43

SOLVING GEOMETRIC PROBLEMS ON MESH-CONNECTED
AND ONE DIMENSIONAL PROCESSOR ARRAYS

F.Dehne

Lehrstuhl fuer Informatik I , Univ. of Wuerzburg
Am Hubland, 8700 Wuerzburg, W.-Germany

Abstract:

This paper presents O(nl/z) time solutions of the planar
maximal elements m-contour, and ECDF searching problem for
n points stored in a nl/2x nl/2 pesh of processors that
can be extended to solve the d-dimensional maximal
elements and ECDF searching problem in time
o(nl/2%109(d=2)y (452) which is asymptotically optimal for
de{2,3}. We also describe 0(n) time algorithms for the
planar/3-dimensional largest empty rectangle/cube problem
fcr n points stored in one dimensional array of processors
which are asymptotically optimal, too.

1. Introduction

A mesh-connected processor array of size n is a set of n
synchronized processing elements (PEs) arranged in a
square lattice. Each PE is connected via bidirectional
unit-time communication links to its four neighbors, if

they exist. (see fig.l)

Each processor has a fixed number of registers and can
perform standard arithmetic and comparisons in constant
+ime. It can also send or receive the contents of a regis-
ter from a neighbor and test the existence of neighbors
in 0(1) time units.We may think of these processors as

F.Dehne, "Solving Geometric Problems on Mesh-Connected and One-Dimensional Processor Arrays”, Proceedings of
the 11th International Workshop on Graphtheoretic Concepts in Computer Science (WG'85), June 18-21, 1985,
Castle Schwanberg, Wuerzburg, W.-Germany, Trauner Verlag 1985, pp. 43-59

44

1nd1v1dual VLSI chips or several chips each containing
some part of the grid on a circuit board. For more details
consult [MS] and ([U].

Let s={sy,...,Sp) be a set of n points in the Euclidean
plane. (To simplify exposition of our algorithms we as-
sume w.l.o.g. n=4X for some integer k.). Given two points
p and g, p.x [g.x] and p.y [d.Y] denote the x-coordinate
and y-coordinate of p [q], respectively.The point g domi-
nates p, p<g, iff p.x<qg.x and p.y<q.y . A point s in S is
called maximal, iff there is no other s' in S with s<s'.
The contour spanned by the maximal elements of S is called
m-contour of S.

Note, that the time comlexity for computing the maximal
elements and m-contour is ©(n logn) using a sequential
computer (see [KLP]).

From a more general point of view, maximal element deter-
mination is a special case of the ECDF searching problem.
The ECDF searching problem consists of computing for each
p in S the number D(p,S)=|{d in s/ g<p}| (called 'empiri-
cal cumulative distribution function'). It has the same
time complexity ©(n logn) on a standard computer. Consult
[S] for more details and applications.

Chapter 2 of this paper will state algorithms solving both
problems on a mesh~-connected processor array in O(nl/z)
time and linear space (in the planar case), which 1is
asymptltlcally cptimal since any nontrivial computation
requires Q(nl/z) time on a mesh of processors.

Given a rectangle (with its edges parallel to the
coordinate axes) containing the set S of n points, we will
also consider the problem of finding the largest area sub-
rectangle with sides parallel to those of the original
rectangle which contains no point of S. [NHL] and [CD]
gave O(n) time, linear space, and O(n log n) time, O(n
log n) space, respectively, algorithms to solve this prob-
lem on a sequential computer.

In chapter 3 we describe a one-dimensional (systolic)

array of processors (see £ig.2) solving this problem in

linear time and space which is asymtotically optimal.

170 CELL

:El R DR B -—{&

Chapter 4 will extend these algorithms to higher dimen-

fig.2
sions and state some open problemns.

2. O(nl/z) Algorithms for the Planar Maximal Elements and

ECDF Searching Problem on a Mesh-Connected Processor

Array

2.1. Computing the Maximal Elements and M-Contour

We use a divide-and-conquer approach for computing the
maximal elements of S as sketched by figure 3.

It is assumed that every processor of our mesh-connected
processor array contains exactly one point of S; otherwise
they can be loaded in O(nl/z) steps. Each PE has also a
boolean register MAXEL which denotes whether the point
stored in this PE is a maximal element or not. The regis-
ter MAXEL is initialised by 'false' for all PEs.

o : o fig.3
: X

Oour preprocessing consists of sorting S according to the
x-coordinate of the points as described by Thompson and
Kung in [TK]. We assign to each point the index of this
sorted order, called x-index in the remaining of this

45

46

paper. The m-contour will be represented as follows : each
processof, storing a maximal element, has a register
NEXTEL containing the x-index of the next point of the m-
contour.

Now, we can state Algorithm MAX:

(1) Divide S into two disjoint subsets L and R of equal

size with l.x <r.x for all 1l in L and r in R:

(la) Compute the minimum (min_ ind) and maximum
(max_ind) x-index of all points of S and broad-
cast med ind := (min_ind + max_ind)/2 to all PEs.

(1b) Now, every PE knows, whether his point belongs to
L or R. We shift all points of L and R to the
left and right half (upper and lower half for
recursion steps of even depth) in our current
processor grid.

(2) Recursively, compute the maximal elements and m-con-
tour of L and R on both parts of the mesh-connected
processor array in parallel.

(3) Select from R the maximal element p with minimum x-
index (and maximum y=-coordinate).

(4) Broadcast p.y to all PEs in the other half of the grid
(which store the points of L).

For all processors containing a point t in L

do(in parallel):

If t is maximal with rsp. to L and t.y <p.y
then set MAXEL := 'false' and delete NEXTEL.

(5) Select from L the maximal element g (with rsp. to §)
with maximum x-coordinate and store into the NEXTEL
register of its processor the x-index of p if
d.X$¥p.X. Otherwise, restore the NEXTEL reg. of g's PE
by the x-index stored in the NEXTEL register of p's PE
and set the MAXEL reg. of p's PE to 'false'.

Sorting n points takes time O(nl/z) as described in [TK].

Maximum/ minimum determination, broadcasting, communica-

tion between two PEs, and data compression also takes

O(nl/z) time units. (For more details consult [MS] and

[TK].) Using T(n) as the time complexity of our algorithm,
we get the following recurrence formula :

T(n) < T(n/2) + c~n1/2 .
Hence, T(n)EO(nl/z). Since one processor with a fixed
number of registers is used for each point, the space

requirement of the algorithm is linear with resp. to n.

52.2. The ECDF Searching Problem

In order to compute the empirical cumulative distribution
function D(p,S):=|{g in S/ g<p}| we additionally compute
the function B(p,S):=l{q in S/ q.y<p.y}| that is the
number of points below p (for all p in S). The same ini-

tial state of our mesh-connected processor array and the
same preprocessing (computation of x-indices) as described
in chapter 2.1 is assumed. In this case, the two registers
MAXEL and NEXTEL of each processor used by algorithm MAX
are replaced by two registers D and B. These registers
store the current value of the functions D and B, and
they are initialized by zero.

Hence, there is the following Algorithm ECDF:

(1) Divide S into two disjoint subsets L and R of equal

size with 1l.x <r.x for all 1 in L and r in R; cf. (1la)
and (1b) of algorithm MAX.

(2) Recursively compute D(1.L), B(1l,L) for all l in L and
D(r,R), B(xr,R) for all r in R (in parallel).

(3) Sort S according to the y-coordinates of its points
and assign to each point the index (y-index) of this
sorted order. (cf. [TK])

(4) Update D:

(4a) D(1,s):= D(1,L) VY leL.

(4b) D(xr,S):= D(r,R) + max{B(l,L)/ l.y<r.y} Y reR.
(5) Update B:

(5a) B(1l,S):= B(1,L) + max{B(r,R)/r.y<l.y} Vv lel.

(5b) B(r,S):= B(r,R) + max{B(1l,L)/1l.y<r.y} YV reR.

Now, we want to give some more details about step 4b; 5a

and 5b can be done in the same way :

47

48

When the algorithm described in [TK] (step 3 of algorithm
ECDF) tefminates, then all points of S are sorted in a
snake-like row-major indexing (see figure 4). Since for
all r in R the number max{B(l,L)/ 1l.y<r.y} is exactly
B(1,L) of the 1 in L with maximum y-index and below r , we
compute step 4b as follows (see fig.5):

Let each PE have two additional registers STATUS and

VALUE. All PEs in the leftmost column have three more

registers called READY, ROW_STATUS and ROW_VALUE.

(4b.1) For each PE do (in parallel):

if the PE contains a point 1 of L

then STATUS := 1; VALUE := B(l,L);
else STATUS := 0; VALUE := 0
(4b.2) Set STATUS := 1 for the PE with lowest y-

index.
(4b.3) For each row of PEs do (in parallel):

Set ROW_STATUS (ROW_VALUE) of the leftmost

PE to the maximum of all STATUS (VALUE)

registers of the PEs in the row. Set READY

of the leftmost PE to ROW_STATUS.
(4b.4) With the leftmost column of PEs do:

Repeat
For all PEs in the leftmost column with
READY=0 and READY=1 of the PE below do
(in parallel):

Set VALUE to the VALUE of the PE
below and READY:=1.

until all leftmost PEs have READY=1l

(4b.5) For all rows do (in parallel):

If ROW_STATUS=0 for the leftmost PE then
set the VALUE register of the PE with
lowest y-index of the row to ROW_VALUE,
and set its STATUS register to 1.

(4b.6) Repeat

For all PEs with STATUS=0, where the STATUS

register of its predecessor (in order of

increasing y-coordinate) is 1 do (in paral-

lel):
Set VALUE to the predecessor's VALUE and
STATUS:=1.

until all PEs have STATUS=1 .
(4b.7) For all PEs containing a point r in R do (in
parallel):
Add VALUE to register D.

{80
1< 12| 131 121 |
| l I l {1
| — T —1 3 —3 |
' ! ' | o
121 1101 ey ¥y |
l ' | | {0
1181 |_I51 1 13| 1331 |
887
h) -—{-a0--1a .
fig.4 fig.5
Snake-like ordering of a Processors containing
mesh-connected processor ar- points of L ((]J) and R
ray (h in a snake-like
ordering

Following chapter 2.1 it is known that step 1 and 3 of
algorithm ECDF take O(nl/z) time units.

Now, we want to analyse steps 4 and 5 by example of step
4b.

It is trivial to see that (4b.l), (4b.2), (4b.3), (4b.5),
and (4b.7) have a time complexity of at most O(nl/z). The

1/2 gince

hight of the leftmost column of PEs is at most n
at least the PE at the bottom has READY=1] (from 4b.2), the
REPEAT...UNTIL loop of (4b.4) terminates after at most
nl/2 executions each taking O(l) time units. (Implemen-
tation of the REPEAT...UNTIL loop should use this fact.)

Note, that after executing step (4b.5) , there is at least

49

50

one PE with STATUS=1 in each row . Thus the REPEAT...UNTIL
loop of (4b.6) finishes after at most O(nl/z) executions,
too.

summarizing this, steps 1,3,4 and 5 of algorithm ECDF take
O(nl/z) time units and yield the same recurrence formula
and asymptotic time complexity as given for algorithm MAX
in chapter 2.1 .

Since we need exactly one processor with a fixed number
of registers for each point of S space requirement is

linear with resp. to n.

3. A One Dimensional Processor Array for the (Planar)

largest Empty Rectangle Problem

our one dimensional (systolic) processor array for the
largest empty rectangle problem (called LER) will support
the following operations :

- Insert/delete a point

- Report the largest empty rectangle.
LER consists of N cells, so it can handle up to N points
at a given time. For more details about one-dimensional
systolic arrays consult [FKMD] and [C]. Note, that for LER
all I/O-operations are performed by the leftmost cell Cj,
since otherwise our algorithm would run in time linear

with resp. to N (see fig.2).

3.1. Insertion, Deletion

To insert a new point, just put it into LER at its
leftmost I/0-cell and let it move to the right, until it
finds an empty cell. To delete a point, send an identifier
to LERs I/O-cell C; and let it move to the right, until it
finds the specified point. Delete this point and send a
signal (special record) to its right neighbor , to let the
following points shift to the left and close the gap.

3.2. Reporting The Largest Empty Rectangle in Linear Time

3.2.1. Basic Structure of Algorithm

Let S=(sl,”.,sn} be the current set of n<N points sorted
by their x-coordinates (sorting can be done in linear
time applying the methods of [TK] to a one-dimensional
array). Let Xpins ¥pmax’ Ymin’ Ymax be the boundaries of
the bounding rectangle.

Note that each edge of the largest empty rectangle is
supported by either an edge of the bounding rectangle or
at least one point of S (as described in [CDL]). We shall
call these supporting edges or points n"supporting elements
with resp. to s".

To simplify exposition, we shall assume, that all points
of S have distinct x-coordinates and distinct y-coordi-
nates and do not lie on the boundary. Thus, the largest
empty rectangle has exactly four supporting elements with
resp. to S. As we shall see at the end of this paper, the
existence of some more supporting elements will not change
our algorithm signifficantly.

In order to compute the largest empty rectangle, we split

S into two halves SL={sl,n.,s|_n/2_|} and

SR={S|_n/2_|+1"“'Sn) (with their bounding rectangles
adjusted) and recursively solve the problem for Sy and Sg
using the systolic «cells Cl'”"cl_n/z_l and
Cl_n/2_|+l'“"cn' respectively (see fig.6).

fig.6

Given the largest empty rectangles with resp. to S;, and

51

52

Sy respectlvely, we have to compare the maximum area
rectangle of these with the largest empty rectangle having
at least one supporting element with resp. to Sy and Sg,
respectively.

This "merging step" will be done by a second divide and
conquer procedure.

After sorting S by y-coordinates, we split it into four
subsets as described by fig.7 with S;uS;=Sy, SyuS,=Sg and
| 1S,uS5] = [SquSsl | <2

fig.7
With this we recursively compute the largest empty rectan-
gle having at least one supporting element with resp. to
S, (S7) and S5 (Sy) and none with resp. to Sy (S5) and S,
(S3) repectively.

3.2.2. The Final Merging Step

To solve the final merging step, we have to find the lar-
gest empty rectangle r, having the following property (*):
Let By (Bg,...,By) be the set of supporting elements of
r with resp. to S5y (S2,”.,S4), then
|Bl|+|521+|B3l+(B4|=4
|Bl|+182|>0
|By|+1By|>0
|By|+|Byl>0
|By|+1Byl>0 .
Let Si:=si°{pi'qi) (i=1,...,4) as sketched by fig.8 .

S S -
P | 2 3 P3 Iy
fil g S4 Py fig.s8

QO
4

Now, we can prove
Lemma 1: 11194

If r is an empty rectangle with property (*) and e is an
edge of r supported by a vertical (horizontal) boundary
edge of S;, then e is supported by pi (4ji) . i=1l...4 .
Proocf:

From property (*) it is easy to see, that both vertical
(horizontal) edges of r have to cross 1y (1), thus lemmnma
1 follows immediatly. B

With this we can forget the boundiné rectangles simply by
adding the points py,q; (i=1,...,4) during the final mer-
ging step and considering all empty rectangles with exac-
tly four supporting points and property (*) with resp. to
S{,««+s55.

Note, that we add at most 4n points simultaneously, thus
every cell of LER has to store at most 5 points.
Definition 1:

Let (%7,¥1), (%X5,¥5) be two points, then
(X1,¥Y1)<ur(X2,¥3) :<=> X;<x; and y;<¥;
-(xl,yl)<ul(x2,y2) 1<=> X1>X, and Y1<Y3
(X1,Y1)<11(X3,Yp5) :i<=> X3>X, and Y1>Y,
(xl,yl)<lr(x2,y2) 1<=> X <X, and y{>Y,
Let M be a set of points and xeM, then x is called a
ur-maximal [ul-maximal, ll-maximal, lr-maximal] element
of M 1<=>
x is a maximal element of M with resp. to <, [<y1-
<11+ <1rl-
Let My [M,,M5,M,] be the ur (lr,1l,ul] -maximal elements
of Si [Sé,Sﬁ, 41 then we have

54

Lemma 2:

Let r be'an empty rectangle supported by four points
{tl,“.,t4}iSiuSéuSéuSi with property (*), then
{tl,...,t4}5MluM2uM3uM4.

Procf:

From property (*) it easy to see, that both vertical
(horizontal) edges of r cross 1n (1) Since r has to be
empty lemma 2 follows immediatly. |

Summarizing this, we have

Theorem 1:

The final merging step can be computed by finding the
maximum area rectangle of all empty rectangles supported
by four points {tl,.",t4}gBluB2uB3uB4 with BjecMjy
(i=1,...,4), |Byl+|By|+|Bsyl+[Byl=4, |B{|+1By >0,
|B5|+1B41>0, |Byl+|B3|>0 and |Byl+|Bg[>0.

CASE| |B1] | |B2] | |B3] | |B4] | TYPE
1) | 0 P01 <] 1 2 > | B
2) | 0 | 1 < | 2 7> | 1 v | B
3) | 0 | 2 < 0 | 2 > | A
4) | 0 | 2 < 1 > | 1 +~ | B
5) | 1 < | 0 | 1 D] 2 v | B
6) | 1 < | 0 | 2 "™] 1 ~+ | B
7) | 1 < | 1 0 | 2 > | B
8) | 1 < | 1 D 1 > | 1 | C
9) | 1 v | 1 < | 1 1 > | ¢

10) | 1 v | 1 < | 2 "> | 0 | B

11) | 1 v | 2 < 0 | 1 > | B

12) | 1 v | 2 < 1 > | 0 | B

13) | 2 < 0 | 1 > | 1 «+ | B

14) | 2 <v | 0 | 2 "> | 0 | A

15) | 2 <v | 1 "] 0 | 1 > | B

16) | 2 < | 1 D 1 > | 0 | B

table_1

In table 1 all possible (16) cases are listed with <

[>,”,v] denoting that a point supports a left [right,

upper, lower] edge of an empty rectangle.

There are essentially three types of empty rectangles

which we have to consider.

A type A rectangle is supported by two points of M, [M5]

and M5 [My4], respectively.

A type B rectangle is supported by two points of one

quadrant and one point each of two other quadrants, while

a type C rectangle is supported by one point of each

quadrant.

It is easy to see that the directions of support as given

in table 1 are the only possible ones:
For both cases of type A rectangles this is trivial.
Concerning type B rectangles let's for exemple look at
case 5. There is only one supporting point in the left
half, which must be a left support, since otherwise the
rules of theorem 1 would be violated. There is only one
supporting point in the upper quadrant of the right
half, which must be an upper support for the same
reason.
Having exactly one supporting point in each gquadrant
(type C), there are two possible cases. The supporting
point sp; in the lower left quadrant M, must either be
a left or lower support, since otherwise there would be
no supporting point in M, or M,, respectively. Assuming
sp; to be a left [lower] support, it is easy to see
that the other three directions of support are deter-
mined by this choice. With this we get exactly two
cases of type C.

In order to compute the final merging step, LER will do 16

global shifts (called type A [B,C] shifts for cases of

type A [B,C]) determining the largest empty rectangle for

each case (if it exists) in linear time, respectively. The

maximum area empty rectangle as descibed by theorem 1l is

the largest of these 16 (or less) rectangles.

Before we can give the details of type A [B,C] shifts, we

55

56

need the following definition and lemma.
Definition 2:

Let (%Xy,¥Y1) (x5,Y,) be two elements of Mj (i=1,...,4)
with x;<x,.

(x1,¥7) and (x,,Y5) are called "close neighbors of M;i"
:<=> there is no other point (x3,Y¥3) in My with x;<x;3<X;.
Lemma 3:

Let r be an empty rectangle as described by theorem 1 and
{t1,t5}=BjeM; two supporting points in the same quadrant
M (i=1,...,4) => t4, and t, are close neighbors of My.
Proof:

Let w.l.o.g. i=1 and r be an empty rectangle as described
by theorem 1 supported by {t;,t;}=B; (see fig.9). Assuming
there is a point t'eM; with x-coordinate between t; and
ty,, T will lie inside r, since it is ur-maximal with
resp. to S] and has distinct y-coordinate - a contradic-
tion. B

N
BENN

fig.9
With this we can describe the shifts as follows:
Type A shifts

Let's w.l.0.g. take case 3. From lemma 3 we Know that
all pairs of supporting points of M5 [M;] are close
neighbors. Thus, we sort Ml,".,M4 by x-coordinate and
let each pair of close neighbors of M, (represented by
the maximum x-coordinate and maximum y-coordinate of
both points) shift through M, and M, to find the
rightmost point with smaller y-coordinate and upper-
most point with smaller x-coordinate, respectively.

With these two points "in mind", we shift each pair of
close neighbors of M5 through M, and determine the
largest rectangle not containing any point of M, or
M,. Pipelining these processes yields linear running
time.

Type B shifts
Let's w.l.o.g. take case 2. With the same arguments as

given above, we sort My,...,My; by x-coordinate. Taking
each pair of close neighbors of M5 as described above,
it is easy to see, that the supporting lower point
l,eM,; and supporting left point 1l,eM, are determined.
1, is the uppermost point of M, with smaller x-coordi-
nate and 1, is the rightmost point of M, with smaller
y-coordinate. Thus we let each pair of close neighbors
of M, shift through M, and M, and find these both
points, respectyvely. With this, a shift through M,
shows whether this rectangle is empty. Pipelining
these proceéées yields linear running time, too.
Type C shifts

A type C shift is essentially the same, since given
the left [lower] supporting point in M; the three

other supporting points are determined.

3.2.3. Accumulated Running Time and Space Requirement

Since the final merging step can be done in linear time,
the accumulated running time of all divide and merging
steps is linear with resp. to n. Each cell has to store a
constant amount of information yielding a linear space

requirement, too.

4. Extensions, Open Problems
Consider the maximal elements and ECDF searching problem

in d-dimensional Euclidean space.

Algorithms MAX and ECDF can easily be generalized by
introducing one more recursion step for each additional
coordinate axis. Thus, we get d-1 nested recursion proce-

57

58

dures vielding an accumulated running time of
o(nl/2+109(d=2)y on a mesh-connected processor array,
respectively.

In asimilar way, our systolic array LER can be genera-
lized to solve the largest empty cube problem (d=3) by
introducing one additional recursion with resp. to the z-
axis, yielding a linear (thus asymptotically optimal)
running time, too.

A generalization of the largest empty cube algorithm to
arbitrary dimensions does not seem to be very practical,
since the number of shifts we have to compute increases
exponentially with resp. to d. There may be another
(optimal) solution of this problem which does not use such
shifts and is easier to generalize.

Ancther open problem is the design of an optimal, O(nl/z),
solution of the largest empty rectangle problem on a mesh-
connected processor array.

Acknowledgment, New Results

Thanks to N.Santoro (Carleton Univ.) and S.E.Hambrusch
(Purdue Univ.) for helpfull comments on the first version
of this paper which helped improve the results signiffi-
cantly. Additionally, it turned out during WG'85 that
algorithms MAX and ECDF can easily be generalized to
compute the "k-th maximal elements" and "k-th m-contour".

References

[(AH] M.J.Atallah, S.E.Hambrusch, SOLVING TREE PROBLEMS
ON A MESH-CONNECTED PROCESSOR ARRAY, Report CSD-
TR-518, Purdue Univ., West Lafayette, April 1985

[C] B.M.Chazelle, COMPUTATIONAL GEOMETRY ON A SYSTOLIC
CHIP, IEEE Trans. on Computers, Vol. C-33, No.9,
Sept. 1984

[CD] B.Chazelle, R.L.Drysdale, D.T.Lee, COMPUTING THE

LARGEST EMPTY RECTANGLE, Proc. Symp. on Thecetical
Aspects of Computer Science, 1984, pp 43-54

[FKMD]

[KLP]

(MS]

[NHL]

[NS]

(s]

(TX]

(U]

A.L.Fisher, H.T.Kung, L.M.Monier, Y.Dohi, A PRO-
GRAMMABLE SYSTOLIC CHIP, Journal of VLSI and Com-
puter Systems, Vol.I, No.2, 1984

H.T.Kung, F.Luccio and F.P.Prparata, ON FINDING
THE MAXIMA OF A SET OF VECTORS, J. of the ACM,
Vol.22, No.4, Oct. 1975

R.Miller and Q.F.Stout, COMPUTATIONAL GEOMETRY ON
A MESH- CONNECTED COMPUTER,Proc.l1984 Int. Cocnf. on
Parallel Proc.

A.W.Naamad, W.L.HSU, D.T.Lee, ON THE MAXIMUM EMPTY
RECTANGLE PROBLEM, Disc. Applied Math.

D.Nassami and S.Sahni, FINDING CONNECTED COMPO-
NENTS AND CONNECTED ONES ON A MESH-CONNECTED PA-
RALLEL COMPUTER, SIAM J. COMPUT., Vol.9, No.4,
Nov. 1980

M.I.Shamos, GEOMETRY AND STATISTICS: PROBLEMS AT
THE INTERFACE, in J.F.Traub (Ed.): Algorithms and
Complexity, Academic Press, New York 1976
C.D.Thompson and H.T.Kung, SORTING ON A MESH-
CONNECTED PARALLEL COMPUTER, Comm. of the ACMN,
Vol.20,No.4, April 1977

J.D.Ullman, COMPUTATIONAL ASPECTS OF VLSI, Princi-
ples of Computer Science Series, Computer Science
Press, 1984

59

