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Abstract

Recently, a growing interest in problems dealing with the movability of objects
has been observed. Motion problems are manifold due to the variety of areas
in which they may occur; among these areas are e.g. robotics, computer
graphics, etc. One motion problem class recently being investigated is the
separability problem.

The separability problem is as follows: Given a set P={Pq,...,Pp} of M
n-vertex polygons in the Euclidean plane, with pairwise non-intersecting
interiors. The polygons are to be separated by an arbitrarily large distance
through a sequence of M-1 translations while collisions with the polygons yet
to be separated are to be avoided. The uni-directional separability
problem arises, when all polygons are translated in a common direction; the
more general problem of separability through translations in arbitrary
directions is referred to as the multi-directional separability problem.
Here a simple, novel approach is presented for solving an array of
uni-directional and multi-directional separability problems for sets of arbitrary
simple polygons. The algorithms presented here provide efficient solutions to
these problems and when applied to restricted polygon classes further
improvements in the time complexities are achieved.

1. Introduction

To formally state the separability problems discussed in this paper, we
introduce some terminology along the lines of a survey article on separability
problems [15). Consider a set P={P4,...,P)q} of M n-vertex, simple polygons in
the Euclidean plane, with pairwise non-intersecting interiors. A translation of a

polygon P;e P is specified by a translation direction and distance. A separating
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motion of P; is a translation of P; in some direction by an arbitrarily large
distance. P;is said to collide with polygon Pj in P, i#j, if, at any distance
during the separating motion, the interiors of P; and Pj intersect; otherwise, we
call P; and Pj separable in the given direction. P; and Pj are said to interlock
if there exists no direction in which they are separable. A polygon P;is
separable from the set, P, if there exists some direction d such that, in this
direction, P; is separable from each Pj, j#i, 1<j<M. For an illustration see

Figure 1 in which polygon 1, at position A, is separated from the polygon set in
the indicated direction. Polygons 4 and 5 interlock.

Figure 1: Polygon 1 can be separated from the object set via a translation.

A permutation of the index set {1,...,M} is denoted by n. The ordering among
the polygons in P induced by = is denoted by O_.. Pn(i) denotes the set of

polygons {Pn(i)’ Pn(i+1)'---’ Pn(M)}- A set of polygons P = {Py4, ..., Ppm} is
sequentially separable (by a sequence of M-1 translations) if there exists
an ordering, O_, such that each polygon Pn(i) , i=1,..., M-1, is separable from

the set of remaining polygons, Pn(i+1) by a translation in some direction d;.
©n defines an order in which the polygons are separable. Such an ordering is
called a multi-directional translation ordering.

When studying multi-directional translations different problems arise which we




239

classify as detection and determination problems, and referred to as the

multi-directional separability problems (MDS-problems).

Detection Problem

» Detect whether P is multi-directional sequentially separable.
Determination Problem

+  Determine a multi-directional translation orderings for P.

For rectangular objects, Guibas and Yao [3] have shown that in some
applications the motions of separation are to be performed in a common
direction. We refer to resulting problem area for a set of arbitrary simple

polygons as the uni-directional separability problem (UDS-problem) and the
ordering, O, of the polygons in P is called a (uni-directional) translation

ordering for P. A set P exhibits the translation ordering property if a

translation ordering exists in each direction. We state the following problems:

Detection Problems

«  Detect whether a translation ordering for P exists.

+ Detect whether P is uni-directionally sequentially separable in a given
direction.

Determination Problems

«  Find a direction in which P is uni-directionally sequentially separable.

« Determine the set W(P) of all directions in which P is uni-directionally
sequentially separable.

« For a given direction, determine a uni-directional translation ordering
among the objects in P.

« For a given direction d determine the set T(d) of all orderings of P, so
that the objects in P are uni-directionally sequentially separable in d,
when following any of the orderings in T(d).

Our work on separability problems was originally inspired by the result of
Guibas and Yao who studied a uni-directional separability problem for sets of
rectangles. They showed that any set of M rectangles possesses the
translation ordering property. More importantly, for any given direction the
order in which to separate the rectangles can be determined in O(M log M)
time. Whereas Guibas and Yao studied primarily sets of rectangles, Chazelle,
Ottmann, Soisalon, Wood [1] and Mansouri, Toussaint [4, 12-15] were
interested in studying separability problems for sets of less restricted polygon
class, such as rectilinear, monotone, convex, or star-shaped polygons.
Chazelle et al. showed that certain separability decidability problems can be
NP-hard even for rectilinear polygons. Translation problems for line segments
were discussed by Ottmann and Widmeyer [7].

Toussaint states two algorithms for the problem of detecting whether a
collection of M n-vertex non-pairwise intersecting polygons is separable in a
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given direction. His result is using visibility hulls yielding an O(min(Mn log Mn),
M2n)) time bound. Alternately, using plane sweep techniques, Nurmi [6]
obtains an O(Mn log Mn) algorithm for the same problem. His algorithm also
generalizes to 3 dimensions. Both approaches [6, 15] have two draw-backs:

(1) They are dependent on the specified translation direction and must
therefore be m for every direction of translation. In particular, for
solving separability queries on the existence of a translation ordering, in a
given query direction, more efficient algorithms can be designed.

(2) Since there may be an jnfini f directions of rability, i.e
directions in which the set is separable, the method cannot be used (a) to
solve the problem of whether the given set is uni-directional separable or not,
i.e. it does not solve the uni-directional separability problem (b) nor to find all
directions of separability, if any.

Here a simple, coherent framework is developed which allows solving an
array of separability problems. Unlike previous approaches, the approach
presented here is general, in the sense that it provides efficient solutions for
sets of arbitrary simple polygons, for restricted polygon classes, as well as for
some closed elementary curves like circles, ellipses, etc. The approach is
based on the concept of movability wedge, originally introduced in [8].
Movability wedges will be disussed in Section2. In Section 3 we will describe
a data structure for solving uni-directional separability problems discussed in
Section 4, and for multi-directional separability problems, discussed in Section
5.

2. Movability Wedges

Whereas for convex polygons, spheres etc. a translation ordering will
exist for every direction specified (see Corollary 2.2. below), this is clearly no
longer true when dealing with arbitrary simple polygons. Thus a preliminary
task is to determine whether or not such an ordering exists. To determine
whether or not a collection of M n-vertex polygons P = {Pq,...,P\} is

uni-directionally separable the following result obtained in [15] is useful:

Theorem 2.1 A set of polygons P = {Py,...,Ppy} admits a translation ordering

in direction d if, and only if, every pair of polygons, viewed in isolation, is
separable with a single translation in direction d .
Corollary 2.2 A translation ordering will always exist if each pair P,-,Pj of

polygons in P has non-intersecting convex hulls.

In view of this theorem the study of separability for single pairs of polygons
becomes important.

2.1 Movability Wedge for Pairs of Polygons
In [9] the problem of determining all directions of separability for two
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polygons P, Q was addressed. Clearly, if no such direction exists then P and Q
interlock. Their approach is based on the observation that if two distinct
directions of separability exist then these directions determine an entire wedge
of directions of separability. The maximal such wedge, is called the relative
movability wedge Wp(Q) for P relative to Q. The wedge is maximal in the

sense that all directions inside the wedge define directions of separability for P
relative to Q and no direction outside the wedge is a direction of separability.
Notice that the movability wedge of Q with respect to P can be obtained from
the movability wedge of P relative to Q by a 1800 rotation of the wedge. The
union of both wedges is called the movability wedge for P and Q, denoted by
W(P,Q).

If we assume that both polygons have the same number of vertices, say n,
then the computation of the movability wedge can be performed in O(né) time.
By combining several tools of computational geometry with a partitioning
technique developed for solving this problem, Sack and Toussaint have
shown that this time can be reduced to O(n log n) [9]. Let C4(n) denote the time

to compute the movability wedge for two n-vertex polygons. Very recently, a
further improvement has been obtained reducing the complexity Cg(n) to an

optimal time of O(n); see [10] for an algorithm based on the above ideas and
[16] for an alternate algorithm.

Lemma 2.3 For two arbitrary n-vertex polygons P and Q, the relative
movability wedge Wp(Q) and the movability wedge W(P,Q) can be computed

in linear time.

Movability wedges have also been computed for other more restricted classes
of polygons [12-15]; e.g. the movability wedges for a convex polygon can be
determined in O(log n) time. Movability wedges capture information essential
to our solution to separability problems for polygons thus enabling us to state
simple and efficient solutions to uni-directional separability problems.

2.2 Characterization of Movability Wedges
Depending on whether there exists a direction d which is in both relative
movability wedges for two polygons P; and Pj, two different situations arise;

these situations are characterized as Type | and Type Il wedges, respectively,

they are defined as:

() A movability wedge is of Type ! if the intersection of both relative
movability wedges is empty.

(1) A movability wedge is of Type Il , otherwise.

In case of a Type |l wedge all directions in the intersection of two relative
movability wedges for P; and Pj, allow a separating motion of P; as well as Pj,
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irrespective of their order of translation. We therefore call this intersection of
relative movability wedges the irrelevant sectors of the movability wedge
W(P;, Pj). The relevant sectors of the movability wedge are obtained by

computing the set difference of the movability wedge minus its irrelevant
sectors. Any translation in a direction in the relevant sector requires either P; or

Pj to be moved first. The following properties are easily derived.

Property 2.4 (a) The movability wedge W(P,, Pj) is composed of four sectors.
(b) If a movability wedge W(P;, Pj) is of Type | then in each direction either
no collision-free separation is possible or a unique translation ordering
among Pj, P; is defined.
(c) If the movability wedge W(P;, Pj) is of Type Il then P; and Pj are
separable in any direction of translation; furthermore the relevant sectors

define unique symmetrical translation orderings while the two irrelevant
sectors define regions of translation for which translation order is irrelevant.

2.3 Common Movability Wedge

We introduce the concept of common movability wedge for a set P of
polygons.The set of all directions d for which a translation ordering exists is
called the common movability wedge W(P) for P and for a given direction d
we denote by T(d) the set of all translation orderings of P with respect to d. We
say that d is a direction of separability if d is in W(P). We denote by W the set
of all pairwise movability wedges, {W(P;, Pj)l 1<i<j<M}.

Lemma 2.5 For the common movability wedge W(P) the following holds:
(a) W(P) is the intersection of all pairwise movability wedges W(P;, Pj) in
W,

(b) W(P) consists of at most M(M-1) disjoint sectors.
Proof See the full version of this paper [2].

Thus for solving the UDS-problems we need a structure which allows the
intersection of movability wedes to be performed efficiently. The structure,
called inverted segment tree, will be introduced in the next section; it allows
also efficient answers to queries of the type "is a given direction contained in
the intersection, or not?", as well as "find a direction which is contained in the
intersection”.

3. Manipulating Sets of Intervals: Inverted Segment Tree
Let S={I 1,..., 1} be a set of k intervals. The set of intervals can be stored

in a data structure called segment tree, as described e.g. in [5]. A segment tree
is composed of a search part, its internal nodes, and of a data par, its leaves,
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storing the intervals. Stored with each node v of a segment tree is
(@) an interval xrange(v) designed as the union over all intervals stored in the
leaves of the subtree rooted at v, and

(b) alist NL(v) = {1 €S| xrange(v) is in I but xrange(parent(v)) is notin1}.

For our application we do not explicitly store the lists NL, but rather store their

sizes, [NL(v)|. This reduces the storage from O(k log k) to O(k) for a segment

tree on k intervals. We will use an additional bit, called mark(v), stored at each

node v. We call a node marked if its mark bit is true and unmarked, otherwise;

the bit is set as follows:

(a) vis aleaf: Then mark(v) is true, if [INL(v)| = O, otherwise marks(v) is false.

(b) v is an internal node: Then mark(v) is true, if [NL(v)|=0 and at least one
child v' is marked, otherwise mark(v) is false.

We will call such a tree a modified segment tree for S.

Note that for each Iin S, the query "is I in NL(v)" can be answered in O(1) time
provided that both xrange(v) and xrange(parent(v)) are given. With [5, pp. 212]
it is easy to prove the following:

Lemma 3.1 A modified segment tree for a set S of k intervals can be
constructed in time O(k log k) time using O(k) space. An interval I in S can be

deleted from the segment tree, i.e. the values |[NL(v)| and mark(v) can be
updated, in time O(log k), for all v.

Consider now a set W={w,..,wy} of k movability wedges linearized on [0, 360)
and let w;C := [0, 360) - w;. Each w;C consists of at most 3 intervals; the set s¢

of all such intervals thus consists of at most 3k intervals. The modified segment
tree on SC is called the inverted segment tree for the interval set S. In the
case of relative movability wedges, each w;C has at most 2 intervals and thus

sC contains at most 2k intervals.

Lemma 3.2 Let T be the inverted segment tree for a set S of movability
wedges, and let d be a direction in [0, 360). Furthermore let INT(S) denote
the intersection of all wedges in S.
(a) disin INT(S) all nodes along the path from the root of T to the leaf
containing d are marked.
(b) INT( S ) is the union of all intervals stored at leaves v, for which all
nodes along the path from v to the root are marked.
(c) INT(S ) = @ iff the root of T is marked.

Proof We will use the factthat Mw; =( U w) C Nowlet Wgi=  Mw;.

wjeS W eS wijeS
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(a) ==>Lletde Wg and let d be contained in the interval stored at leaf v.

Assume that there is an unmarked node on the path from the root of T to v
then there is some node, say V', on this path for which |[NL(v')|# 0. Thus there

exists some wie S whose xrange is in w;€ and thus d is not in Wg which is a
contradiction.
<== Assume that d is not in Wg and hence d is in the union over all w€, w;e

S. W.l.o.g. assume that deij. Let v be the leaf of T with d € xrange (v) then by
the construction of the segment tree xrange(v) is in wJ-C. Hence there exists a

node v' on the path from v to the root of T for which ij e NL(v') and thus

mark(v') is false.
(b) and (c) omitted. g.e.d.

4. Solving UDS Problems
41 UDS Detection

With these results we are now able to solve the UDS detection problems
stated above. The common movability wedge W(P) contains all directions in
which a translation ordering for P exists. From Lemma 2.5 we have that W(P)
is the intersection of all W(Pi,Pj) in W and hence we can compute W in time

O(MZ(CS(n)) and the inverted segment tree T with respect to W in time O(M2

log M), Lemma 3.1. Thus, by Lemma 3.2(c) a translation ordering for P exists
iff the root of Tyy is marked and we get

Theorem 4.1 The problem of detecting whether any uni-directional
translation ordering for P exists can be solved in O(M2 (C4(n) + log M)) time.

Proof Follows from Lemma 2.5, Lemma 3.1, Lemma 3.2(c). g.e.d.

Furthermore, given the inverted segment tree with respect to W and a direction
de[0,360], then from Lemma 3.2 (a) follows that d e W(P) iff all nodes on the
path from the root of Tyy to the leaf containing d are marked. Since Tyy is of

depth equal to O(log(M)) and using Lemma 3.1, we get:

Theorem 4.2 Given O(M2(Cs(n) + log M)) preprocessing, the existence

query of a translation ordering with respect to a given direction, for any set of M
n-vertex polygons, can be answered in time O(log M).

4.2 Determining directions which admit uni-directional separability
Since, for reasons of efficiency, the inverted segment tree does not store
the interval lists NL, explicitly, we must show how to compute W(P), once an
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inverted segment tree Tyy has been computed. If the root of Tyy is unmarked,

then W(P) = &. Otherwise, assume that W( P ) € [0,360] consists of k intervals

I4,..., Iy .Since each I; is contained in all wie W, its interior may not contain the

border of any such w;. Hence, I is the union of the xrange of at most three
leaves of T yy. Thus scanning at most 3 k leaves v of Tyy, and during that

process ensuring that the path from v to the root of Tyy is totally marked takes

time O(klog M). Since k is O(M2) and finding one leaf v whose xrange(T) is in
W(P) takes time O(log M) we get

Theorem 4.3 (a) For any set P of M n-vertex polygons, all directions d for
which a translation ordering of P exists, can be computed in time O(M2 (Cg(n)
+ log M)).

(b) Given an inverted segment tree on M2 movability wedges, a direction for
which P is uni-directionally sequentially separable can be found in O(log M)
time.

We have shown how the translation ordering detection problem for any given
direction can be solved. Once the existence of such a translation ordering in a
given direction d has been established, it remains to be shown how such an
ordering can be determined. To accomplish this we first define a graph,
MG(P.d), called "movability graph” of P with respect to direction d.

4.3 The Movability Graph
Let d be a direction for which a translation ordering has been
established.The movability graph MG(P,d) of P with respect to directiond is a

directed graph with vertex set P and edge set E defined constructively as
follows:

Starting with an empty set of edges we traverse the list of all pairwise
movability wedges W(P,-,Pj) : For each wedge W(P,-,Pj) we add an edge (P;,P;)
if d is in a sector where the unique translation ordering is "Pj before P;" ; an
edge (Pj,P,-) if d is in a sector where the unique translation ordering is "P;
before Pj", respectively. (Such a unique translation ordering occurs if either
W(P;P)) is a Type | wedge or i if it lies inside one of the relevant sectors of a

Type Il wedge.
Note that the graph is not necessarily connected.

Lemma 4.4 The movability graph MG(P,d) can be computed in time O(M2
Cg(n)) and O(M2 ) space.
Proof Lemma 4.4 is an immediate consequence of Lemma 2.3. g.e.d.
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Figure 2: A set P of polygons, (a) and its movability graph MG(P,d) , (b).

4.4 Determining UDS Translation Ordering
We will now show how UDS translation orderings can be determined.
Let Pj =>4 Pj denote that there exists an edge (Pi,Pj) in MG(P,d) and let ->4

be the transitive closure of =>. If it is clear from the context we will omit the
indexd (=> instead of =>4). With these definitions we show:

Property 4.5 If MG(P,d) contains no edge (P-,Pj) then Pj can be translated in
direction d without colliding with Pj.
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Proof omitted. g.e.d.

Lemma 4.6 A permutation n of the index set {1,...,M} defines a translation
ordering O, of P with respect to direction d if and only if there is no pair (i,j),

1<i<j<M such that Pﬂ(i) ->d Pﬂ?(j) .
Proof Consider any direction d for which there exists at least one translation

ordering of P with respect to d.
"==>" Assume there is a pair (i,j), 1<i<j<M such that Pn(i) => Pn(j) then we

know from the definition of W(Pn(i) , Pn(j)) that Pn(i) cannot be moved in
direction d before Py has been translated . Thus, = does not define a

translation ordering.
Assume there is a pair (i,j), 1<i<j<M such that Pn(i) -> Pn(j) but there is no pair

(i",j", 1<i<j<M such that Pn(i') => Pn(j') , since otherwise the same arguments
as above hold. Consider a sequence of polygons Pk 1),Pr(ka)--,P(ky) (t21) of
P such that PTl:(i) => PTC(k1) => Pﬂ:(k2) =>... => P(kt) => Pﬂ‘,(j)' Since we

assumed that there is no pair (i',j'), 1<i<j<M such that Pn(i') => Pn(j') we get
j<ki<...<k¢<i, a contradiction.

"<==" Assume there is no (i,j), 1<i<j<M such that Pn(i) -> Pn(j)- In order to
show that = induces a translation ordering of P we prove that Pn(i) can be
separated from Pn(i+1) in direction d for i=1,..,M. Consider any polygon Pn(j)
in Pn(i+1) then j>i. By assumption MG(P,d) contains no edge (Pn(i)'Pn(j))
since otherwise Py ) -> Pr(j) . Thus, by Property 4.5, Pr ;) can not collide with
Pn(j)- g.e.d.

As a consequence of Lemma 4.6 we obtain

Theorem 4.8 If there exists at least one translation ordering of P with
respect to a given direction d then the set T(d) of all translation orderings of P
with respect to direction d is exactly the set of all topological sortings of P with
respect to MG(P,d).

The maximum length of all directed paths in MG(P,d) which start at P in P will
be denoted by D(P,MG(P,d)) or D(P) if MG(P,d) is clear from the context.The
values D(P) for all polygons P can be derived as output of a topological sorting
process [see e.g. 11]. Let P,...,Pg Dbe the partitioning of P into disjoint

subsets such that P;={PeP / D(P,MG(P,d))=i } (see Figure 3) and let [T(P;)
denote the set of all permutations of the polygons contained in P;.
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—3
MG(P ) b

Figure 3: The Movability Graph of Figure 2 in Topological Sorted Order.

By Theorem 4.7 a subset of translation orderings is directly obtained from the
graph:
Corollary 4.8 For a given a direction d of separability II(Pp) x [I(P{) x ... x

II(Pg) is a subset of the set of all possible translation orderingsT(d).

If all translation orderings are to be computed we associate with each node in
the graph a field indicating its outdegree. All polygons (and only those) whose
corresponding nodes have zero outdegree are separable in direction d. After
separation of such a polygon its corresponding node is deleted and outdegree
fields are updated accordingly. Based on this a procedure for computing all
possible translation ordering is easily written.

The graph also reflects which polygons and in which order a given
non-separable polygon would encounter on a translation movement. These
polygon will have to be moved aside to clear the path for the given polygon.

5. The Multi-Directional Separability Problem
Recall from the introductory section, that a set of polygons P={P4, ..., Ppm}

is sequentially separable by a sequence of translations (not necessarily in the
same direction), if there exists an ordering O, such that for i=1 ,-..,M-1 polygon
Pn(i) can be separated from the remaining polygons Pn(i+1)’ by a translation

in some direction d;.

It should be clear that uni-directional separability implies multi-directional
separability. However, the converse may not necessarily be true. The
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interested reader is invited to construct an example.
Again we use the concept of movability wedges inconnection with the inverted
segment trees to efficiently solve multi-directional separability problems.

We denote by MW(P;,P): = M Wp; (Pj) the movability wedge of P; with respect
PieP - {Pj}

to P, i.e.the maximum set of directions which admit a translation of P; without

colliding with any Pje P\{P;}.

The efficiency of an algorithm to solve the MDS-problems will depend on
how fast (a) it can be determined whether, initially, there exists a polygon P;

which can be separated MW(P;,P)#@ and (b) how fast a new separable

polygon can be found once a polygon has been separated from the set. Notice
that if a polygon is separable then the movability wedges for all remaining
polygons can only increase after the separation has been performed. In
particular, this implies that if at any stage of the execution of the algorithm
more than one polygon can be separated, the order in which the polygons are
separated will have no effect on the decision of whether or not the set is
sequentially separable, i.e. on the solution of the MDS-detection problem. Our

solution will employ the following data structure: With each polygon P;e
P={P4,....P\} we associate an inverted segment tree for the set {Wpi(Pj) | Pje
P \{P;} }, called thewedge-tree TP;. In addition to this forest of M wedge trees
TP4,...,TPpq we construct a balanced binary tree, called result tree TR , whose
M leaves are the roots of TP;. Each interval node v of Tg is marked (i.e.mark(v)

is set), if at least one of its sons is marked. Actually, the M wedge trees and the
result tree together form a balanced binary tree, which we call the MDS-tree of
P. With Lemma 3.1 and Lemma 3.2 we observe the following:

Property 5.1 (a) Polygon P;is separable from P if and only if the root of its
wedge-tree TP; is marked. ,

(b) At least one polygon Pie P is separable from P if and only if the root
of Tp is marked.

(c) If the root of TR is marked, then a separable polygon P& P and its

direction of separation can be found in time O(log M).
(d) The MDS-tree of P can be computed in time O(MZ(CS(n) + log M))

With this, the MDS-detection and MDS-determination problems can be solved
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in the following manner: Initially, the MDS-tree of P is constructed at a cost of
O(M2 (Cs(n) +log M)) if its root is not marked, then P is not multi-directionally

separable. Otherwise, we find a separating polygon P;e P together with a

separating direction dje [0, 360) in time O(log M). (The set of all such
directions d; could be computed in time O(Mlog M) as described in Section
4.1.) After P; has been separated the MDS-tree has to be updated.This is done
by first removing the wedge-treeTP; and then removing the relative movability
wedges ij(Pi) from each TPj, for j#i. This takes time O(log M), each, (see

Lemma 3.1) and, thus we get an accummulated running time of O(M log M).
Finally, TR is updated in time O(M).The entire process is iterated at most M

times. If P is multi-directionally separable we obtain a translation ordering for
P together with the translation directions associated with each polygon.

Theorem 5.2 Both the MDS-detection as well as the MDS-determination
problem for a set of M n-vertex polygons can be solved in time
O(M2(Cg(n)+log M)).

Proof: Follows from the above. g.e.d.

Maximally Separable Subset Problem

In [15] the following problem was posed: If a set of polygons is not
sequentially separable, how can a maximally separable subset be
determined? The above algorithm solves also this problem. This follows since
at any time during the execution of the algorithm, all polygons (and only those)
whose associated wedge-trees have roots representing non-empty wedges,
are separable from the remaining set of polygons. Removing any one of these
polygons can never shrink the movability wedges of any other polygon. Thus
for the problem of finding the maximally separable subset problem the order in
which the polygons are removed is irrelevant. The maximally separable subset
is determined when the algorithm encounters a situation in which all
wedge-trees have unmarked roots thus no more polygons can be removed.

Some Open Problems

The separability problems solved here involve objets in the Euclidean
plane. In remains open whether an approach similar to the one presented
here can be used for solving efficiently separability problems involving objects
in 3-space.
In this paper we have studied separating motions via translations. E.g. for
automatic generation of exploded pictorials of part assemblies other
separating motions, like rotations, or screwing motions might be considered.
The movability graph, sorted in topological order, can be stored in O(M2)
space and can be generated in O(M2Cs(n)) time. Since there may be an
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exponential number of translation orderings just listing these requires at least
the same time. However, it is, to the best of the authors' knowledge, an open
problem whether the number of such orderings can be generated in a more
efficient manner, i.e. in polynomial time. The problem is equivalent to
.determining the number of linear extensions of a poset.
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