein
3D structures to systematically develop and refine peptide-based therapeutics targeting
specific biological functions [12-14]. Meanwhile, protein mimicry entails designing pro-
teins to imitate small molecules, including peptides. This enables critical molecular reac-
tions and the development of drugs and therapeutics for various diseases [15]. Different
protein mimicry approaches including DeNovo and structure-guided design can be used
to stabilize protein structure, design drugs, and produce vaccines [15-17]. Furthermore,
combining SMs with various specificities can lead to the creation of multi-functional pep-
tides that can target multiple pathways or bind to multiple protein targets [18]. SMs are
highly conserved across species making it possible to use peptides designed to target dif-
ferent organisms and reducing the efficacy gap between species when testing peptide
therapies in animal models [19,20].

Peptide therapeutics generated in-silico using advanced algorithms and Al offer new
possibilities for generating peptide therapeutics with high specificity [1]. Computation
can aid in designing peptide structures to mimic protein activity, providing insight into
important disease pathways, cellular localization, and potential therapeutic applications
[15-17]. Peptide therapeutics developed through computation can therefore provide po-
tential avenues for generating therapeutics against a broader range of drug targets [10].
Peptide design primarily involves three related technologies each of which offers a distinct
perspective: structural-based, protein mimicry, and SM design (Figure 1). Here, we dis-
cuss past and present in-silico peptide design technologies and the future of Al in the de-
velopment of peptide therapeutics.
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Figure 1. The three primary technologies used to design small peptide therapeutics. The 3D struc-
ture comprises a large portion of the technologies used to generate peptide therapeutics. This struc-
tural technology utilizes five sources of data: experimental, statistical, de novo, alphabet, and other
sources. These inform neural networks to train the structural-based technologies to develop peptide
therapeutics. Protein mimicry involves generating peptide candidates derived from known interac-
tion partners. Candidate mimics are then tested against interaction partners. Short motifs (SMs)
comprise the final technology used to generate peptide therapeutics. This involves developing pep-
tides from previously known interaction motifs, which are then used to predict and generate small
peptide therapeutics. All three technologies are reviewed in this manuscript.

2. Algorithm and AI-Assisted Structural Design

Multiple techniques are available for predicting the 3D structure of peptides based
on physical principles [21]. Empirical rules are dependent on hydrogen bonding, steric
hindrance, and conformational preferences of amino acid residues, and can predict the
peptide’s secondary structure [22-24]. Statistical potentials are derived from statistical
analysis of known protein structures and can evaluate the compatibility of different pep-
tide conformations with observed protein structures whereas physics-based potentials at-
tempt to model the energy landscape of protein folding and can predict the stability of
different peptide conformations [21,25,26]. Molecular dynamics simulations utilize com-
putational techniques to model the motion of atoms and molecules over time and provide
information about the 3D structure, dynamics, and energetics of the peptide [27]. How-
ever, the accuracy of the results depends on the quality of the force field parameters, which
can be calibrated to match experimental data or calculated ab-initio, and the simulation
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outcomes should be verified by experimental data whenever possible [28,29]. These meth-
ods provide essential insights into the 3D structure and dynamics of peptides, but their
accuracy and computational efficiency have limitations.

Various techniques are used to predict the 3D structure of a peptide using de novo
design methods [30]. Fragment assembly methods involve predicting the structure of a
peptide by combining smaller fragments of known structures to build up the full structure
of the peptide. Ab-initio modeling predicts protein structure by searching for the lowest
energy conformation of the peptide backbone. Another commonly used computational
method is I-TASSER, which generates full-length models by combining template-based
modeling with fragment assembly simulation [31].

A de novo structural design method known as Rosetta is a molecular modeling soft-
ware suite that can predict the 3D structure of a protein using a Monte Carlo search algo-
rithm [29]. It can use various experimental data (including NMR spectroscopy and X-ray
crystallography) to improve the accuracy of its predictions. Rosetta’s protein—protein
docking tool can predict the structure of complexes between two or more proteins, which
is useful for understanding how proteins interact with each other. This in turn is an im-
portant point to consider when designing and generating peptide therapeutics [32]. Trans-
form-restrained (tr)-Rosetta was later leveraged to predict inter-residue contact maps for
a given sequence [33]. To achieve this, a loss function was defined as the Kullback-Leibler
divergence between the contact map predicted by the tr-Rosetta neural network and a
background distribution. This loss function was optimized through Monte Carlo-simu-
lated annealing, allowing for the simultaneous design of novel sequences and structures
[33]. Experimental characterization confirmed that diverse folded structures were success-
fully designed using this model. Coarse-grained modeling is a computational technique
that simplifies the representation of biomolecules (such as peptides) by reducing the num-
ber of degrees of freedom and using fewer atoms to represent the system [34,35]. In this
approach, the peptide is represented as a series of beads, where each bead represents a
group of atoms in the peptide backbone or side chains [35]. Coarse-grained models can be
used to generate an initial model of the peptide or protein, which can then be refined using
more detailed methods, such as molecular dynamics simulations or all-atom modeling.

2.1. Co-Evolutionary Analysis

Co-evolutionary analysis involves predicting the 3D structure of a peptide by ana-
lyzing the co-evolutionary patterns of amino acids within the peptide sequence. This
method involves analyzing the patterns of sequence variation among homologous pro-
teins or peptides [36]. If two residues are in proximity in the 3D structure, changes in one
residue are likely to be accompanied by compensatory changes in the other residue to
maintain the overall stability of the structure. Therefore, if two residues are co-evolving
this suggests that they are in proximity in the 3D structure. While these techniques pro-
vide valuable insights into the 3D structure and dynamics of peptides and proteins, they
are limited by their computational inefficiency [37].

2.2. Structural Alphabet

A structural alphabet method is a powerful computational approach to designing
peptide structures that simplifies complex protein structures by decomposing them into
small, repetitive structural building blocks known as “letters” or protein blocks [38]. The
method aims to capture the essential structural features of a protein while reducing the
complexity of the system, thus making it an efficient tool for designing peptides with de-
sired properties, especially in situations where experimental data on a protein structure is
limited or when dealing with large protein structures [39]. Structural alphabet methods,
such as Backbone-based Rotamer Library (BbRL) and PEP-FOLD3, offer unique ad-
vantages in peptide design and can lead to the creation of novel peptides with specific
backbone conformations and sidechain rotamers [40,41].
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BbRL is a structural alphabet method that generates a library of backbone-dependent
rotamers, which can be used to design peptides with specific backbone conformations and
sidechain rotamers [40]. This method enables researchers to predict side-chain confor-
mations with a high degree of accuracy. Meanwhile, PEP-FOLD3 is a computational
framework that can predict the 3D structure of linear peptides ranging from 5 to 50 amino
acids [41]. PEP-FOLD3 can perform de novo free or biased prediction and can generate
native-like conformations of peptides interacting with a protein when the interaction site
is known [41]. This makes PEP-FOLD3 an efficient tool for predicting the structure of lin-
ear peptides and understanding their interactions with proteins, which can be useful in
drug discovery and other therapeutic applications. Methods that use structural alphabet
are powerful computational tools that can help researchers design peptides with specific
structural features and properties. BbRL and PEP-FOLD3 are examples of such methods
that can simplify protein structures, reduce the complexity of the system, and facilitate
peptide design and optimization for a range of biological applications [40,41].

2.3. Deep Learning and Machine Learning

Al architectures have revolutionized the field of structural biology by enabling the
accurate prediction of complex peptide structures [42]. Among these methods, AlphaFold
stands out as a deep learning-based approach. AlphaFold accurately predicts protein
structures and has paved the way for other peptide design architectures such as Al-
phaDesign [24]. DeeProtein and ProDCoNN are also two examples of deep learning-
based methods that have achieved state-of-the-art performance in predicting protein func-
tion and structure [43,44]. Other notable methods such as RoseTTAFold, trRosetta,
DeepCNF, DuetDis, and PSICOV have also been developed to predict the 3D structure of
peptides with high accuracy [6,45-48]. These methods have the potential to greatly en-
hance our understanding of biological systems and enable the design of peptides with
specific structures and functions.

2.3.1. AlphaFold and AlphaDesign

AlphaFold is a deep learning-based method for predicting protein structures devel-
oped by researchers DeepMind Technologies [49]. It uses a deep neural network trained
on a large database of known protein structures to predict the 3D structure of a protein
from its amino acid sequence, incorporating multiple sequence alignment information
and modeling the distances between pairs of amino acid residues [49]. The predicted
structures are highly accurate and have important applications in understanding protein
function, drug design, and disease treatment. The most recent version of AlphaFold,
namely AlphaFold2 was benchmarked for its accuracy in predicting peptide structures
and was found to perform comparably or better than other methods that were designed
for the same purpose [50]. To this point, a recent study performed by Tsaban and col-
leagues demonstrated the ability of AlphaFold2 to accurately predict protein-peptide in-
teractions without prior training [51]. Specifically, AlphaFold2 was demonstrated to accu-
rately predict high-affinity binding interfaces between peptides and proteins, with or
without available binding pockets. Remarkably, AlphaFold2 can also predict peptide
binding sites upon protein conformation change. Furthermore, the length of assessed pep-
tides was found to not interfere with docking performance [51].

A recent study used AlphaFold2 to generate a peptide that targets a biomarker of
diabetes [52]. In this study, the authors used AlphaFold2 to link a skeletal muscle-targeted
peptide with a mutated FGF1 protein [FGF14HS]. This variant retains metabolic activity
while preventing mitogenic interactions with FGFR. Using this peptide-linked FGF1 var-
iant, the authors found that the AlphaFold2-generated peptide was critical to associate
FGF1 to skeletal muscle [52]. This notion is supported by several in-vivo and in-vitro assays
including fluorescence microscopy, protein-based assays, and in-vivo mouse monitoring
assays. Before this study, long-term application of the naive FGF14H8S to mice resulted in
several major disadvantages including weight loss, loss of appetite, and death. With the
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new AlphaFold2 linked peptide—FGF14H85S conjugate, these side effects were reported to
be reduced [52].

Another recent example of using AlphaFold2 to develop peptide therapeutics is the
development of the N1S peptide [53]. In this study, Modi and colleagues used AlphaFold
to develop peptides that would interfere with the Nrf2-MAFG interaction. Specifically,
three peptides of 16 amino acids in length were designed named N1S, N2S, and N3S.
Upon activity screening, only the N1S peptide displayed activity while showing no he-
molytic properties. In terms of peptide affinity, the authors found that the N1S peptide
has a dissociation constant (Kd) of 337 nM and can reliably prevent Nrf2-MafG heterodi-
merization [53]. Thus, using AlphaFold to develop peptides or peptide linkers appears to
be an effective and safe option to generate peptide therapeutics.

AlphaDesign is a similar method that predicts the 3D structure of a peptide from its
amino acid sequence, using a generative adversarial network architecture that is trained
on a dataset of protein structures and incorporates AlphaFold within an optimized design
process [23]. AlphaFold2 can predict peptide structures with high accuracy but has limi-
tations in predicting certain structural features [54]. Therefore, while Al architectures can
be powerful tools for predicting peptide structures, additional steps may be necessary to
analyze and validate the results.

2.3.2. Additional Neural Network-Harnessing Technologies

In recent years, several deep learning-based methods have been developed for pre-
dicting the functions and structures of proteins. DeeProtein is one such method that uti-
lizes residual and fully convolutional neural network architecture for the multi-label clas-
sification of protein sequences into 539 functional classes [39]. This network was trained
on a large dataset of protein sequences and can be used for functional dissection and en-
gineering of proteins. DeeProtein can predict the 3D structure of peptides by inferring its
3D structure based on the predicted functional class of the protein sequence [43]. ProD-
CoNN is another method for designing protein sequences that fold into a given 3D struc-
ture [44]. This method is based on a 9-layer 3D deep convolutional neural network that
takes atomic coordinates and types around a residue as input. The convolutional neural
network layers in ProDCoNN are specifically designed to capture structural information
at different scales, such as bond lengths, angles, torsion angles, and secondary structures
[44]. The method achieved state-of-the-art performance when tested on large numbers of
test proteins and benchmark datasets, after being trained on a very large number of pro-
tein structures.

DeepCNF is an extension of Conditional Neural Fields (CNF) that integrates condi-
tional random fields and shallow neural networks, allowing it to model complex se-
quence-structure relationships and interdependencies between adjacent secondary struc-
ture labels [47]. Experimental results demonstrated that DeepCNF outperformed popular
predictors and could also predict other protein structure properties [47]. DuetDis is a sim-
ilar CNF that utilizes duet feature sets and deep residual networks with squeeze-and-ex-
citation to predict fine-grained distances between residues with long sequence separations
[48]. It combines features from whole genome/metagenomic databases to minimize infor-
mation loss and improve prediction performance. DuetDis outperformed peer methods
in terms of accuracy, reliability, and robustness [48]. Another tool, Protein Sparse Inverse
COVariance (PSICOV) predicts residue-residue contacts by accurately discriminating be-
tween direct and indirectly coupled mutation correlations in multiple sequence align-
ments, which may have significant impacts on the prediction of structure and function [6].

2.3.3. Rosetta

RoseTTAFold is a highly accurate method for predicting protein structures that uses
three tracks representing the amino acid sequence, inter-residue distances, and 3D coor-
dinates of the protein [45]. By training on smaller peptide fragments and averaging pre-
dictions, it surpasses currently available techniques in accuracy, enabling it to assist in
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solving challenging MR problems and improve borderline cases. Recent work also
demonstrated that tr-Rosetta can be used as a computational method for predicting the
3D structure of a protein from its amino acid sequence [46]. It is an extension of the Rosetta
protein modeling software and incorporates deep learning techniques to refine the pre-
dicted structures. This method has shown high accuracy in predicting protein structures
and has outperformed other state-of-the-art methods in terms of accuracy [46]. It can be
used to predict the 3D structure of peptides from their amino acid sequences, which can
be useful in designing peptides with specific structures and functions.

Rosetta was previously used to generate small peptide inhibitors against the SARS-
CoV-2 (the virus responsible for the COVID-19 pandemic) spike protein and to BRAF—a
member of the RAF-kinase family [55,56]. At the outset of the COVID-19 pandemic, com-
putation was harnessed to produce a multitude of potential therapeutics to interrupt the
SARS-CoV-2 lifecycle [55]. In this study, Rosetta was used to produce peptides ab-initio
against the SARS-CoV-2 spike protein. Specifically, the authors report that thousands of
potential peptides were predicted using Rosetta. From an initial pool of 2.5 thousand pep-
tides, a combination of microarray screening and ELISAs reduced this pool to 4 peptide
candidates [55]. These candidates were then experimentally validated using a bio-layer
interferometry assay, in which the dissociation constant for each peptide was determined
to be between 100 and 250 nM [55]. This study, therefore, demonstrates the ability of Ro-
setta to design high-affinity peptides to a consequential human pathogen biomarker.

In another study, Rosetta was used to design several peptides against the sequence
that is thought to mediate the BRAF PPI [56]. Using the highest-ranked peptides, the au-
thors performed experimental validation through ELISAs and Co-immunoprecipitations
between BRAF and the peptides. They found one peptide—subsequently named
braftide—displayed an ICso of 364 nM to WT BRAF and 172 nM against oncogenic BRAF
[56]. Additional experimental validations between braftide and BRAF demonstrate the
ability of Rosetta to accurately predict a high-affinity peptide to a human cancer bi-
omarker through in-vitro experimental validation [56].

The computational methods discussed thus far can predict the complex and diverse
structures of peptides, such as a-helices, 3-sheets, and disulfide-rich peptides with high
accuracy. The development of these methods has been driven by the need to understand
the structure and function of peptides, which play important roles in biological systems
[23]. These methods have the potential to revolutionize the field of structural biology, by
enabling researchers to predict the structures of complex molecules quickly and accu-
rately, and to better understand their functions in biological systems. While challenges
remain, the ongoing development of these methods is likely to lead to further break-
throughs.

3. Designing Peptide Mimics

Protein mimicry refers to the process of manipulating and designing peptides to
mimic the structural and functional characteristics of small molecules. Peptides designed
in this manner can therefore play crucial roles in various physiological processes, and their
manipulation has the potential to serve as a key strategy for the development of novel
drugs and therapies for various diseases [14,57]. Computational tools can be utilized to
further refine the design of peptide structures, enabling the development of mimics with
enhanced activity and specificity [14]. This approach offers a promising strategy for gain-
ing a deeper understanding of the complex pathways involved in disease and identifying
specific target areas for therapeutic modification. Protein mimicry can be achieved
through different approaches, such as DeNovo and structure-guided design techniques.
These techniques have been applied to a wide range of applications including the stabili-
zation of protein structures, development of novel drugs, design of mimetics for vaccine
production, and the production of antibiotics [57,58]. Mimicry, therefore, is a powerful
tool for understanding and manipulating complex biological processes, with the potential
to revolutionize the development of new therapies for a wide range of diseases.
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3.1. DeNovo

The DeNovo mimic approach is a promising strategy for designing novel molecules
with potential biomedical applications. One such application is the development of bone
morphogenetic protein (BMP) mimics, which are peptides that can induce bone and car-
tilage formation [58]. Researchers have successfully used the Rosetta software suite to de-
sign two DeNovo protein mimics of BMP-2, which were highly stable and effective at in-
ducing bone growth in-vivo [58]. This approach holds potential for the development of
therapeutics for bone disorders. In addition, the DeNovo mimic approach has been used
to design Spliceostatin E (SPE) —a peptide that selectively inhibits the activity of Fibroblast
Growth Factor Receptor (FGFR) splice variants that are overactive in cancer cells [59]. The
designed SPE protein targets the FGFR heparin binding site and selectively inhibits the
activity, having little to no effect on other isoforms. This approach holds promise for de-
veloping targeted therapies for cancer treatment [59].

The DeNovo mimic approach has also been used to design a modified CRISPR-Cas9
system, dCas9, which targets the Polycomb Repressive Complex 2 (PRC2) inhibitor to spe-
cific DNA sequences to facilitate gene expression [60]. dCas9 was shown to decrease Myc
expression and increase H3K27me3, a marker of PRC2-mediated gene repression, demon-
strating its potential for use in gene regulation and gene therapy. These studies demon-
strate the potential of the DeNovo mimic approach for designing peptide therapeutics for
biomedical applications, including the development of new therapeutics for diseases such
as cancer and bone disorders.

3.2. Structural-Guided Design

Structural-guided design is an approach that combines topological data analysis and
machine learning to design stable and functional protein variants [17]. One notable exam-
ple is the Persistent Spectral Theory-guided Protein Engineering method, which has out-
performed other state-of-the-art methods and successfully identified a stable cytochrome
¢ variant while improving the stability, flexibility, and enzymatic activity of various pro-
tein systems [17]. An excellent review by Gupta and colleagues on this technique describes
several examples of peptides generated using this approach [14].

Recent use of this technology has yielded several peptides that can interfere with
consequential drug targets. A notable example is recent work performed by Kaur and col-
leagues, who used this technology to develop peptides that target the RNA polymerase
of the human pathogen Mycobacterium tuberculosis [61]. Specifically, Kaur and colleagues
developed several peptides that were designed to specifically target conserved residues
within the RNA polymerase-transcription factor complex [61]. Of the several peptides as-
sessed, they found that two seem to display activity, as measured by transcription effi-
ciency.

During the COVID-19 pandemic, there was a necessity to rapidly develop a wide
range of therapeutics to prevent infection. Early in the pandemic, the ACE2 receptor be-
came not only the target, but also the template for the design of many of these therapeu-
tics, as ACE2 is responsible for the entry of the SARS-CoV-2 virion into the host cells. To
this point, a recent study performed by Karoyan and colleagues used protein mimicry to
develop peptides that block SARS-CoV-2 entry into pulmonary cells [62]. In this study,
the authors identified 20 residues within the N-terminus of the ACE2 receptor that came
into close contact (4A) with the SARS-CoV-2 spike protein [62]. This information was then
used to develop several peptides that were specifically designed to avoid immunogenicity
while being optimized for high-affinity binding to the viral spike protein [62]. Upon test-
ing the effectivity of these peptides, the authors found that two peptides appeared to dis-
play the ability to block viral infection, namely P7 and P8. These peptides informed the
development of additional peptides (P9 and P10). Peptides P8-P10 were then shown to
display a high affinity of to the SARS-CoV-2 spike protein in a dose-dependent manner.
In terms of in-vivo applications, the authors found that these peptides displayed a 100%
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efficiency in reducing viral infection at a concentration of 1 uM, highlighting the affinity
of these designed peptides [62].

In addition to human pathogens, structural-guided peptide design can also be ap-
plied to mammalian proteins. One such example is a recent study performed by Cardote
and Ciulli, which used this technology to design peptides against the interaction between
E3-ligases and adaptor proteins [63]. The purpose of this study was to determine whether
small peptides can be used to target Elongin C, a component of an adaptor subunit. They
found that two peptides generated with this technology were able to bind to the contact
site between Cullin 2 and Elongin C, termed with the EloC site. Specifically, these two
peptides displayed an efficient dissociation constant, suggesting that binding did take
place [63].

Another recent study assessed whether structural-guided peptide design can im-
prove the T-cell receptor (TCR) specificity [64]. TCRs recognize antigens presented by an-
tigen-presenting cells, in which the antigens are usually small peptides [64]. To this point,
TCRs display low specificity culminating in high cross-reactivity. Thus, the purpose of
this study was to use a structural-guided design to enhance the specificity and reduce the
cross-reactivity of TCRs. The authors found that TCRs generated using structural-guided
design displayed a higher specificity to target peptides, with the strongest affinity being a
400-fold increase in affinity to a MART-1 peptide relative to WT TCR [64]. Thus, these
studies provide further evidence for the efficiency of peptides generated through struc-
ture-guided design.

Another area of research involves the binding interactions of small molecules with
RNA G-quadruplexes, which play important roles in gene regulation and cellular pro-
cesses. By identifying structural features of small molecules that selectively stabilize RNA
G-quadruplexes, researchers have the potential to develop new drugs that target these
specific structures [65]. Lastly, algorithms such as TopoBuilder and RITA are used in
DeNovo protein design. TopoBuilder generates diverse protein folds and pockets through
fragment assembly and scoring functions, with several proteins capable of binding to
small molecules in-vitro studies [66]. RITA, a computational tool used for training gener-
ative protein sequence models using large datasets and advanced computational re-
sources, has potential implications for the development of new and more efficient meth-
ods for peptide design and drug discovery [67].

4. SM-Focused Design

The modularity of SMs offers a broad range of potential drug targets, thereby allow-
ing for the generation of multifunctional peptides with different specificities. Due to being
highly conserved across species, SMs are useful for the development of peptide therapeu-
tics with reduced efficacy gaps in animal models [19,20]. Additionally, SMs can be used
as a scaffold to determine protein interactions quickly and efficiently, making them valu-
able for screening potential drug candidates [68]. To this point, we previously developed
the Protein-Protein Interaction Prediction Engine (PIPE) which can accurately predict
protein interaction motifs between several proteins [68-71]. This is achieved by relying on
an input dataset from protein databases such as BioGrid, which itself contains 40 thousand
interacting protein pairs. The underlying principle behind PIPE and how this algorithm
has evolved into generating inhibitory peptides is discussed below.

4.1. Motif-Based Protein—Protein Interaction Prediction

PIPE leverages SMs found in query proteins that mediate other known interactions
to generate its predictions [68]. Specifically, PIPE scans through the amino acid sequence
of query protein A and compares this to previous interaction data within protein data-
bases to find similar motifs (Figure 2). Once a matching sequence/subsequence/motif is
found (between the query sequence and a known protein), all known interactors of the
protein containing the homologous motif are noted. This process continues until the in-
teraction network has been completely scanned for matching subsequences with query A.
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Next, query protein B is compared to the protein network associated with matching motifs
from query A. Every time a subsequence from query protein B is found to interact with a
protein partly homologous to A, the probability of an interaction between A and B medi-
ated by these subsequences increases. These scores are kept in a 3D result matrix, where
a plot of protein A against protein B’s sequences is extruded in the third dimension when-
ever an interacting pair of subsequences is found. The PIPE data matrix is then used to
calculate the fitness (or specificity) of each amino acid sequence by comparing their affin-
ity to targets vs. non-targets [68]. The PIPE algorithm was later expanded to accommodate
global PPI analysis. In 2008, it was used to elucidate the first computationally predicted
genome-wide PPI analysis in a cell [69]. It was later used to predict inter-species PPIs [71].

P1
e
A rossivle interaction_

v

Known interactions
containing similar segments

' "

Interaction predicted
by likely SM pair

SM1 SM2

Figure 2. The theory underlying the PIPE algorithm. PIPE predicts PPIs through leveraging known
interactors that contain similar segments. SMs that mediate known interactions are used to train the
PIPE algorithm to predict new interactions. The prediction output is ranked based on the probability
of the two SMs interacting. The probability of an interaction is informed by the known interaction
data. PIPE has demonstrated the ability to predict novel PPIs in yeast and humans.
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De Novo is a comparable PPI prediction algorithm that leverages SMs in primary
sequences to evaluate host-virus interactions [9]. Unlike PIPE, this algorithm is suited to-
wards applications where there are few known interactions to train it. Instead, De Novo
predicts interactions using the physiochemical properties of the host proteins and their
interactions with other known viruses [9].

Another tool that can be used to predict protein-peptide interactions is Galaxy-
PepDock [72]. This tool incorporates a database of known protein-peptide interactions to
inform novel peptide docking predictions. In terms of accuracy, GalaxyPepDock outper-
formed similar tools such as PEP-SiteFinder and PepSite in identifying potential peptide
binding sites on target proteins [72].

PIPE was expanded upon in 2011 with the development of PIPE-Sites, which aimed
to analyze the topology of the result matrix output by PIPE to automate PPI analysis, en-
abling the exploration of SM discovery at the scale of entire proteomes [70]. PIPE-Sites
first determines the peak(s) in the result matrix, which represent highly occurring amino
acid pairs in interacting protein pairs, then measure their cross-sectional area to find the
size of the binding site. PIPE-Sites successfully predicted previously documented PPI
binding sites in yeast from a PIPE result matrix with very little discrepancy from the
known regions. PIPE-Sites discovered nearly 1000 non-annotated potential interaction
sites among a dataset of 14,438 interacting yeast proteins, which was obtained from a pre-
vious screen [69]. PIPE-Sites expands upon PIPE by automatically analyzing PIPE data to
provide potential SM between interacting pairs, which may be used to conduct exhaustive
whole-proteome interaction searches.

Currently, several additional databases and tools are specific to SM annotation and
discovery. DlIscovery of LInear MOTifs (DILIMOT) is an SM discovery tool that utilizes
protein FASTA sequences as input in addition to using BLAST to find orthologous groups
and MUSCLE for multiple sequence alignments within intrinsically disordered regions.
These are then analyzed by a pattern-matching algorithm to find motifs [73]. The Short
Linear Motif (SLiM)Search and SLiMFinder are similar tools that use BLAST for sequence
alignments to find short recurring sequences that may mediate PPIs [74], while others
such as the Protein—Protein Interactions Domain Miner infer SMs or domain-domain in-
teractions, from many sources of PPI data (KBDOCK and 3did [75,76]).

In 2014, PIPE was expanded to increase its efficacy by parallelizing it, resulting in
Massively Parallel-PIPE (MP-PIPE) [6]. MP-PIPE aimed to enable whole-proteome analy-
sis in organisms with complex interactomes, providing more applicable information to
biomedical research, particularly in peptide therapeutics [77]. By scanning the human pro-
teome, MP-PIPE predicted 172,000 PPIs, of which 133,000 were newly discovered, quad-
rupling the known human interactome knowledgebase [77]. MP-PIPE only accesses pro-
tein sequence data and incorporating more information such as structure and cellular lo-
calization might improve its accuracy, such as matching gene-ontology terms to increase
confidence in predicted PPIs. We used MP-PIPE was used to detect novel interactions in
the breast cancer pathway, discovering three novel interactors, CDK3, AURKB, and
SMC1B, and observed two candidate mutations participating in different interactions
which might lead to therapeutic resistance [8]. A sensitivity of 23% might be further en-
hanced by an increase in data quality and further optimization/parallelization. Incorpo-
rating accurate structural data is another method to increase the efficiency of this algo-
rithm to predict interactions at a global level.

The latest version of PIPE, namely PIPE4, utilizes interaction graphs to solve the in-
teractomes of poorly annotated organisms [78]. PIPE’s use of interaction graphs intro-
duces a bias towards PPIs like those in the host organism. While this bias has not been
problematic for discovering PPI data for well-studied organisms [8,69,79-81], it can pose
a challenge for investigating PPIs for an emerging pathogen for which little interaction
data is available. PIPE4 addresses this issue by annotating inter-species interactomes to
elucidate disease pathogenesis and explore interactome evolution. To this point, Het-
erodera glycines is an agricultural pathogen that affects soybean, the latter having three
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billion putative PPIs [78]. We used PIPE4 to predict interactions between soybean and H.
glycines using cross-species proxies Arabidopsis thaliana and Caenorhabditis elegans [78].
This approach allowed us to accurately annotate the host-pathogen PPIs between soybean
and H. glycines. A post-experimental validation called Reciprocal Perspective for Im-
proved Protein—Protein Interaction Prediction was conducted to decrease the false-posi-
tive rate in PIPE4 [82]. This validation considers a reciprocal relationship in protein pairs
instead of treating one as a binder and another as a ligand, leading to fewer false positives.
We recently leveraged PIPE4 in the prediction of human-Soybean PPIs, with the goal of
predicting PPIs involved in human-soybean allergies [83]. We found several novel PPIs
that might be consequential to human health and allergy between the two organisms [83].

4.2. SM-Based Peptide Design

The In-Silico Protein Synthesizer (InSiPS) is a novel method for designing inhibitory
peptides capable of selectively binding and inhibiting specific target proteins in living or-
ganisms [10]. The process involves generating new peptide sequences by modifying a pool
of randomly generated amino acid sequences using copy, mutate, and crossover opera-
tions, and then evaluating the fitness of each peptide using PIPE which ranks peptides
based on their predicted affinity to the target protein (Figure 3). The peptides with the
highest fitness scores are used to create a new pool, and this process is repeated until the
top-scoring peptides’ fitness plateaus. As the binding fitness is derived from PIPE, the
generated peptides interact with the target protein based on the interaction between linear
motifs as described above.
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Figure 3. InSiPS generates peptides specific to a wide range of protein targets. First, an initial pool
of mixed random peptides in-silico is generated. These peptides are then evaluated against the target
protein to determine whether they interact. At the same time, the peptides are evaluated against a
pre-defined set of non-target proteins, to ensure high target specificity. The highest-ranked peptides
that bind the target and avoid non-targets are then modified through mutations and crossover ap-
plications to enhance target affinity. This process is repeated until the peptide score (i.e., the highest
predicted target affinity) plateaus. At this point, the peptides are ready for further in-vitro and in-
vivo analysis.

An important attribute of InSiPS is the negative selection of the peptides [10]. For
each cycle, there is a negative selection against a predefined set of non-target proteins.
Each peptide is independently evaluated for its binding ability to the non-targets. There-
fore, only those peptides that bind to the target proteins (but do not interact with the set
of non-target proteins) are selected and used in the next generation. After each round of
selection, the pool of peptides is further enriched with peptides that interact with the tar-
get protein while simultaneously avoiding non-targets [10]. The set of non-target proteins
are different for each experiment. For example, if the target protein is a human cell surface
receptor, then the set of non-targets may constitute other human cell surface proteins. Per-
forming this negative selection enhances the specificity of the designed peptides to the
target protein and is, therefore, an important and unique attribute of InSiPS [10]. As
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peptides generated by InSiPS are designed based on naturally occurring interaction mo-
tifs, the chances of them interfering with PPIs and consequently having a biological func-
tion (for example, deactivation) is very high.

To this point, a proof-of-concept experiment demonstrated that InSiPS can design
peptides that inhibit the function of yeast proteins [10]. The peptides generated by InSiPS
were tested against three target proteins in-vivo: Rmd1 (cytosolic sporulation protein),
Pin4 (DNA damage repair protein), and Psk1 (serine/threonine protein kinase). The anti-
Pin4 and anti-Rmd1 peptides displayed inhibitory activity similar to the phenotypes as-
sociated with PIN4 and RMD1 deletions, respectively. Specifically, we found that WT
yeasts treated with the anti-Pin4 peptide displayed a sensitivity phenotype to 0.1 M of
arsenite in a manner similar to WT untreated yeasts. These results were further supported
by a yeast-2-hybrid assay which demonstrated the ability of both anti-Pin4 and anti-Psk4
peptides to bind to Pin4 and Psk1. We also directly evaluated the binding affinity for these
peptides using an in-vitro walking array. We found that anti-Psk1 displayed a Kd of 2.2
nM, indicating a strong interaction between the peptide and the target protein. In these
experiments, anti-Rmd1 failed to demonstrate increased sensitivity to 3-mercaptoethanol
or L-1,4-dithiothreitol, as would be seen in an rmd1A strain.

Recently, InSiPS was utilized to design peptides against SARS-CoV-2 surface protein
S [84]. To accomplish this, two different regions of the S protein were selected as inde-
pendent protein targets: the receptor binding domain and the 51/S2 region, both of which
are implicated in virus entry into the host cell [85]. Human cell surface proteins were se-
lected as non-target proteins. Peptides designed in this way were evaluated for their abil-
ities to bind and hence detect the S protein. We further demonstrated that the designed
peptides can be used for both the capture and detection of the S protein from a protein
mixture using an ELISA analysis. Of the 10 designed peptides, 6 were found to have de-
tectable levels of binding to the target proteins. As little as 0.1 ng of the S protein in 1 mL
of protein mixture was detected by these peptides. The applicability of one of these pep-
tides for real-time COVID-19 diagnostics was evaluated using surface plasma resonance
analysis. The Kd value of that peptide was measured to be more than 10-fold lower than
that of the natural S protein interacting partner, the human ACE2 receptor protein.

In a manuscript under preparation, additional peptides designed in this way were
evaluated for their therapeutic abilities to interfere with the SARS-CoV-2 life cycle. Of the
10 peptides evaluated, four appear to interfere with the binding of the viral S protein to
its human host ACE2 cell receptor in an in-vitro assay as well as in an in-vivo biosensor
experiment (unpublished results). One of these peptides reduced the replication of the
SARS-CoV-2 virus by more than 75% in cell culture analysis.

Although InSiPS uses primary sequences as inputs (which allows for the rapid design
of peptides in addition to enabling non-computationally intensive evolutionary ap-
proaches), the length of the peptide is an important factor to consider during design [10].
Larger proteins can have increased occurrences of complementary amino acid sequences,
increasing their affinity and specificity to the target protein. This makes further analysis
and experimentation difficult and expensive. Furthermore, a larger protein has a tertiary
structure that is inherently harder to predict and could potentially fold in a manner that
sterically reduces its affinity to the target [10]. In addition, the interactions predicted by
InSiPS have a certain degree of error that must be considered prior to experimentation, as
the peptides may not functionally bind and inhibit their target. However, since the pep-
tides are designed based on interaction sites it is likely that the binding peptides will be
functionally relevant. As such, while InSiPS is limited to target protein size and potential
binding errors, it also exhibits high potential for developing SBPs with high affinity and
specificity to target proteins.

5. Current Advantages and Future Challenges of In-Silico Peptide Design

Synthetic peptides have a significant advantage over small-molecule drugs in that
they are structurally complex which can enable a single peptide drug to interact with
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many of the target binding sites required for activation or deactivation. One example of a
highly successful peptide drug is insulin [86]. Various techniques are available to design
therapeutic peptides including primary and tertiary peptide structure-based design. The
latter approach involves the use of 3D protein structures and computational docking to
identify potential peptide candidates that can bind to specific targets. However, this ap-
proach has limitations due to the availability of high-resolution protein structures and the
accuracy of docking algorithms. Though there are numerous in-silico approaches to de-
signing and generating peptide therapeutics each with benefits and drawbacks, two rele-
vant questions emerge pertaining to the in-vivo application of synthetic peptides. Do syn-
thetic peptides generated designed in-silico display bioactivity and can synthetic peptide
toxicity be predicted?

5.1. Peptide Bioactivity and Toxicity

Several in-silico tools have been developed that can predict the biological activity of
synthetic peptides [87-91]. One such too is the predictor of the antihypertensive activity
of peptides (PAAP) which, as its name suggests, was developed to predict whether pep-
tides displayed antihypertensive properties [87]. PAAP builds on a previous model which
predicted the inhibitory activity of small peptides [88] and utilizes a random forest algo-
rithm. To confirm the ability of PAAP to predict peptide activity, the model was passed
through a 10-fold cross-validation, leave-one-out cross-validation, and was compared to
a previously established prediction model AHTPIN [89]. These validations confirmed the
ability of PAAP to predict the antihypertensive activity of peptides.

Another peptide prediction tool is HemoPred. With the rapid and widespread devel-
opment of synthetic peptide therapeutics, understanding whether synthetic peptides can
induce hemolysis is essential. HemoPred was developed for this purpose [90]. This algo-
rithm considers three sequence features of synthetic peptides including the physiochemi-
cal properties, the peptide composition, and the dipeptide composition [90]. Various types
of cross-validation confirm the ability of HemoPred to outperform previous approaches,
such as HemoPI, SVM, and DT [90]. To this point, HemoPred was found to outperform
HemoP], in terms of mean accuracy of the prediction, by 2-3% points. This was observed
across multiple validation tests, suggesting that HemoPred is a highly accurate in-silico
model for predicting the hemolytic activity of synthetic peptides.

In terms of deep learning algorithms, a recent tool that uses deep learning to predict
the anticancer activity of peptides (DeepACP) was developed [91]. Specifically, DeepACP
uses three deep learning techniques including CNN, recurrent neural networks (RNN),
and CNN-RNN. Of the three, the RNN-based approach held the most promise for the
accurate prediction of anticancer properties, as this approach demonstrates a precision
score of 89.5%, an 83.9% F value, and an 84.9% accuracy score [91]. Compared to a CNN-
based approach, the RNN scores demonstrated a 4.8%, 1.6%., and 2.2% increase in perfor-
mance respectively. Though these results were not validated in-vitro, the high accuracy of
this in-silico model holds promise in the prediction of the anticancer activity of synthetic
peptides [91]. These tools were developed due to synthetic peptides displaying various
levels of immunogenicity —a major barrier to the large-scale adoption and application of
peptides as therapeutics [92,93]. In addition to their hemolytic activity, peptides can also
display several specificity-related side effects such as the inappropriate association with
immune receptors [94-96]. To this point, the field of immunoinformatics has produced a
few tools to predict the immunogenicity and toxicity of synthetic peptides [94,95]. One
such example is SYFPEITHI—a prediction model that can screen small peptide libraries
against immune receptors [96]. This in-silico-based screening approach relies on the rank-
ordered presence of anchoring amino acids as well as amino acids that are likely to medi-
ate an interaction [96]. Though not the focus of this review, tools have also been developed
to predict the interaction between larger peptides and immune receptors, such as
NetMHC and SMM [97-100].
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Though tools are available to predict peptide toxicity through inappropriate interac-
tions, peptides can still bind to other targets if not developed with an anti-selection [10,94—
96]. To this point, sequence-based peptide design relies on the identification of SM in pro-
tein sequences that mediate PPIs [10]. Additional sequence-based algorithms may use ma-
chine learning to infer physiochemical properties from these sequences [101]. Regardless
of the protein-target interaction scoring methodology used, the designed protein often
undergoes affinity maturation. While there are many approaches to developing therapeu-
tic peptides, InSiPS is one of the few genetic algorithms capable of designing a peptide
with high specificity to a given protein target [102]. The negative selection against a pre-
defined set of non-target proteins is a unique attribute of InSiPS. Such a negative selection
significantly increases the specificity of the designed peptides and may contribute to re-
duced toxicity and the side effects of the peptides that are designed for therapeutic pur-
poses.

5.2. Barriers to FDA Approval of Computationally Designed Peptides

Generating computationally designed peptides for in-vivo applications is in its in-
fancy [50,103]. Therapeutic peptides have several advantages over small-molecule drugs,
including high selectivity and binding affinity without the downside of decreased stability
and increased immunogenicity [104]. Despite their potential, peptides only account for
approximately 5% of the global pharmaceutical market in 2019 [2]. Though we have dis-
cussed several examples of in-vivo and in-vitro applications of designed peptides, many
barriers still exist that prevent their widespread adoption, the most critical being approval
by the Food and Drug Administration (FDA). To our knowledge, there is no FDA-ap-
proved peptide drug that was originally designed through computational approaches. It
is noteworthy to briefly discuss the current barriers of such synthetic peptides that impact
their FDA approval and thus large-scale adoption as therapeutics.

Predicting and modeling peptide structures is a complicated task, as peptides can
fold into complex three-dimensional structures [76]. This can impact the ability to accu-
rately predict their structure based on computational methods alone. Often, experimental
validation is required to confirm the predicted structures [10,51-53]. To this point, nearly
all of the examples discussed generate several candidate peptides, with few only display-
ing an effect. This raises a second potential barrier to widespread adoption. Designing
peptides that can selectively bind to the desired target, while avoiding off-target interac-
tions is difficult [10]. Given that peptide therapeutics can range in length (here we have
discussed peptides that are as small as 16 amino acids, and as large as 40), it is likely that
these small amino acid chains can interact with a multitude of non-targets. With the ex-
ception of InSiPS, we are not aware of other algorithms that have a built-in negative selec-
tion to prevent these non-target associations.

Another barrier is the biological stability of synthetic peptides. Like every bio-
material, peptides are subject to enzymatic degradation [105]. Whatsmore, the fact that
synthetic peptides are foreign to the host also limits their stability and bioavailability.
While computational tools can aid in predicting peptide stability, only experimental vali-
dation can confirm whether synthetic peptides are stable and bioavailable. Peptide half-
life refers to the rate at which these peptides remain stable and bioavailable [106]. To this
point, renal clearance of peptides can occur within minutes [106]. Certain technologies are
developed to enhance peptide stability [107]. Computational tools also exist to further en-
hance these aspects of synthetic peptides, though again the only real way to confirm pep-
tide half-life is through experimental validation which is a laboratory-intensive process.
In terms of delivering bioactive and nontoxic peptides into the host, peptides also have
low membrane permeability and oral bioavailability [108]. As a result, 90% of current pep-
tide therapies require injection which poses a challenge for medical adherence [108].

A final barrier to large-scale adoption of computationally designed peptides is man-
ufacturing and cost-effectiveness [92,109-112]. In terms of manufacturing, once a compu-
tationally designed peptide displays a desired effect, be its inhibition of a PPI or detection
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of a protein biomarker, scaling up production during manufacturing can pose challenges
[92,109-112]. For instance, ensuring peptide purity, consistency, and quality control at a
large-scale may require additional optimization. Though this is an important point to con-
sider, it is thought of as a minor point as in certain cases these issues can be readily re-
solved. In terms of cost-effectiveness, developing and manufacturing peptides can be an
expensive venture, especially ona small scale. In basic research, synthesizing peptides can
cost thousands of dollars with only one or two peptides displaying some sort of effect
[110,112]. This is a major barrier to studying, designing, and generating peptides. Though
when shifted to a large-scale manufacturing environment, the cost-effectiveness of pro-
ducing peptide therapeutics can be rapidly consolidated. Thus, the barrier to peptide ther-
apeutic development in terms of cost is front-loaded in basic research and academia
thereby in certain cases preventing widespread investigations into studying and develop-
ing peptide therapeutics.

5.3. Applications of Therapeutic Peptides and the Future Peptide Design

We have discussed several methods and tools to develop and predict the activity of
synthetic peptides. How then can these peptides be applied? Several examples have been
discussed, such as anticancer and antiviral peptides [62,84,91]. Aside from the biological
and cellular applications of peptide therapeutics, these synthetic peptides also hold prom-
ise for developing new diagnostic tools. For example, von Willebrand disease (VWD) and
platelet-type VWD have nearly indistinguishable symptoms. This is due to both diseases
affecting one of two proteins in a critical PPI between platelet glycoprotein 1b ot and von
Willebrand factor proteins [113]. Specifically, a mutation in the 3-sheet of GP1ba results
in an excessive interaction with VWF [113]. Generating synthetic peptides that are specific
to one of these proteins can therefore eventually result in a diagnostic test to determine
which biomarker is being affected. Another diagnostic tool can be developed relating to
microbial pathogens. We previously used InSiPS to develop a proof-of-concept ELISA as-
say to detect the SARS-CoV-2 spike protein S [84]. Thus, there is the possibility that syn-
thetic peptides can be developed against key biomarkers of microbial pathogens, eventu-
ally culminating in several rapid tests for bacterial and viral disease using the same
ELISA-like approach. Similarly, ELISA-based assays to measure protein contents of any
protein of interest can be made using designed peptides that specifically bind to that pro-
tein.

Although the initial version of InSiPS was computationally intensive, the recently
modified version of the algorithm has a 100-fold improved speed. Using the latest version
of InSiPS, we plan to initiate a very ambitious project—developing two peptides for every
essential human protein. Our goal is to expand this approach to the entire proteome of
humans and eventually other organisms (mice, yeast, etc.). With every peptide success-
fully designed by InSiPS, the algorithm undergoes further training, thereby becoming
faster. This is an important feature, as the demonstrates the power and process of Al-de-
signed therapeutics as becoming increasingly efficient. Thus, it is likely that Al will be-
come an integral technology in the development of disease therapeutics. Instead of solely
relying on traditional therapeutic development, the use of Al in therapeutic design has
the potential to dramatically increase the speed and efficiency of peptide therapeutics.
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