F.Dehne, A.Hasenclover, J.-R. Sack, N.Santoro, "Parallel Visibility on a Mesh-Connected Parallel Computer”,
Conference on Parallel Processing and Applications, L'Aquila, ltaly, September 23-25, 1987, pp. 173-180

Int.

PARALLEL VISIBILITY ON A MESH-CONNECTED PARALLEL
COMPUTER

F. Dehne, A. Hassenklover, J.-R. Sack, N. Santoro

School of Computer Science, Carleton University, Ottawa, K1S 5B6, Canada

ABSTRACT

Consider a set of images represented on an nxn mesh-connected computer, where each
mesh processor represents the center of a unit-area pixel in a nxn grid of pixels. Such a
configuration is called a systolic screen. The parallel visibility problem is the problem of
determining the visibility from a light source, located at infinity, of a set of images
represented on a systolic screen. In this paper, a systolic algorithm is presented which
computes the portion of each pixel illuminated by rays of light parallel to a given direction
d; it is shown that the algorithm requires O(n) time for the entire computation.

1. INTRODUCTION.

Two-dimensional arrays of processors [8] have long been proposed for image
processing [6] since images can be naturally mapped on a mesh of processors (MCC). An
image is commonly defined as a subset of a digitized plane IT of size n2, where [T is a
rectangular array of lattice points (or pixels) with integer coordinates (i,j), where i,
¢{1,...n}. The pixels are of unit width and pixel(i,j) covers the square [i-0.5,i+0.5] by [j-
0.5,j+0.5). A systolic screen of size n? is a nxn MCC where each processing element (PE)
P;j represents a pixel centered about the lattice point (i,j), with pixel p; ; occurring at the
top left-hand corner of the MCC [2]. Figure 1.1 shows an image in a MCC, where the dark
pixels are occupied by a digitized object. For a nxn systolic screen, an equivalent diagram
will be employed; the diagram for Figure 1.1 is shown in Figure 1.2

In image processing, arrays of processors are mostly used for low level local operations
such as image restoration, noise removal, computation of connected components and edge
detection (cf.[1,3,5,6,9]). Recently, systolic screens have been proposed as a machine
model also for Computational Geometry [4,7]. In this context, Miller and Stout [4,7] have
presented O(n) time algorithms for computing the distance between two images,
determining extremal points, diameter, and smallest enclosing circle of an image, as well for
testing convexity and separability of digitized images. Recently, Dehne, Sack and Santoro

173

[2] have proposed O(n) algorithms for computing the contours of an image, and all kth

rectilinear convex hulls of an image stored on a systolic screen.

Figure 1.1 Figure 1.2

In this paper we continue this line of research by solving the following problem
(Parallel Visibility Problem): given a light source located at infinity that emits rays of light
parallel to a specified direction d, compute the portions of each object that are illluminated
by the light source.

In the following section we discuss a sweep method which will be used to solve the
parallel visibility problem. In Section 3, the implementation of the algorithm on a systolic

screen is described in some detail, and its time complexity is analyzed.

2. SYSTOLIC PARALLEL VISIBILITY.

Given a direction d, the parallel visibility problem on the systolic screen is the problem
of determining, for each object in the screen, which portion is visible in that direction; that
is, to determine the region of each pixel illuminated by a light source, located at infinity,
emanating rays parallel to the given direction d. Pixels that are part of a digitized image are
called occupied pixels and they may block the light rays.

A strip S is a region of the systolic screen bounded by two lines parallel to direction d.
In computing the visible portions of a pixel, the systolic screen will be divided into fixed-
size consecutive strips S;,S,,...,.S . For a strip Sy, denote by sy and sy, the directed
lines parallel to d forming the boundaries of Sy. Since the visibility in a strip is affected
only by the pixels intersecting that strip, we will consider only the problem of computing
visibility in a strip. The visibility information for a strip Sy is an interval I} perpendicular
to the direction d, and whose length is initially set to the width w of the entire strip (see
Figure 2.1). The strip will be scanned; during this process, the visibility information will

174

be updated so that, at any point in time, the interval indicates which parts of the strip are still
visible from the light source. The actual value of the width w depends on the specific

direction d; the method for choosing w will be discussed later.

y

5

k >
Sk+1 -

A~

Figure 2.1. A strip Sy, and its associated interval I, of width w.

Sk

\

Initially, the entire strip is considered visible, and the length of the interval is w. The
interval is passed along the strip in direction d, and is updated whenever an occupied pixel
is encountered. For example, in Figure 2.1, the interval Iy initially covers the entire strip
Si. In Figure 2.2, the same strip Sy is shown with only the occupied pixels being
indicated. After the first occupied pixel is encountered, Iy is reduced to I'y; it is further
reduced when the next occupied pixel is encountered, resulting in the final interval I'" k.

Sk+1

Figure 2.2. Update of interval I; when scanning strip Sy.

The visibility information I must be sent to all pixels intersecting strip Si. Let
P.={pi,P2---Pm} be the set of all pixels intersecting S. If pixel p; blocks pixel p;, to
correctly compute the visibility in Sy, it must be ensured that interval I reaches p; (and is
updated there) before it reaches p;. A linear ordering u(Py) of the elements of Py is said to

175

be correct if p;<,, p; whenever p; blocks p;. If interval I, travels in strip Sy according to a
correct linear ordering, a correct computation of the visibility is ensured. In particular, a
correct ordering of the pixels in Py is the ordering n(Py) induced by the projections of the
centers of the pixels onto s,. With respect to n(Py), we may now define the successor,
succ (PE) [thepredecessor, pred (PE)], of a PE in a strip Sy as the pixel that follows
[precedes] PE in w(Py).

We shall now consider the choice of the width of a strip. The width w must be selected
so as to satisfy requirements 1 and 2 below:

Requirement 1: The size of the messages sent by each PE is bounded by a small
constant.

Note that this requirement is easily met by avoiding fragmentation of I.; that is, by ensuring
that interval I, remains continuous.

Requirement 2: The number of messages a PE sends or receives at each time step
is bounded by a constant.

Proposition 1. Let the width w equal V2 cos(45 °- j)
for angles B €[0,90] from the positive x-axis t0 the direction d. Then
requirements 1 and 2 are met.

Proof: Choosing w =2 cos (45° - B) ensures that any pixel of the mesh intersects at
most two strips (see Figure 2.3). This implies that a PE sends and receives at most two
messages; thus, Requirement 2 is met. Fragmentation of interval I} can only occur if a
pixel is totally contained inside a strip, possibly leaving gaps at either end as shown in
Figure 2.4. However, this situation can never occur, for any direction d; in fact, the
boundaries of a strip form lines of support to a pixel region, which ensures that any pixel of
the MCC either blocks an entire strip or one side of a strip; thus, Requirement 1 is met. §

ﬁ=90° ﬁ=45° Aﬁ:a

w=1 w =2 w = V2 cos (45°-8)
(a) (b) (c)

Figure 2.3. Definition of width w of a strip.

Directions of visibility other than those described by Be[0, 90] are analogous and thus

omitted here.

176

Figure 2.4. Subdivision of an interval.

We shall now describe the general strategy for solving the parallel visibility problem on
a systolic screen. In the presentation, the general case of a PE intersecting two strips is
considered; the case of a PE intersecting only one strip is implied in the discussion.

General Strategy

1. Given the direction d of the light rays, each PE computes the strips in which it lies, and
determines for each strip its successor and predecessor pixels in the linear ordering
n(Py). (This computation involves the projection of a constant number of pixels onto
Sk> as discussed later.) Each PE then computes interval I (set initially to be the entire
strip width) for each of the strips it intersects; if the PE is occupied, it transmits to its
successor in T(Py) the portion of I which it does not block.

2. Upon receiving an interval from its predecessor in n(Py), a PE uses it to update its
own interval, and sends the resulting interval I'y to its successor in t(Py).

3. Processing terminates when no more messages are sent in the mesh; as shown later, this
occurs after at most O(n) time steps. Upon termination, the final interval (one for each
strip) available at a PE represents the portion of the pixel which is illuminated within
that strip.

3. MESH IMPLEMENTATION OF PARALLEL VISIBILITY.

The algorithm assumes that the image has been digitized on the systolic array. The
direction d of the incoming light is sent to one PE, and then broadcast to the other PE's in
the MCC.

When computing its successor in a strip, if PE x finds that there are two or more PE's
whose projected centers coincide, then the PE with the minimum j-coordinated is selected as
x's successor. Should the projected center of a PE p coincide with the projected center of
x and its j-coordinate is less than that of x, then p is not the successor of x. A similar
approach is used to select the predecessor PE. This ensures that infinite loops do not result
in the selection of a successor.

177

The PEs at the edges of the screen may not have successors or predecessors. To ensure
simple and symmetric computation, the border layers of the systolic screen will contain only
unoccupied pixels; these PE's perform the algorithm, but are not part of the final result.

The pseudo-code below describes the operation of a PE x of the systolic screen. (Note
that any message contains identification of both source and destination PE). Subscriptiin
succ; (x) [pred; (x)] will indicate the successor [predecessor] of x in strip S;, provided that
X intersects strip S;.

PARALLEL VISIBILITY ALGORITHM
(as executed by PE x)

1. if direction d is received then

* calculate the width w.

* compute the strips Sy and Sy, (if it exists) intersected.

* compute succy(X), predy(x), succy,1(x), and predy ,1(x) for strips Sy and Sy ;.

* set I and I, to be of width w.

* if x is occupied then
* remove from I and I, the portion blocked by x.
* send the updated intervals Iy and Iy, to succy(x) and succy,1(X), respectively.
endif

endif

2. ifinterval I is received from pred;(x) (where h=k or h=k+1) then
* update I;, by intersecting with L.
* send the updated I, to succy(x).
endif

3. if received interval I is not for x then route I to its destination endif
4. if the number of elapsed time steps is equal to the number of steps at completion then
* I, and I, are the regions of x visible from the light source.

endif
END PARALLEL VISIBILITY.
We shall first prove that succ (PE) may be computed in constant time. This will also

ensure that the number of routing steps required to route an interval from a PE to its

successor in a strip 1s constant.

Proposition 2. The distance (in the Ly or Manhattan merric) berween a PE x, and its
successor in ni(Py) of strip Sy is at most 3.

Proof: Three distinct cases may occur.
Case 1: the boundary line s, touches PE x at the top left-hand comer. This implies, by
definition of w, that s, touches x at the bottom right-hand corner. If the direction is

178

changed continuously from 0° to 90°, the successor of x is either the left or bottom
neighboring PE (see Figure 3.1).

Case 2: the boundary line sy touches x almost at the bottom right-hand corner. This
implies, by definition of w, that, if the direction is changed continuously from 0° to 90°,

the possible successor of x is at distance d<3 from x (see Figure 3.2).
Case 3: the boundary line s, lies between the top left-hand corner and the bottom right-
hand of x corner. This case is easily reduced to the above two cases. [

// S, < < S i
a” / // - \\/
Sk/ >/ // A //
s / ’/

k+1 /

Figure 3.1. Figure 3.2

We can now prove the overall time complexity of the proposed algorithm.

Proposition 3. The Parallel Visibility Algorithm requires O(n) time steps on an nxn
MCC.

Proof: Each step (1-3) of the algorithm requires a constant number of time steps. In fact,
the successors and predecessors of a PE can be computed in constant time, and the time to
route an interval to a successor requires no more than 3 routing steps (by Lemma 3.1).
Furthermore, since a PE intersects at most two strips, during each step of the algorithm a
constant number of fixed size messages will be sent (by Requirements 1 and 2). Finally,
there are at most n PE's intersecting each strip and, in the worst case, an interval travels

down the entire strip. []

AKNOWLEDGMENT
This work was supported in part by the Natural Sciences and Engineering Research
Council under Grants A0392, A2415, and A9173.

179

REFERENCES.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

Danielson P.E., Levialdi S. Computer architecture for pictorial information systems.
IEEE Computer, Nov. 1981.

Dehne F., I-R. Sack, N. Santoro. Computing on a Systolic Screen: Hulls, Contours
and Applications. Conf. on Parallel Architectures and Languages. Eindhoven, The
Netherlands, June 15-19,1987.

Klette, R.A. parallel computer for image processing. Elektronische
Informationsverarbeitung und Kybernetik. EIK 15 (1979) 5/6 pp. 237-263.

Miller R., Stout Q.F. Computrational geometry on a mesh-connected computer. Proc.
Int. Conf. on Parallel Processing, 1984.

Nassimi D., Sahni S. Finding connected components and connected ones on a mesh-
onnected parallel computer. SIAM J. Comput., Vol. 9, No. 4. Nov. 1980.

Reeves A.P. Survey, parallel computer architectures for image processing. Computer
Vision, Graphics and Image Processing 25, 1984.

Stout Q.F., Miller R. Mesh-connected computer algorithms for determining geometric
properties of figures. 7th Int. Conf. on Pattern Recognition, Montreal, Canada, July
30 to August 2, 1984.

Thompson C.D., Kung H.T.Sorzing on a mesh-connected parallel computer.
CACM, Vol. 20, No. 4. April 1977.

Unger S.H. A computer oriented towards spatial interaction. Proc. IRE, Vol. 46, pp.
1744-1750, 1958.

180

INTERNATIONAL

ON

CONFERENCE

PARAILEL
PROCESSING

AND

APPLICATIONS

L'Aquila, Italy, September 23 - 25, 1987

Sponsored by:

H

=)

ek

IEEE o

North ltaly Section

Middle - South Italy Section
AEl

Scuola Superiore
G. Reiss Romoli

UNIVERSITY OF L'AQUILA

CNR
National Research Council

