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ABSTRACT

This paper presents an algorithm, that constructs all
Voronoi diagrams for k nearest neighbor searching
simultaneously. Its space an time complexity of D(na)

is shown to be optimal.
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1. INTRODUCTION

In /ShHo75/ Shamos and Hoey introduce the idea of
generalized Voronoi diagrams to get an optimal
solution of the k nearest neighbor problem and give
an O(N logN) algorithm to construct the order one
diagram.
Lee /Le817/ extends this to an algorithm, that
computes an order k diagram in O(k*N logN).

To answer k nearest neighbor queries with arbitrary k
we now want to construct all Voronoi diagrams.
This paper presents a simple solution of this problem.
The given algorithm has time and space complexity O(N")
and is shown to be optimal. Its implementation is not
very difficult and the constant factors for the

complexity are expected to be quite good.

2. K NEAREST NEIGHBOR SEARCHING AND GENERALIZED
VORONOI DIAGRAMS

Let S:={s1,...,sN} be a set of N23 points in the
Euclidean plane E? (with distance measure d).

We shall assume that no more than three of these
points lie on a circle and that they are not all
collinear.

To answer a query for the k nearest neighbors of a
point g€E?, we have to find a subset AcS with |a|=k
and (vVX€A,y€S-A):d(g,x)sd(q,y).

With B(x,y):={z€E?*/d(x,z)=d(y,z)} and

hi{x,y):={zdE?/d(x,z)<d(y,2z)} we call v(a):=1 h(x,y)
XEA
yES-A

the Voronoi polygon of AcS and
Vk(S):={v(A)/AcS and |A|=k}-{¢} the (generalized)

Voronoi diagram of order k.
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It is easy to see that Vk(s) can be described by a
straight line graph, that divides the Euclidean plane
into a finite number of convex polygons* (the Voronoi
polygons) and that AcS is a set of k nearest neighbors
of all gquery points qEv(A)EVk(S).

With these postulates we can solve the k nearest

neighbor problem in the following way:

A. Construct all Vv, (S) for 15ksN-1 (preprocessing)

k
B. For every query (g€E?,k€é{1,...,N-1}) find a
v(A)EVk(S) with gév(a).

For part B Kirkpatrick (/Ki81/) has already found an
optimal algorithm that answers a query in O(k+1ogN)
steps.

The next two sections of this paper will describe

an optimal solution of part A.

3, PROPERTIES OF GENERALIZED VORONOI DIAGRAMS

Every Voronoi edge (edge of a Voronoi diagram) is
part of a bisector B(x,y) with x,y€S.

So let Ek(x,y) be the part of B(x,y) that is
Voronoi edge of Vk(S).

With every Voronoi polygon being convex and only
up to three points of S lying on a circle, every
Voronoi point (point of a Voronoi diagram) has
degree three and is the center of exactly three

points of S.

*
In the following this paper only will operate
with this diagram also called Vk(S).
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Now we can prove the following theorem.

Theorem 1:
Let x€IE? be the center of a,b,c€S and
H:={z€5/d(x,z)<d(x,a)} with |H!=:ksN-3, then

X 1s Voronoi point of Vk+1(S) and Vk+2(S).
The Voronoi edges and polygons that are incident

upon x are given by the following diagram.
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—-——-—: Voronoi edge of Vk+2(5)
(S)

~——: Voronol edge of Vk+1

Proof:

HU{a},HU{b} and HU{c} are sets of k+1 nearest neighbors
of x. So x€év(HU{al})Nnv(HU{b})Nv(HU{c}) is a Voronoi point
of Vk+1(s)' Because HU{a,b},HU{b,c} and HU{a,c} are sets
of k+2 nearest neighbors of x, it is also a Voronoi point

of v (S). With this the construction of the above

k+2
diagram is trivial.

]
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The next theorem will demonstrate, that every
Voronoi point can be constructed as described

in theorem 1.

Theorem 2:

Let a Voronoi point x¢v(A)Nv(B)Nv(C) with
v(A),v(B),v(C)EVi(S) be the center of a,b,c€S
and H:={z€S/d(x,z)<d(x,a)} with |H|=:ksN-3,
then

({a,B,C}={HU{a},HU{b},HU{c}} and i=k+1)

or

({a,B,C}={HU{a,b},HU{b,c},HU{a,c}} and i=k+2).

Proof:

Let without loss of generality v(A)ﬂv(B)=§i(a,b),
v(B)ﬂv(C)=Bi(b,c) and V(A)ﬂV(C)=Bi(a,c), then
theorem 2 follows from the next three statements.

(1) Because v(A)= N h(x,y) and Ei(a,b) borders v(a),
XEA
y€S-A

there exists a x€A and y€S-A with {x,y}={a,b},
getting An{a,b,cl}=¢ and {a,b,cl¢A.
In the same way we get BN{a,b,c}z¢, {a,b,c}¢B,
cn{a,b,c}=¢ and {a,b,cl}dcC.
(2) HcA, HCB, HcC.
Proof of HcA with a€éA and béA (see (1)):
If there would be a z€H with z¢A, this would
be a contradiction to x€v(A) because of d(x,z)<d(x,a).
(3) A,B,CcHU{a,b,c}.
Proof of AcHU{a,b,c} with a¢A and béA (see (1)):
If there would be a z€A with z¢HU{a,b,c}, we
would have d(x,z)>d(x,a)=d(x,b) with z€A and b¢Aa;

a contradiction to x€év(a).

With theorem 2 we know theorem 1 describing all Voronoi
points, edges and polygons of all Vk(S) (1<ksN-1).

This is the main idea for the algorithm in section 4.
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For the analysis of this algorithm the next theorem
gives us the number of Voronoi points, edges and

polygons we have to compute.

Theorem 3:
Let I

K be the number of Voronoi points, Ek the number
of edges and N the number of polygons of Vk(S)

(12kEN-1}, then we get

*
i)
(ii)  (V1sksN-1): Ny €O (k(N-k)) <O (kN)

(1) (v1<ksN-1): G(Ik)=6(Ek)=6(N

N-1
(iii) E NkEe (N3)
k=1

N-1
(iv) > kaee(N“).
k=1

Proof:

(i), (ii), (iii): see /ShHo75/ and /Le81/.

(iv):

From (ii) and ksN we get NkEO(N2). So let us take an
a€éN with N, £aN? (for large N), then we get

P
N-1

> o,

k=1

N-1
S kaN? = %(N—1)N3 € O(N").
k=1

N-1
To prove > kaEQ(N”) we define I:={1§k§N—1/Nk€Q(N2)}
k=1

and J:={1§k§N—1/Nk¢Q(N2)} and show |I|€n(N).

Assuming |[I]€Q(N) we would get > Nk¢Q(N3) from N, €0 (N?).
keI

*Having two functions f,g:N+RkR we say

£€0(g) :e=(3MEN,céN) (vnzm): £ (n)<ce-g(n),
f€Q(g) :<=(3mEN,c€EN) (vnzm): f(n)zceg(n) and
£€o (g) :==(f€o(g)rfe(qg)).
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By definition of J we get E B&¢Q(N3) and further more
ked

N-1
g N = > PHJ'E N ¢ Q(N®); a contradiction to (iii).
k=1 keI keg

Let b and ¢ be two numbers with [I][zbN and N, 2cN?

for k€I and large N, then we get

N-1 I . bN
E_ ka _é ka z cN? E k cN? > k z cN? E_ k
k=1 kel keI k=1 k=1
cb

= 2—N3 (bN+1) € Q(N*).

v
v

I~

4, THE ALGORITHM

This section will give a description of the algorithm

to construct all Vk(S).

It needs 6 (N¥) time and 6 (N") storage. Theorem 3 No. (iv)

showed that all Voronoi diagrams have a space complexity

of at least 6(N“) and therefore we need at least 6 (N")

steps to construct them. So the algorithm has optimal

time and space complexity.

The data structure for the Vk(S) is the same Kirkpatrick

defines for the input data of his region location

algorithm (see /Ki81/). Every Vk(S) is stored by a list

of its Voronoi points, each of wich contains the in-

formation about the incident Voronoi edges and polygons.
The basic idea is, to take all triples of points

a,b,c€S and compute all Voronoi points in the way

theorem 1 describes. Theorem 2 makes sure, that we

get all of them. In a second step we have to link the

points of each Vk(S) together.

Before coming to a detailed description of the algorithm,

we need some more definitions.




Definjition:

3
For every (sa,sb,sc)es let

(1) M(a,b,c) be the center of S,75p7 5S¢ (if exists)
(ii) H(a,b,C):={y€S-{sa,sb,sC}/d(M(a,b,C),y)<d(M(a,b,c),sa)}

(iii) V:={(u,v,w)€e{1,...,N}?/u>v>w}.

With this we can construct all Vk(S) as follows:

(1) Construct an array L of all M(a,b,c) with (a,b,c)e€V
in wich every M(a,b,c) can be found in O(1) steps
(store M(a,b,c) with (a,b,c)¢V at the adress

(a—1

Sh+ B3 o).

(2) Traverse L.
For every M(a,b,c) calculate H(a,b,c) and the
incident rays and polygons as described by theorem 1
and add them to the lists of V[H(a,b,c)|+1(s)
and V]H(a,b,c)|+2(s)' Note the two adresses in L.

(3) Traverse L again.
Every M(a,b,c) is a Voronoi point in two lists
Vi(S) and Vi+1(S) with at most 6 incident rays.
With each ray r do the following steps:
Let r be in Vj(S) and be part of B(sa,sb).
Take all M(a,b,x) with SXES-{sa,sb,sc} and check,
whether M({a,b,x) is a Voronoi Point of Vj(S) and
lies on r. If there are more such points, take
the M(a,b,xo) with minimum distance from M(a,b,c).
Reduce r to an edge (M(a,b,c),M(a,b,xO)) and the
corresponding ray of M(a,b,xo) to an edge
(M(a,b,xo),M(a,b,c)).

With theorem 3 the analysis of the algorithm is easy.

The space complexity is

N-1 N-1
8 (> (I, +kE.)) = 0 (> kNy) = 6 (N*).
k=1 k=1
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L contains 6 (N®) points. So part (1) of the algorithm
needs time 6 (N®). In part (2) for each of these points
we need 6 (N) steps and so the whole part takes 0 (N"*) steps.
In the same way you see evidently part (3) needing

time 0 (N*) too. So the time complexity of the whole
algorithm is 0 (N*).

This short description of the algorithm yields already

so many details, that it is easy to be implemented.

We don’t need very much overhead (compared with the
algorithms in /Le81/ and /ShHo75/) and the multiplicative
constants for the complexity are expected to be

quite good.

5. AN EXAMPLE

oC

wd

[ 223

This picture shows a set s:={a,b,c,d}cIE? and all

possible bisectors.
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With these points the array L looks as follows:

Voronoi
point No. center of H lH| +1 | H| +2
1 {a,b,c} ) 1 2
2 {a,b,d} {c} 2 3
3 {a,c,d} ¢ 1 2
4 {b,c,d} {a} 2 3

Now we can construct all Voronoi points and diagrams

at once,
V,I(S):

Voronoi points

diagram
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V2(S):

Voronol points

diagram

v(b,c)

*
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v, (8)
Voronol points

dlb

4 via,b,c)
v(a,c,d)

v(a,b,d)

diagram

v(ib,c,d)

via,c,d)

v(a,b,c)

v(a,b,d)
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