F. Dehne, "A one dimensional systolic array for the largest empty rectangle problem," in Proc. Allerton
Conference on Communication, Control and Computing, Monticello, Ill., 1985, pp. 518-524.

A ONE-DIMENSIONAL SYSTOLIC ARRAY FOR
THE LARGEST EMPTY RECTANGLE PROBLEM

FRANK DEHENE
Lehrstuhl fuer Informatik I, Univ. of Wuerzburg
Am Hubland, D-8700 Wuerzburg, W.-Germany

ABSTRACT

Given a rectangle with its edges parallel to the coordinate
axes containing a set S of n points in 2-dimensional Euclidean
space we consider the problem of finding the largest area
subrectangle with sides parallel to those of the original
rectangle which contains no point of S and describe a cne-
dimensional systolic array which solves this problem in linear
time.

1. INTRODUCTION

Given a rectangle with its edges parallel to the coordinate
axes containing a set S of n points in 2-dimensional Euclidean
space we consider the problem of finding the largest area
subrectangle with sides parallel to those of the origingl
rectangle which contains no point _of S. [8] and [3] gave O(n¢)
time, linear space, and O(n log”n) time, O(n log n) space,
respectively, algorithms to solve the problem on a seguential
computer.

Motivated by [7], [11], and [2] who studied geometric problems
from a similar point of view we describe a one-dimensional
systolic array (see fig.l) ,called LER, solving the problem in
linear time which is asymptotically optimal since any nontri-
vial computation requires time f(n) on a linear array.

1/0 CELL
pes R [N P S
: L ; [;

fig.1

LER will support the following operations :

- Insert/delete a point

- Report the largest empty rectangle
Since it consists of N cells, it can handle up to N points at
a given time. For more details about one-dimensional systolic
arrays consult [2], see also [{5]. Note, that for LER all I/0-
operations are performed by the leftmost cell C,, since
otherwise our algorithm would run in time linear with respect
to N.

2. INSERTION, DELETION

To insert a new point, just put it into LER at its leftmost

518

F D
F. Dehne, "A one dimensional systolic array for the largest empty rectangle problem," in Proc. Allerton Conference on Communication, Control and Computing, Monticello, Ill., 1985, pp. 518-524.

I/0-cell and let it move to the right, until it finds an empty
cell. To delete a point, send an identifier to LERs I/0=-cell
C; and let it move to the right, until it finds the specified
pcint. Delete this point and send a signal (special record) to
its right neighbor , to let the following points shift to the
left and close the gap.

3. REPORTING THE LARGEST EMPTY RECTANGLE IN LINEAR TIME

3.1. Basic Structure of Algorithm

Let $={sy,...,8,) be the current set of n<N points sorted by
their x-cocordinates (sorting can be done in linear time
applying the methods of [10} to a one-dimensional array). Let
Xmins ¥max’ Ymin+ Ymax Pe the boundaries of the bounding
rectangle.

Note that each edge of the largest empty rectangle is suppor-
ted by either an edge of the bounding rectangle or at least
one point of S (as described in [3]). We shall call these
supporting edges or points "supporting elements with resp. to
s".

To simplify exposition, we shall assume, that all points of 8§
have distinct x-coordinates and distinct y-coordinates and do
not lie on the boundary. Thus, the largest empty rectangle has
exactly four supporting elements with resp. to S. As we shall
see at the end of this paper, the existence of some more
supporting elements will not change our algorithm signiffi-
cantly.

In order to compute the largest empty rectangle, we split S
into two halves S§;={s,,...,s } and Sp={(s yeses S} |
with their boundiﬁ% reétangléévgégusted) gnd &43 -E%ely sglve
the problem for 57 and S using the systolic cells

cl'”"cln/ZJ and an/2J+l"“'cn , respectively (see fig.2).
| S 53
I S*_ SR |
] 5 S

fig.2 fig.3

Given the largest empty rectangles with resp. to Sy, and Sz we
have to compare the maximum area rectangle of these with the
largest empty rectangle having at least one supporting element
with resp. to S5; and Sp, respectively.

This "merging ‘step" Wwill be done by a second divide and
conguer procedure.

After sorting S by y-coordinates, we split it into four sub-
sets as described by fig.3 with S53uS,=5;, S3uS,=Sp and
| 185u84] - [S1uS,] | <1.

With this we recursively compute the largest empty rectangle
having at least one supporting element with resp. to S, (S;)
and 53 (54) and none with resp. to S1 (5,) and s, (53}
repectively.

7

519

3.2. Computing the Final Result

In order to compute the final result we have to find the
largest empty rectangle r, having the following property (I):
Let B, (By,...,By) be the set of supporting elements of r
with resp. to S5 (55,+..,8,4), then
{By |+]By[+[B3|+[B,|=4
|By|+[B,[>0
| By {+|By|>0
By |+1B,]>0
[B]|+IByi>0 .

Let S{:=S;uv{pj,93} (i=1,...,4) as sketched by fig.4 .

12143
7] S2 53 Py

fig.4
Now, we can prove

Lemma 1:

If r is an empty rectangle with property (I) and e is an edge
of r supported by a vertical (horizontal) boundary edge of 54,
then e is supported by py (gi) , i=1...4 .

Proof:

From property (I) it is easy to see, that both vertical (hori-
zontal) edoges of r have to cross 1y (1), thus lemma 1 follows
immediatly.

With this we can forget the bounding rectangles simply by

adding the points pP;,9; (i=1,...,4) during the final merging
step and considering all empty rectangles with exactly four
supporting points and property (I) with resp. to Si,-.., 8-

Note, that we add at most 4n points simultaneously, thus every
cell of LER has to store at most 5 points.

Definition 1:

Let (x%,,¥7), (X5,¥,) be two points, then
(XIIY1)<ur(X21y2) <= X1<X2 anq yl<y2
(%3,¥1)<u1 (X2,¥32) => x3;>X, and y;<y,
(%1,¥1)<11(%X5,¥5) => Xx1>%, and yj>V,
(X1,¥Y7) <10 (X0,¥5) => X;<X, and yj>Yy,

Let M be a set of points and xeM, then x is called a ur-
maximal [ul-maximal, ll-maximal, lr-maximal] element of M
:<=>X 1s a maximal element of M with resp. to <ur [<u1r <117
<147
1r

Let My [M,,M5,M,] be the ur [1r,11,ul] -maximal elements of S}
[s4,8%,54], then we have

Lemma 2:

Let r be an enmpty rectangle supported by four points
{tqseeestyleS{usjusqusy with property (I), then
(tl, [P ,t4 }SMluMZUM3UM4 .

Proof:

From property (I) it easy to see, that both vertical (horizon-
tal) edges cf r cross lp (1) Since r has to be empty lemma 2
follows immediatly.

summarizing this, we have
Theorenm 1:

In order to compute the final result it is sufficient to find
the maximum area rectangle of all empty rectangles supported

by four points (tqy,...,t,}cBjuByuByuB, with BjcM; (i=1,...,4),
|Bé|+]B |+1Bq|+|Byl=4, |By(+]By|>0, |By|+|By!>0, [By|+|B3|>0
an {By1+iBy|>0.

CASE| |B1| | 1B2] | 1B3] | |B4] | TYPE

1) | C | 1 < | 1 | 2 o> | B

2) | 0 | 1 < 1} 2 > | 1 ~ | B

3) | 3 [2 < | 0 | 2 o> | A

4) | C i 2 < | T > | 1 «~ | B

5) | 1 < | 0 | 1 | 2 > | B

6) | 1< | 0 | 2 > | 1 ~ | B

7) | 1 < | 1 | 0 | 2 > | B

8) | I < | 1 i 1 > | 1 < | ¢

3) | 1 v | 1 < | 1 | 1 > | C

10) | 1~ | 1 < | 2 > | 0 | B

11) | 1 o | 2 < | 0 » i1 > | B

12) | 1 v 2 < | 1 > | 0 | B

13) | 2 < 0 | 1 > 1 v | B

14) ! 2 <v | 0 | 2 7> 0 | A

15) | 2 < | 1 | o] | i > | B

16) | 2 < | 1 i 1 > 0 [B

table 1

In table 1 all possible (16) cases are listed with < [>,7,v]
denoting that a point supports a left [right, upper, lower]
edge of an empty rectangle.
There are essentially three types of empty rectangles which
we have to consider.
L type A rectangle is supported by two points of M; [Mj] and
My [Mal, respectively.
A type B rectangle is supported by two pcints of one quadrant
and one point each of two other guadrants, while a type C
rectangle is supported by one point of eacn guadrant.
It is easy to see that the directions of support as given in
table 1 are the only possible ones:
For both cases of type A rectangles this 1is trivial.
concerning type B rectangles let's for exemple look at case

5. There is only one supporting point in the left half,
which must be a left support, since otherwise the rules of
thecrem 1 would be violated. There is only one supporting
point in the upper gqguadrant of the right half, which must
be an upper support for the same reason.

Having exactly one supporting point in each gquadrant (type
C), there are two possible cases. The supporting point spy
in the lower left guadrant M, must either be a left or
lower support, since otherwise %here would be no supporting
point in M, or M,, respectively. Assuming_spl to be a left
{lower] support, it is easy to see that the other three
directions of support are determined by this choice. With

this we get exactly two cases of type C. /

In order to compute the final result, LER will do 16 global
shifts (called type A [B,C] shifts for cases of type A [B,C])
determining the largest empty rectangle for each case (if it
exists) in linear time, respectively. The maximum area empty
rectangle as described by theorem 1 is the largest of these 16
(or less) rectangles.

Before we can give the details of type A [B,C] shifts, we need
the following definition and lemma.

Definition 2:

Let (X7,Y3), (¥53,¥Y5) be two elements of My (i=1,...,4) with
X1<X+ .

1

(xl,yl) and (x2,y2) are called "close neighbors of Mi" 1<=>

there is no other point (x5,y3) in M; with x;<iy<x,.

Lemma 3:

Let r be an empty rectangle as described by theorem 1 and
{ty,£5}=B;cM; two supporting points in the same guadrant Mj
(i=1,...,4) =>

t) and t, are close neighbors of Mj.

Proof:

Let w.l.0.g. i=1 and r be an empty rectangle as described by
theorem 1 supported by {t,,t,;}=B; (see fig.5). Assuming there
is a point t'eM, with x-coordinate between t, and t,, t' will
lie inside r, since it is ur-maximal with resp. to S§ and has
distinct y-coordinate - a contradiction.

I
!
‘

R
[N
tz

fig.5
With this we can describe the shifts as follows:
Tvoe A shifts

Let's w.l.0.g. take case 3. From lemma 3 we know that all
pairs of supporting points of M5 [M;] are close neighbors.

522

Thus, we sort. My,..., M, by x-coordinate and let each pair
of close neighbors of M43 (represented by the maximum x-
coordinate and maximum y-coordinate of both points) shift
through M, and/M, to find the rightmost point with smaller
y-coordinate ané uppermost point with smaller x-coordi-
nate, respectively. With these two points "in mind", we
shift each pair of close neighbors cf M5 through M; and
determine the largest rectangle not containing any point
of M, or M,. Pipelining these processes yields linear
running time.

Type B shifts

Let's w.l.0.9. take case 2. With the same arguments as
given above, we sort My,...,M, by x-coordinate. Taking
each pair of close neighbors of M5 as described above, it
is easy to see, that the supporting lower point l,eM, and
supporting left point 1 €M, are determined. 1, is the
uppermost point of M, with smaller x-coordinate and 1, is
the rightmost point of M, with smaller y-ccordinate. Thus
we let each pair of close neighbors of M5 shift through M,
and M, and find these both points, respectyvely. With
this, ‘@ shift through M, shows whether this rectangle is
empty. Pipelining thesé processes yields linear running
time, too.

Type C shifts

A type C shift is essentially the same, since given the
left [lower] supporting point in M, the three other
supporting points are determined.

3.3. Accumulated Running Time and Space Reguirement

Since the the computation of the final result can be done in
linear time, the accumulated running time of all divide and
merging steps is linear with resp. to n. Each cell has to
store a constant amount of information yielding a iinear space
requirement, too.

REFERENCES
(1) M.J.Atallah, S.E.Hambrusch, SOLVING TREE PROBLEMS ON A

MESE-CONNECTED PROCESSOR ARRAY, Report CSD-TR-518,
Purdue Univ., West Lafavette, April 1985

[2] B.M.Chazelle, COMPUTATIONAL GEOMETRY ON A SYSTOLIC
CHIP, IEEE Trans. on Computers, Vol. C-33, No.9, Sept.
1984

[3] B.Chazelle, R.L.Drysdale, D.T.Lee, COMPUTING THE LAR-

GEST EMPTY RECTANGLE, Proc. Symp. on Theoetical As-
pects of Computer Science, 1984, pp 43-54

[4] F.Dehne, 0(n1/2) ALGORITHMS FOR THE MAXIMAL ELEMENTS
AND ECDF SEARCHING PROBLEM ON A MESH-CONNECTED
PARALLEL COMPUTER, Techn. Report, Univ. of Wuerzburg,
W.-Germany, 1985

523

(5]

(63

(71

=y

[10]

(1]

A.L.Fisher, H.T.Kung, L.M.Monier, Y.Dohi, A PROGRAMMA-
BLE SYSTOLIC CHIP, Journal of VLSI and Computer Sys-
tems, Vol.I, No.2, 1984

H.T.Kung, F.Luccio and F.P.Prparata, OFN FINDING THE
MAXIMA OF A SET OF VECTORS, J. of the ACM, Vol.22,
No.4, Oct. 1975

R.Miller and Q.F.Stout, COMPUTATIONAL GEOMETRY ON A
MESH- CONNECTED COMPUTER,Proc.1984 Int. Conf. on
Parallel Proc.

A.W.Naamad, W.L.HSU, D.T.Lee, ON THE MAXIMUM EMPTY
RECTANGLE PROBLEM, Disc. Applied Math.8, 1984

D.Nassami and S.Sahni, FINDING CONNECTED COMPONENTS
AND CONNECTED ONES ON A MESH-CONNECTED PARALLEL COMPU-
TER, SIAM J. COMPUT., Vol.9, No.4, Nov. 1980

C.D.Thompson and H.T.Kung, SORTING ON A MESH-CONNECTED
PARALLEL CONPUTER, Comm. of the ACM, Vol.20,No.4,
April 1977

J.D.Ullman, COMPUTATIONAL ASPECTS OF VLSI, Principles
of Computer Science Series, Computer Science Press,

1984

524

