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Abstract

In recent years the design of efficient parallel solutions
for Computational Geometry (CG) and closely related
problems have been studied on the One-Dimensional
Array of Processors, Mesh-of-Processors, Mesh-
Connected Computer with Broadcasting, D-Dimensional
Hypercube, Cube-Connected Cyrcles, Pyramid Computer,
CREW-PRAM, etc. .

From these architectures the Qne- and
Two-Dimensional Array of Processors can be considered
those ones which yield the most straight forward VLSI
implementation. Since CG methods are powerfull tools for
CAD, graphics, image processing, etc. , the design of
efficient paraliel CG algorithms for these VLSI architectures
is of importance for the development of e.g. high
performance parallel CAD online applications or graphics
processors.

This motivated research in design of efficient
algorithms for CG problems on One- and Two-Dimensional
Arrays of processors during the last few years.

Research work in this field is far from being finished. As
it can be easily seen from e.g [LP84] or [PS85] most of the
CG problems which have already been considered under
a sequential model of computation have not been studied
or implemented on a One- or Two-Dimensional Array of
Processors, yet.

This paper surveys results which have been presented
so far, gives examples to outline c.gorithm design
methodologies, and points out open problems and
directions of further research.

1. Introduction

"Computational Geometry, as it stands nowadays, is
concerned with the computational complexity of geometric
problems within the framework of analysis of algorithms”
[LP84].

This young discipline which was christened by
M.1.Shamos in his Ph.D. thesis [Sh78] in 1978 has
attracted enourmous research interest in the past decade.
A survey of Lee and Preparata in 1984 [LP84] contains
already about 350 references to the most important
publications in this area, a first introductory textbook on
Computational Geometry (CG) written by Preparata and
Shamos [PS85] was published in fall 1985, and since
summer 1985 an annual Conference on Computational
Geometry is organized by ACM SIGGRAPH.

Since CG methods are powerful tools for CAD,
graphics, image processing, and robotics the design of
efficient parallel CG algorithms for paralle! machines and
VLS| architectures is of importance for e.g. the
development of high performance parallel CAD online
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applications or graphics processors.

To support the development of such fast parallel
systems the design of efficient parallel solutions for CG and
closely related problems has been studied in recent years
by many researchers on several parallel models of

computation:

- One-Dimensional Array of Processors (e.g.[Ch84],
[De85b}, [De86c], [SSP86)),

. Mesh-of-Processors (e.g.[MS84], [MS85], [De85a],
[De86a], [De86c], [DSS86], [Lu8e], [LVv8s]),

- Mesh-Connected Computer with Broadcasting
(e.g.[St83], [NS81]),

- Mesh of Trees (e.g.[KE86], [St85]),
- D-Dimensional Hypercube (e.g.[NS80]),
- Cube-Connected Circles (e.g.[PV81]),
- CREW-PRAM (e.g. [ACGDY85], [AG85], [AG86a,b],
[EI86]),
etc.
From these architectures the One- and
Two-Dimensional Array of Processors can be seen as

those ones which yield the most straight forward VLS!
implementation.

2. One- and Two-Dimensional Processor Arrays

One- and Two-Dimensional Processor Arrays are sets
of n syncronized processing elements (PEs) arranged in
linear order or on a Vn x ¥n grid, respectively, with each
processor being connect by bidirectional communication
links to its direct neighbors (see figure 1).

Each processor has a constant number of registers and
within one time unit it can simultaneously send an output to
and receive an input from each of its communication links.

How are geometric objects stored and manipulated on
such a processor array ?

In the recent literature, the following two models have
been considered:

(a) object sets : each processor of the array stores a
constant number of geometric objects (e.g. points,
rectangles, circles) which need O(1) storage space.

(b) digitized pictures : the geometric objects are
represented by sets of points located on a finite grid where
each grid point (pixel) is represented by one processor.




Figure 1:
(a) One- and (b) Two-Dimensional Processor Array

3. VLSI Algorithms for Sets of Geometric Objects

Several geometric problems have been studied for
efficient paraliel solutions on One- and Two-Dimensional
Processor Arrays.

Most of these algorithms assume that initially each
processor stores one (or a constant number of) geometric
object(s). Consider, e.g., the problem involveing a set of
line segments, then the coordinates of the two endpoints of
each line segment are stored in one processor. Hence,
storing n line segments involves n processors.

The first part of this section introduces some (selected)
geometric problems which have been solved on processor
arrays, yet. Subsection 3.2 scetches a parallel solution for
a CG problems to outline some algorithm design
methodologies.

3.1._Some (Selected) Geometric Problems

We will now review some interesting geometric
problems which have been solved on processor arrays,
yet. References to publications which introduce new
parallel algorithms for several other geometric problems
are given in the refence list.

One of the classical problems in Computational
Geometry with a wide range of applications (especially in
image processing) is the convex hull problem, cf. [PS85].

Given a set of n points in the Euclidean plane, the
convex hull of these points is the smallest enclosing
convex polygon (see figure 2a). The sequential time
complexity of this problem is O(n log n).

The convex hull problem was one of the first to be
solved on parallel on processor arrays. Chazelle [Ch84]
and Miller/Stout [MS84] introduced O(n) and O(vn)
algorithms for solving this problem on one- and
two-dimensional processor arrays, respectively.

Since comparing the contents of two arbitrary PEs
takes at least time O(n) and O(¥n), respectively, in the
worst case, these algorithms are asymptotically optimal.

ion Problems are of special interest
in VLSI design; see e.g. [MCB80].
In [LV86] O(Vn) time (optimal) solutions for solving the
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following problems for a set of n iso-oriented rectangles on
a Mesh of Processors are given:

- Computation of the area of the logic "AND" ("OR"),
i.e., the area of the region that is covered by two or
more (at least one, respectively) rectangles; see
figure 2b.

- Computation of the largest number of rectangles that
overlap

- The fixed rectangle placement problem, i.e.,
determine the placement of a given rectangle such
that it includes the maximum number of a given set of
points.

l

—y

(d)

(c)

: Some Geometric Problems

Figure 2

The Voronoi_ Diagram of a set of n sites in the
Euclidean plane subdivides the plane into n regions, one
for each site, which are the sets of those points which have
the respective site as their closest neighbor (see figure 2¢).

Voronoi Diagrams are of central role in CG and yield a
large number of very interesting and efficient applications.

In e.g. [De86b] efficient O(n log n) [O(n log2n),
respectively] sequential algorithms for clustering set of n

points, line segments, rectangles etc, are presented which
are of considerable inte-esi in picture processing and have
signifficant advantages with respect to other existing
clustering algorithms. These algorithms utilize Voronoi
Diagrams for sets of points [and generalized versions for
line segments, rectangles , resp.].

To paralielize these algorithms it is important to find
efficient parallel algorithms for the computation of Voronoi
Diagrams.

In {LuB6] an O(Vn log n) algorithm for constructing the
Voronoi Diagram of a set of n points (in the Euclidean
plane) on an ¥n x Yn mesh is given which makes use of
the well known mapping of this problem into computation
of the convex hull in three dimensions.

The sequential time complexity of this problem is O(n
log n). It is an open problem to find an optimal O(vn)
algorithm for the parallel computation of Voronoi Diagrams
on a Mesh-of-Procesors of size n.




In a "rectilinear world" (e.g. on a grid) the shape of a
set of points is usually determined by their rectilinear
convex hull, i.e. the smallest enclosing rectilinear convex
polygon (see [PS85]). This problem can be reduced to
finding the maximal elements of a set of points, i.e., those
points, which are not dominated by any other point (see
figure 2d).

An interesting way to represent such a set of points is to
compute all its layers in the following sense (see [OL81)) :
remove the points on the rectilinear convex hull and
compute the hull of the remaining points; iterate this
process until all points have been removed - this process is
called "peeling". Solving this problem can be easily
reduced to the ECDF searching _problem : remove the
maximal elements, find the maximal elements of the
remaining points, etc. (see figure 2d).

Both problems can be solved on a Mesh of Processors
in (optimal) time O( Vn) as presented in [De86a].

Another interesting geometric problem, the largest
empty rectangle problem, is covered in more detail in the
following section.

3.2. An_Example: The Largest Empty Rectangle
Problem

Given a rectangle R (with its edges parallel to the
coordinate axes) containing a set S={sy....,sp} in the

Euclidean plane consider the problem of finding the largest
area subrectangle r of R with sides parallel to the
coordinate axes that contains no point of S. In this section
we will scetch optimal paralle! O(n) and O(Vn) time,
respectively, algorithms for solving this problem on a One-
and Two- Dimensional Array of Processors which have
been presented in {De86c]. Since comparing two arbitrary
elements takes at least time O(n) and O(¥n), respectively,
in the worst case, these algorithms are asymptotically
optimal.

X2 A
>x1

Figure 3: Definition of the Largest Empty Rectangle

An efficient solution for this problem is of considerable
interest e.g. in VLS| manufactering. A rectangular silicon
wafer (or rectangular part of a circular silicon wafer,
respectively) with several points of impurity can be
represented by a rectangle R and a point set S. The largest
area rectangular area on the wafer, with its sides paralle! to
those of the wafer, which is free of impurities is the laregst
empty rectangle r described above.

Several sequential algorithms have been presented
e.g. in [NHL84], [CDL84], [KRS85] 1o solve this problem in
time O(n2), O(n log3n), and O(n Iog5n), respectively.

Initially, the coordinates of each point of S are stored in
an arbitrary PE. Furthermore, each PE contains the
coordinates of R.
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Each edge of the largest empty rectangle r is supported
by either an edge of the bounding rectangle R or at ieast
one point of S; otherwise it would be contained in a larger
empty rectangle (cf. [CDL84]). We shall call these edges or
points "supporting elements” with respect to S (and R). To
simplify exposition we assume that all points of S have
distinct x4- and distinct xo-coordinates and, thus, the

largest empty rectangle has exactly four supporting
elements. The existance of some more supporting
elements will not change the algorithms signifficantly.

In order to compute the largest empty rectangle r of a
set S with bounding rectangle R, S is first sorted by
x4-coordinate such that S (and R) can be split by a vertical

line Iy into two subsets Sjgfy and Syjgpy of equal size
(ISiett ! - ISright!| < 1), and the subproblems for S;gq and
Sright (and the two respective subrectangles of R) are

recursively solved in parallel on the left and right,
respectively, half of the processor array (see figure 4a).

| |

v v
R %% R
S
Stett S ight 212 2 >3 23 Iy
S, A 4
a,]9,
Figure 4a Figure 4b

Given the largest empty rectangles with respect to S|
and Srightv the maximum area one of these both has to be

compared with the largest empty rectangle r* which has at
least one supporting element with respect to Sjey and

Sright. each.

This "merging step” will be done by a second divide
and conquer procedure:
S is sorted by x,-coordinate and then split by an

additional horizontal line I, into four disjoint subsets Sy,
Sy, S3, 54 as described in figure 4b such that

Sleft=S1VS2 .
Sright= 83US4 , and
IISQUS3|'IS1US4||S1.

Recursively, the largest empty rectangle having at least
one supporting element with respect to S, and Sg3, each,

and none with respect to Sq or 54 as well as the largest

empty rectangle having at least one supporting element
with respect to S¢ and Sy, each, and none with respect to

S, or S5 is computed. Both subproblems are solved in
paralle!l on one half of the processor array, each.

To compute r* we have to compare these two
rectangles with the largest empty rectangle r* which has
the following property :

Let B4 [Bp, By, By4] be the set of supporting elements of

r* with respect to Sy [Sp, S3, S4] or the respective pant




of the bounding rectangle R, then
Byl+ IByl+ |B3|+ IBgl=4

|B1]+ |82|>O
|B3|+ lB4l>O
[Byl+ IBzl>0
[Byl+ IByl>0 .

All possible (16) cases that match these requirements
are listed in figure 4.
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e U000 Dl |
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Figure 5

Furthermore, it is easy to observe that, if ' is an empty
rectangle as described above and {ty, tp}=B are two

supporting points in the same quadrant then t{ and tp are

maximal and close neighbors (i.e., there is no other
maximal t"in Bqwith x4 coordinate between ty and tp) .

With this the general outline of the remaining part of the
algorithm is as follows:

In order to find the rectangle r* the respective
Processor Array computes the largest empty rectangle for
each case (if it exists) separately, and then finds the
maximum area one of these.

On a one-dimensional array of processors each case
can be solved in time O(n) as scetched in figure 6 which
yields a total O(n) running time for the entire algorithm, too.

However, on a mesh of processors, for several of these
cases there is another divide-and-conquer procedure
necessary to obtain an optimal O(¥n) time complexity. A
describtion of these steps is omitted here (cf.[De86c]).

(. |
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(Case 14)
= ]
B =
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] el
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(Case 9) .

Figure 6

4. VLS| Algorithms for Digitized Pictures on a
Mesh-Of-Processors

We will now study another way of representing
geometric information on a two-dimensiona array of
processors.

Each processor represents the center of a unit-area
pixel. We refer to such a configuration as a systolic screen.
An image on a systolic screen is a subset of pixels (see
figure 7). Pixels that are part of some image are called
occupied pixels.

Two-dimensional arrays of processors have long been
proposed for image processing [Re84] since they are a
very natural way of storing images. The maximum size of
such images typically ranges from 256x256 pixels in
computer vision in the industrial environment to
4000x4000 pixels and larger for aerial photographs.

The well known MPP designed by NASA for analysing
LANDSAT satellite data consists of 16384 PEs organized
in a 128x128 matrix with a local memory between 1K and
16K bits for each PE (to represent a subsquare of pixels).

In image processing, however, processor arrays are
mostly used for low level local operations such as image
restoration, noise removal, edge detection etc. .

4.1. Some Computational Geometry Problems

Recently, processor arrays for digitized pictures have
also been proposed as a machine mode! for
Computational Geometry.

Miller and Stout {{MS85]) introduced O(¥n) algorithms
for computing the distance between two images, gxireme
points (with respect to the convex hull), diameter, and
smallest enclosing circle as well as for convexity and
separability testing and related problem.

[DSS86] presented O(Vn) algorithms for computing
hulls and contours of images as well as peeling images
(see section 3.1). These algorithms do also result in a new
paralle! solution for the longest common subsequence
problem.




4.2. An _Example: Parallel Visibility

We will now scetch an algorithm on a systolic screen
which computes the parallel visibility from a point light
source located at infinity to a set of images represented cn
an ¥n x ¥n mesh-connected computer. The algorithm
which is presented in [DHSS87] computes in O(\?n) time
the portion of each pixel illuminated by rays parallel in
direction d.

O\
NI

A 14 pApD4
ALY ALY
I, 4, /, /
ALY A1y
//’/‘ e
Figure 8

The technique used is to divide the screen into
fixed-size strips whose edges are parallel to direction d.
The visibility is then computed for each strip indepen-
dently (in parallel). Inside each strip the visibility is affected
only by the occupied pixels that intersect that strip. The
visibility information for a strip is represented as an interval
which is perpendicular to direction d and is initially set to
the width of the strip. The interval indicates which parts of
the strip have not yet been hidden from the light source by
an occupied pixel. Initially the entire strip is visible. The
interval is passed along the strip in direction d, and is
updated when an occupied pixel is encountered: the
maximum intersection between the pixel and the interval, it
the interval were moved across the pixel in direction d, is
removed.

5. Conclusion, Open_ Problems

The aim of this paper is to point out a new field of VLSI
algorithm design : Parallel Computational Geometry.

The interaction between parallel Computational
Geometry and VLSI is twofold:

On one hand, parallel Computational Geometry utilizes
new machine architectures based on VLSI technology;
on the other hand, parallel solutions for geometric
problems are powerfull tools for VLS| design and
manufactoring (consider e.g. the largest empty
rectangle or rectangle intersection algorithms) and can
speed up these processes signifficantly.

However,
Computational

research in VLS| algorithms for
Geometry has just started solving a
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handfull of geomtric problems and there is much work
ahead.

A large number of problems hasn't even been
considered yet (cf. e.g. [LP84]).

Most of the algorithms have not been implemented or
simulated and practical issues such as efficient /O or
problem sizes which are larger than the array size are
unresolved.
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