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1. INTRODUCTION

A digitized plane I1 of size M is a rectangular array of lattice points (or pixels) with integer coordinates {ij),

where i,je{1,..., VM }. A subset ScI1is called an image (or digitized picture) on I1; its complement I1-S is denoted

by SC.

A systolic screen of size M is 2 YM x YM mesh-of-processors where each processing element Pj

represents the lattice point (i,j). A systolic screen is a natural too! for the representation of images on the digitized

plane. Animage S can be represented by a binary “color-register” C-Reg(i,j) at ach Pii, where
(1,if(ij)eS
C-Reg (ij) = |
\ 0 otherwise

A set of (disjoint) images can be represented simultaneoulsly on a Systolic screen by assigning to the

C-Registers a different integer value (color) for each image. The fundamental difference between the Systolic

Screen and the Mesh-Connected Processor Array (MCPA) lies in the fact that the Screen is a mapping of the
entire (digitized) plane while the MCPA (e.g., see [NSBO,AK84,M884,De85]) is a compact representation of the

image only.

Mesh-of-processors (or Systolic Screen) have been already used to store images: The

maximum size of an image typically ranges from 256x256 pixels in computer vision in an industrial environment to

4000x4000 pixels and larger for aerial photographs. A well known existing system is the MPP designed by NASA

for analysing LANDSAT satellite data [Re84]. The MPP consists of 16,384 processing units organized in a

128x128 matrix with a local memory between 1K and 16K bits for each processing unit (to represent a subsquare

of pixels).

Computing on a Systolic Screen has been the subject of recent investigations by Miller and

Stout [SM84, MS85] they propose O( VM) algorithm for the computation of the distance between two images and

the computation of the extreme points {with respect to the convex hull), diameter, and smallest enclosing circle of

an image as well as for convexity and separability testing and related problems on a Mesh-of-Processors of size

IMxVM.



F D
F. Dehne, J.-R. Sack, and N. Santoro, "Computing on a systolic screen: hulls, contours and applications," in Proc. Conference on Parallel Architectures and Languages Europe, Eindhoven (The Netherlands), 1987, Springer Verlag, Lecture Notes in Computer Science, Vol. 258, pp. 121-133.


In this paper, we continue the study of computing in a Systolic Screen and present efficient
solutions for the following problems:

1) computing all kth m-contours of an image

2) computing all kth retilinear convex hulls.

It is shown that both algorithms require O( VM) time on a Systolic Screen of size M, i.e. they are optimal.
Furthermore, the solution to the first problem yields a new parallel solution to the longest-common subsequence
problem (e.g. [Hi77, RT85]).

Before presenting the results, we will introduce some basic notation which will be employed
throughout the paper (cf. [Ro79, Ki82]). The 4- neighborhood of a pixel (x,y) is the set of its four horizontal and
vertlcal 4-neighbors (xx1, y) and (x, yx1). The 8- neighborhood (or neighbors) of (x,y) consists of its 4-neighbors
together with its four diagonal neighbors (x+1 yx1) and (x-1,y+1). The border SO of S is the set of all points of S
which have neighbors in SC. The interior of S, S-S9, is denoted by S°.

Let p,q be two points inT1. A [4-]pathfromptoq is a sequence of points p=pg,....Pr=a such that p; is a [4-
] neighbor of p;.4, 1<i<r. p and q are [4- ] connected in S if there exists a [4- ] path from p to q consisting entirely of

points of S. With each pixel p=(i,j) eIl we associate its cell <p> :=[i-0.5, i+0.5] x [}-0.5, j+0.5] ¢ R2 and with each

image S¢Iitsregion <S> = Upes  <p>

2. DOMINANCE PROBLEMS

2.1 Determination of All Kth m-Contours

Given a digitized plane I1 of size M and an image S ¢ I1, apixel s=(i,j) e [1 dominates a pixel s'=(I",]')e I1
(abbr.s»s') if ixiandj>j;anditis called maximalin S if there is no other s'e S which dominates it. The set
MAX(S) of all maximal pixels of S (sorted by x-coordinate) is called the 15t m-contour of S.

The definition of contour of S can be generalized to introduce the notion of the K™ m-contour of S,
denoted by MAX(S k), ke N, as follows:

MAX (S, 1):=MAX(S)
MAX (S, k+1):= MAX (S - (MAX(S,1) U ... U MAX(S k) ) ).

Since in a digitized plane pixels with the same x- or y-coordinate may occur very often, the following
restricted definition of dominance on a digitized plane is also useful: a pixel s=(i,j) e[l strictly dominates a pixel
s'=(i"j) eIl (abbr.s>s) it i>f andj>j. The kth m-contour with respect to the strict dominance relation will be
denoted by MAX* (S k).

Assume that an image S={s1,....Sp} on a digitized plane I1 of size M is stored in a Systolic Screen as
described above. In addition to C-Reg(i,j), each Pij contains a second register K-Reg(i,j). The K-Registers are
used for storing the final result, i.e. all kth m-contours, as follows:

for all Pij for which (i) €S (K-Reg(ij) « k) <=> (i)eMAX(SK).




In Figure 1 we present an algorithm to compute all kth m-contours.

Theorem 1: Algorithm ALL-MAX computes all MAX(S k) in time O(VM).

Proof: Each processor element (PE) representing a pixel se S sends messages which proceed towards
the lower left corner of the Systolic Screen to all PEs which are dominated. Thus, in the worst case these
messages have to proceed from the upper right to the lower left corner of the mesh taking time O(¥M). The
correctness of the algorithm can be proved by an induction on |S}: For [S] =1 the algorithm obviously provides the
correct result.  Thus, assume |S|>1 and let s'e MAX(S,1) be a maximal element of S. We observe that during
execution of algorithm ALL-MAX the final status of the registers of each PE is independent on the order in which
the PEs are reached by messages originated at other PEs representing pixels s€ S. Thus, we obtain the same
result by applying algorithm ALL-MAX to S-{s'} and then superimposing the messages originated at s'. With this
we can easily prove that algorithm ALL-MAX applied to S provides the correct result. Figure 2 shows the possible

cases which might occur, when the additional messages are superimposed. ¢

Algorithm ALL-MAX:

(1) AllPEs Pi]- initialize their K-Register
K-Reg(i.j) « C-Reg(ij) .
(2) All PEs with K-Reg = 1 send the contents of their K-Register to their lower and left neighbors, if they
exist.

(3) For ease of description we set vy,,v=0 it no value is received. Al PEs, Pjj, which receive at least one
value vy, and/or v, from their upper and/or right neighbor, respectively, update their K-Register
K-Reg(ij) <« max {K-Reg(ij), max{vy,vy + C-Reg(i,j)}
and send the new contents of their K-Register to their directly connected lower and left neighbors, if

they exist.
(4) Step (3) is iterated until there is no more PE which has received at least one message.

Figure 1
Computation of all MAX(S,k)
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The algorithm for computing all MAX*(S k), given in figure 3a, is essentially the same as the one for
computing all MAX(S k). However, we have to take into account that a pixel cannot dominate another pixel which
has the same x- or y-coordinate. Thus when a PE receives a message it has to know whether this message has
been passed on a direct horizontal or vertical line, yet. To provide the necessary information an additional bit by,

bp, respectively, is added to each message sent to a left, lower neighbor, respectively. A bit value 0 indicates

that this message has been passed directly leftwards or downwards.

Algorithm ALL-MAX*:

(1) Al Pii initialize their K-Registers

K-Reg(ij) <« C-Reg(i))

(2) All PEs with K-Reg = 1 send a message (K-Reg, 0) to their directly connected lower and left neighbors, if
they exist.

(3) All PEs which receive at least one message (vy.by) and/or (vy,by) from their upper and right neighbor

update their K-Reg and send a message (Vp.bp) and (vq.,bq) to their lower and left neighbor,

respectively, as described in figure 3b.
(4) Step (3) is iterated until there is no more PE which has received at least one message.

Figure 3a
Computation of all MAX* (S k)




(Va,by)
i

(vi/bY) ! [cTReg [R=Reg |~ (VrsPr)
|

(vblbb)

bubr vy > Vr [ Vg = Vp J vy < Vg

* 0 [K—Reg]emax([K-Reg],vr)
b;=0, by=1-[C-Req]

o * [K-Reg]emax{ [K-Reg],v,}
by=1-[C-Reg], by,=0

* 1 [K~Reg]¢max{ [K-Reg],v,+[C-Reg]}
b =bp=1-[C-Reg]

1 * [K-Reg]emax( [K~Reg], v +[C~Reg]}
by =by,=1-~{C~Reg]

0 1 | [K=Reg]l¢« [K—Reg}emax([K—Reg],vr+[C—Reg])

max{ [K-Reg],v,] bjy=bp=1-[C-Reg]
by=1-[C-Reg], by=0

1 0 | [K-Reg]« max{[K-Reg],Vv,+[C~Reg}} [K-Reg ]«
by=bp=1-{C~Reg] max{ [K-Reg],Vv,}
by=0,by=1~[C-Reqg]
00 [K-Reg]emax{ [K-Reg], vy, Vv, )
by=1~[C-Reg],bp=0 |bj=bp=0 |b1=0, by=1={C~Req]
11 [K-Reg]emax{ [K-Reg],max{v,,V,.}+[C-Reg]}

by=by=1-[C-Reg]

v1=Vp=[K-Req]

(* = no message)

Figure 3b
I/O Operations Performed by Each PE

Theorem 2: Algorithm ALL-MAX* computes all MAX*(S k) in time O(VM).
Proof: see [DSS86] *

The points of each kth m-contour computed by algorithm ALL-MAX* define a 4-path of pixels which we will
refer to as the ki m-chain, denoted M-CHAIN(S k), of S. We observe that upon termination of algorithm
ALL-MAX*, the K-Registers of PEs of all pixels which lie on the Kth m-chain or below the kth m-chain and above
the (k+1)th m-chain have value k. We refer to this set of pixels of S, with K-Register value equal to k, as the If

m-belt of S, and denote it by M-BELT(S k).

Corollary 3: On a Systolic Screen of size M, all m-chains and m-belts of an image can be computed in

time O(YM).

2.2 The Longest Common Subsequence Problem
The proposed algorithm for parallel computation of all k!h m-contours yields a new parallel solution of the

longest common subsequence problem which is defined as follows:
Given two strings A=A(1) . . .A(n) and B=B(1) . . .B(m), n=m, over some finite alphabet ¥, a substring C of A




is defined to be any string C=C(1) . . .C(r) for which there exists a monotone strictly increasing function f: {1, ..., 1}
-> {1, ..., n} with C(i)=A(f(i)), for all 1<i<r. The longest common subsequence problem is to find a string of
maximum length which is a substring of both A and B.

A table of currently known sequential solutions of the longest common subsequence problem is given in
figure 4 (p denotes the length of a longest common subsequence and r is the total number of ordered pairs {.p

with ai=bj).

Running Time Worst-case behaviour
[HS77] O((r+n) log n) o(n? log n)
[Hi77] O n) o(n?)
[Hi77] O(p(m+1-p) log n) o2 log n)
[NKY82) o(n(m-p)) o(n2)
Figure 4

Sequential Solutions of the Longest Common
Subsequence Problem (from [RT85])

Hirschberg [Hi78] proved an Q(n log n) information theoretic lower bound for sequential solutions of the
longest common subsequence problem. Recently, [RT85] introduced a parallel algorithm which computes a
longest common subsequence in time O(n) using a one-dimensional systolic array of size m with a systolic stack
of size n associated with each PE.

We will now give an O(n) time solution of the longest common subsequence problem on a Systolic
Screen of size nxm such that all processing elements are of one type only ( cf. [RT85 ]). Our solution has the
additional advantage that it determines also all longest common subsequences in time O(n). The central idea
which leads to this method is a transformation of the longest common subsequence problem to the Kth

m-contour determination. This reduction was also used by Hirschberg in [Hi77].

Lemma 4:

(@ A(iq) .. Alip)= B(j1) - - -B(jy) is a common subsequence of A and B if and only if (i1.j1) < (i2.i2) <
(idp)-

(b) The length of a longest common subsequence is kmax '= max{ke N/MAX" (Sp g.k)# &} with SpAR'=

{(i.j) A=B()}.
Proof: see [Hi77].°




An illustration of Lemma 4 is given in figure 5. The computation of a longest common subsequence of two

strings A and B can be mapped into all m-contours problem with respect to the set SAB-

abbacabbccbabbccan=

A

Figure 5

Before we consider the longest common subsequence problem we will first introduce the MAXBELOW

searching procedure.
Given two sets P', P" of processors on a YnxVn subsquare of a Systolic Screen of size N each containing

three registers X, Y, and Z (for positive numbers) then we define a procedure MAXBELOW (P, P, X, Y, Z) which
results in the following:
(VpeP): X(p) « max| {Y(p')/p'eP"and Z(p")<Z(P) } v {0} |
with X(p) [Y(p), Z(p)] denoting the contents of the register X [Y, Z, respectively] contained in processor p.

Theorem 5: Procedure MAXBELOW (P',P",X,Y,Z) as described in figure 6 performs MAXBELOW

search on a vnxvn submesh in time O(¥n).



Procedure MAXBELOW (P',P",X,Y,Z):

(1) Sort P'UP" with respect to the contents of their register Z in snake-like ordering (cf. [TK77].
(2) Perform one shift procedure for each row of PEs and compute the following :

- For each PE in the row compute the maximum contents of the Y-registers of all PEs p"e P" in the
row (0 if no such PE exists) and store this value using an additional register ROWY.

- For each PE p'e P' in the row compute the maximum contents of the Y-registers of all PEs p"e P" in
the row which have lower rank with respect to the snake-like ordering computed in step (1) and
store it into its X-register (0 if no such PE exists).

(3) Perform a shift procedure for each column of PEs and assign to the X-register of each p'e P' the
maximum of its current contents and the contents of the register ROWY of all PEs in the column which

have lower rank with respect to the snake-like ordering.

Figure 6

Theorem 6: Given two strings A=A(1) . . .A(n) and B=B(1) . . .B(m), nm. Using a
Mesh-of-Processors of size nxm the following problems can be solved in time O(n):
(a) Computation of a longest common subsequence of A and B.
(b) Computation of all longest common subsequences of A and B.

Proof: (a) see [DSS86]. (b) Given the set of all m-contours of Spg- From Lemma 4 we know that
each longest common subsequence is induced by a sequence sq, . . ., §¢ of points of Spg suchthatsy <. ..
< sr. The set of all such sequences is obtained by computing for each s = (i,j) € MAX* (SaB, k) its set of next
dominances ND(s):={ s'e MAX* (Sag.k-1)/s<s}, 1<k<kmax- We observe that ND(s) = { (i",j) € MAX*
(Sag.k-1)/i>iandj>j}. Thus, it suffices to store for each s=(i,j) € MAX* (Sag.k), 1<kgmax. the two values
*-=min {i>¥/ (i) e MAX* (SagK-1) } and |"i=min {i>}/ (I']) eMAX" (SaBk-1)}. This can be performed by a
global MAXBELOW search procedure‘ in time O(n) as described above for each [MAX*(SaR.K), MAX*

(SABK-1) 1, 1<kskmax. in parallel. ¢




3. DETERMINATION OF ALL KTH RECTILINEAR CONVEX HULLS

Considerable attention has been given to finding estimaters which identify the center of a set S and the
depth of points with respect to S (see [Sh78], [OL81], [LP84]. For sets S ¢ E2in the Euclidean plane Shamos
(cf. [Sh78]) described a sequential 0O(n?2) time algorithm for "peeling" S by iterating the following process:
compute the convex hull (see [PS85] of S and remove its vertices from S, which is the two-dimensional
analogous to the concept of the o—trimmed mean used in robust statistics (see [Sh78] p. 83 ff, [Hu72]). He also
proved an Q(n log n) (sequential) lower bound for this problem. Subsequently Overmars and van Leeuwen
[OL81] and Chazelle [Ch83] gave O(n log2n) and O(n log n), respectively, (sequential) solutions for this problem.
Obviously all convex layers are a suitable representation of a set of point comparable with the sorted order in the
one-dimensional case. Chazelle, Guibas and Lee [CGL83] demonstrated how to apply this structure to improve
upon previous solutions of the halfplane range query problem.

This section will deal with the concept of “peeling” an image S={sq,....Sp} of sizeMina digitized plane,
i.e. iterating on the following process: compute the rectilinear convex hull of S and remove its vertices from S.

On a Systolic Screen of size M we give an O(VM) paralle! algorithm to peel an arbitrary image. We call S
rectilinear convex, if the intersection of its region <S> and an arbitrary horizontal or vertical line in <IT> consists of
at most one line segment.

The intersection of all rectilinear convex images S' ¢ IT which contain S is called the rectilinear convex
hull of S and denoted by HULL(S) . The rectilinear hull determination has been discussed in Sack [Sa84], Wood
[Wo84], Monturo [Mo82]. The ki rectilinear convex hull HULL (S k) and the Kkth rectilinear convex belt BELT (S k)

of S (ke N) are defined as follows:

(@ HULL(S,0) :=II

HULL(S,1) = HULL(S)

HULL(S k+1) = HULL ( (HULL(S.X) N S) - HULL(Sk)® )
(b) BELT(SkK)  := HULL(Sk) - HULL(S k+1)

See figure 7 for an illustration.

The maximum of all ke Ng such that HULL(S,k) # @ is called the depth of S and denoted by DEPTH(S).
For each pixel se [T we define its depth DEPTH(s,S) inS:

DEPTH(s,S):=k <=> se BELT(S k).
Obviously, DEPTH(S) = max {DEPTH(s,S)/ sell }.
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Given a pixel se [1. We define kNE(S. S) =k [ksE(s,S)=k, ksw(s,S) =k, kyw(s.S):=k] if se M-BELT(S k) with

respect to the NE-direction [SE-direction, SW-direction, NE-direction, respectively], see figure 8 for an

illustration.

Lemma 7:

@  (VselD): seBELT(SK) <=> minfknw(s,S)ksw(s.S)kNE(S.S)KsES.S) } =K
(b) (v 0sksDEPTH(S)): BELT(SK) ={ seIl/ minfknw(s.S)ksw(s.S). KNE(S.S) KSE(S,S)=K}

(©) DEPTH(S) = max { min{kNW(s,S),kSW(s,S),kNE(s,S),kSE(s,S) }/sell}

This yields the following

Theorem 8: On a Systolic Screen of size M all kth rectilinear convex hulls HULL(S k), all rectilinear

convex belts BELT(S k) and the depth DEPTH(S) of an image S can be computed in
time O(VM).
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