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Abstract—The  progressive  elucidation  of  positive  protein-
protein  interactions  (PPIs)  as  wet-lab  techniques  continue  to
improve  in  both  throughput  and  precision  has  increased  the
number and quality of known PPIs across the spectrum of life.
Creating  high  quality  datasets  of  positive  PPIs  is  critical  for
training  PPI  prediction  algorithms  and  for  assessing  the
performance of PPI detection efforts. We present the Positome, a
web service to acquire sets of positive PPIs based on user-defined
criteria pertaining to data provenance including interaction type,
throughput level, and detection method selection in addition to
filtration  by  multiple  lines  of  evidence  (i.e.  PPIs  reported  by
independent research groups). The Positome provides a tunable
interface to obtain a specified subset of interacting PPIs from the
BioGRID  database.  Both  intra-  and  inter-species  PPIs  are
supported. Using a number of model organisms, we demonstrate
the trade-off between data quality and quantity, and the benefit
of  higher data  quality  on PPI  prediction  precision and recall.
Available at http://bioinf.sce.carleton.ca/POSITOME/.
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I. INTRODUCTION

Life is enabled by the cellular dynamics of protein-protein
interactions  (PPIs)  as  they  govern  fundamental  biological
processes such as cellular division, protein transport, and signal
transduction. The elucidation of PPIs is critical to understand
fundamental biology across the tree of life, and resolve human
disease and infection. Since the number of putative PPIs grows
as  the  square  of  the  number  of  proteins  (>250M  pairs  in
human), and experimental validation techniques are resource-
intensive  and  error-prone  [1],  computational  approaches  are
leveraged to better resolve the interactome and supplement our
current knowledge base. Of these putative pairs, only a small
proportion are expected to physically interact,  making this a
very difficult prediction problem with high class imbalance.

Machine learning has seen effective application to a range
of problems in molecular biology, including PPI prediction. A
broad  range  of  PPI  prediction  paradigms  exist  including
sequence-based  [2],  structure-based  [3],  network-based  [4]
(which  leverages  graph  topology  to  make  inferences),
ontology-based  [5],  and  evolution-based  methods  [6].
Additionally,  the  merging  of  prediction  paradigms  is

increasingly popular  [7]–[9]. Common to each is the requisite
dataset upon which to train and test the predictive performance
and the appropriate definition of what constitutes a positive PPI
must  be  enforced.  However,  establishing  consistent
performance  evaluations  is  challenging  given  the  variety  of
machine  learning  algorithms,  evaluation  methods,  and  data
processing  procedures  [10][11].  The  data  used  to  inform
predictive methods, such as the training dataset of positively or
negatively interacting PPIs, lack standardization as these data
are obtained from a multitude of sources often collected using
a  broad  range  of  experimental  techniques  using  different
approaches  (i.e.  in  vitro,  in  vivo,  in  silico)  [12].  Machine
learning  performance  on  biological  data  is  subject  to  the
quality and quantity of the data used to develop the predictive
model  [13].  Noisy  datasets  have  produced  unexpected
associations, prompting the development of statistical measures
to “de-noise” resulting networks [14]. Additionally, in an effort
to augment datasets, the “pooling” of data from disparate data
sources  can  result  in  data  duplication,  resulting  in  over-
representation,  [15] or introduction of noise from conflicting
data definitions.

 Independent  datasets  amass  their  content  using  various
approaches such as manual curation and data deposits  [16]–
[18],  data mining methods  [19], or some combination of the
two [20]. Increasingly, certain public repositories have merged
their data in an effort to provide a consolidated resource for the
scientific  community  [21].  General-purpose  databases  will
amalgamate  information  from  several  sources,  notably
databases dedicated to the study of particular organisms or a
subset  of  taxonomies  [22]–[28],  in  an  effort  to  provide
increasingly complete coverage. 
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Figure 1 - Logarithm Interaction Number Growth of 12 Model Organism over the Entire BioGRID Release History. We note that 
Schizosaccharomyces pombe appears to be represented interchangeably under two unique taxonomy ids.

The large class imbalance between the expected number of
protein  pairs  versus  the  expected  number  of  physically
interacting  proteins  leads  to  a  difficult  challenge  in  the
elucidation of interactomes. In this case, a lenient false positive
rate  would  result  in  an  excessive  number  of  false  positives
overwhelming  any  novel  discoveries;  the  utility  of  such
computational  approaches  is  thereby  lost.  Adding  to  this
difficulty is the fact that many reported PPIs are, in fact, false.
This  is  particularly  true  of  databases  that  include  PPIs
predicted  through  previous  computational  methods  that  are
known  to  be  imperfect,  or  data  arising  from  early  high-
throughput PPI elucidation studies that  made use of  wet-lab
techniques that we now know to be noisy and error-prone. For
example,  Yeast  Two-Hybrid  (Y2H)  experiments  have  been
found  to  have  a  false  discovery  rate  of  9.9%  and  a  false
negative rate of 51% [29], implying that approximately one in
every ten PPIs reported by Y2H have been mislabelled as a
positive and that many true positive PPIs are being missed. By
including mislabelled data in the training of PPI predictors, the
effectiveness of these methods is dramatically reduced, and the
estimated performance will be inaccurate. 

We here propose a method of systematically  engineering
datasets  of  known  PPIs  for  the  purpose  of  training  and
evaluating PPI prediction methods. Several ad hoc approaches
to improving the quality of positive PPI training data have been
reported  during  the  development  of  specific  methods  [13],
[30], [31]. For example, some groups have restricted positive
PPIs to only those physical interactions elucidated by means of
high  confidence  detection  methods  and  which  have  been
independently reported in the literature on multiple occasions
[32],  [33].  Similarly, other  groups  have  attempted  to  create
standardized  sets  of  negative  non-interacting  protein  pairs,
most notably the Negatome resource  [19]. We here develop a
systematic method to create high quality positive PPI datasets

in a manner which is independent of the subsequent PPI
prediction method. Our approach is integrative and allows the
specification of several parameters to generate highly tailored
datasets  using  a  web-based  interface  not  offered  in  other
frameworks or PPI database “advanced search” functions.

Typically in machine learning, the inclusion of an increased
amount of data will result in improved performance, since the
model can learn about natural variation in the data. However,
many machine learning methods are susceptible to noisy data.
The  incorporation  of  noisy  data  will  typically  result  in
performance loss. Filtering available reported PPIs can result in
higher quality training data, but this will necessarily also lead
to  reduced  quantity  of  data  available  for  developing  the
machine learning method. This quality-quantity trade-off in the
data leads to a commensurate precision-recall trade-off in the
resulting prediction method. 

Data  provenance  presents  a  considerable  challenge  in
computational  biology,  as  the  majority  of  information
contained  in  public  databases  results  from  a  series  of
interpretations  and  transformations  originating  from
experimental  observation.  Data  provenance  considers  the
question of “where did the data come from?” in the attempt to
establish some amount of confidence in the published results.
By grouping evidence from multiple sources  pertaining to a
given interaction, scoring metrics can be derived to quantify
the  strength  of  evidence  for  that  PPI  [34].  However,  the
scientific  community  has  not  yet  adopted  a  standardized
scoring  measure  for  molecular  interactions  [35].  Without  a
definitive measurement of PPI data quality, researchers should
be  provided  a  flexible  mechanism  to  build  quality-assured
datasets.

Here,  we develop  a  web service  enabling  researchers  to
generate customized PPI datasets based on a number of tunable



parameters  to  specify  the  inclusion criteria  for  the  resulting
positive PPI set. These PPI filtration parameters examine data
provenance  in  limiting  the  types  of  included  interactions  in
addition  to  ensuring  that  the  data  is  supported  by  multiple
independent  lines  of  enquiry  (if  specified).  The service  can
create both intra- and inter-species datasets for any organisms
listed  in  the  Biological  General  Repository  for  Interaction
Datasets (BioGRID)  [36]. We propose that the selection of a
subset  of  high quality  positive PPIs  for  the development  of
machine learning models will result in improved performance,
particularly  where  the  false  positive  rate  must  be
conservatively limited. The Positome web service is available
at http://bioinf.sce.carleton.ca/POSITOME/.

II. METHODS

A. Acquision of Protein-Protein Interactions

The  BioGRID  group curates  protein-protein  interactions
from primary biomedical literature [36]. This effort is to report
the results of published experiments, noting that they cannot
guarantee that any one PPI truly interacts, is well-established,
or  adheres  to  consensus in  the scientific  community. In  this
way, users  of the BioGRID must  perform their  own quality
assessment  of  this  dataset.  Since  its  inception  in  2006,  the
dataset  has  steadily  grown  to  now  contain  1,418,871
interactions  drawn  from  48,312  publications  (as  of  time  of
writing;  BioGRID  version  3.4.146).  As  a  compendium  of
literature-derived  PPIs,  updated  on  a  monthly  basis,  the
BioGRID is an ideal dataset for the purposes of training and
evaluating machine learning PPI predictors  for various tasks
such  as  genome-wide  prediction  [37],  protein  function
prediction  [38],  or  interactome-wide  analyses  [39][32].  The
Positome tool described here provides a quality filtration layer
to compliment the BioGRID curation efforts  to improve PPI
quality and prediction accuracy.

B. Database Interaction Number Historical Growth

The BioGRID database provides an archive of historically
released datasets. To intuitively capture the historical growth
of the database across the species it currently supports since its
inception,  prior  archives  were  analyzed  for  intra-species
interactions. The interaction count is illustrated in Fig. 1 on a
log scale for  a subset  of 12 model organism (an interactive
figure with the inclusion of all 61 organisms can be found at
http://bioinf.sce.carleton.ca/POSITOME/publication/figures/bi
ogrid_versions_plot_all.html). 

C. Positome Pipeline

The  Positome  filters  the  current  BioGRID  dataset  of
positive  interactions  based  on  the  specified  user-defined
parameters.  Two  files  are  generated:  protein_pairs.txt and
protein_sequences.txt, where the pairs file contains the filtered
binary interactions resulting from the user-defined parameters
and  the  sequences  file  contains  the  primary  amino  acid
sequence for all proteins occurring in the pairs file. A FASTA
formatted alternative is also provided. 

The Positome web service allows users to specify whether
they wish to  include  interactions acquired  using each  of  28
different  experimental  methods.  Additionally,  a  user  can
specify  the  inclusion  of  either  ‘physical’,  ‘genetic’,  or  both
interaction  types, and  the  experimental  throughput  level of

either ‘high’, ‘low’, or both. Finally, the user can specify
whether they would like to apply “Multiple Lines of Evidence”
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(MLoE) filtration, which conserves only those interactions that
are reported by multiple independent research groups.

Algorithm 1 defines the various steps in the generation of
the  resulting  files,  capturing  relevant  information  about  the
replication of PPI findings in independent studies to inform the
multiple lines of evidence filtration. Lines 1-21 describe the
preliminary filtration of the dataset according the user-defined
parameters  in  a  single  pass.  Hashing  the  interactions  in  a
dictionary as a key-value pair with their count allows single-
pass detection of duplicate PPIs (where ||PPI_list[key]|| ≥ 2; see
line 19). Simply returning the dictionary keys produces a list of
unique PPIs. Hashing is done in such a way where both the
forward, AB, and reverse, BA, PPIs hash to the same key.

Lines 22-32 describe the conversion process from Entrez
identifier to Uniprot Accession Number using a locally cached
mapping, a resource made available to the community to link
users back to the source database. Here, duplicates may arise
given that multiple Entrez identifiers might map to the same
Uniprot  Accession  Number  thereby  potentially  generating  a
duplicate  PPI.  Again,  both  forward  and  reverse  binary
interactions are considered to produce the final non-redundant
set of unique PPIs.

Finally, lines 33-46 obtain the sequences corresponding to
the unique proteins appearing in the binary interaction pairs. To
ensure usability and timely generation of results, the majority
of this work is cached and unique occurrences of the proteins
and their sequences are extracted. This data are then written to
file and made available for download.

D. Positome Features

1) Provides both Inter- and Intra-species PPIs
The  BioGRID  dataset  curates  PPIs  both  within  a  given
organism  (intra-species  PPI)  and  between  two  organisms
(inter-species  PPI).  The  Positome  allows  users  to  specify
whether they wish to obtain inter- or intra-species interactions.

2) Recommended Parameters
While  the  Positome  interface  permits  great  flexibility  in
selecting the data quality filtering options, two recommended
parameter sets are provided: “Conservative” and “Permissive”
which we here use to generate various datasets to validate the
Positome. The permissive level  sets  all  filters  to  their  most
inclusive settings to ensure the maximum number of PPIs are
included.  The  conservative  setting  limits  the  results  to
physical  interactions,  both  high  and  low throughput  levels,
applies MLoE filtration, and includes a subset of experimental
detection  methods  which  we  postulate  to  provide  a  higher
confidence in the reported physical interaction (Table I). 

For  our  work,  we  are  interested  in  how  these  two
definitions relate to the change in data quality over time. Fig.
2 illustrates  the  historical  change  in  data  quality  for  Homo
sapiens when these two definitions are applied retroactively to
the data at each historical release.

3) Timely Generation of Results
In  order  to  deliver  timely  results,  the  majority  of  the  data
processing  and  conversion  tasks  are  cached  locally.  The
number of interactions in various organisms ranges between

less  than  ten,  to  over  half  a  million.  To  ensure  that  data
requests are returned in a reasonable time frame, the Positome
pipeline  is  optimized  to  operate  with  a  time  complexity  of
O(n), where n is the number of known PPIs.

4) Job Completion Notification/Recovery
The Positome assigns a unique “job id” for every request. This
ensures  that  multiple queries  are handled independently and
can  be  later  retrieved  by  individual  researchers  through  a
results retrieval  interface. An email notification is optionally
sent when the job is complete. 

TABLE I. DATASET INCLUSION PARAMETERS

Inclusion
Parameters

Datasets

Permissive Conservative

Interaction
Type

Both Physical and
Genetic

Physical only

Detection
Methods

All

Two-hybrid, Affinity
Capture-MS, Affinity

Capture-Western,
Reconstituted Complex,

Affinity Capture-
Luminescence, Co-crystal

Structure, Far Western,
FRET, Protein-peptide, Co-

localization, Affinity
Capture-RNA, Co-

purification

Throughput
Level

Both High and Low Both High and Low

Multiple Lines
of Evidence

No Yes

5) Pre-Computed Datasets
A number  of  pre-computed  datasets  are  made available  for
researchers for a number of species. These datasets are defined
based on the permissive and conservative parameters defined
in  Table  I.  These  are  meant  to  serve  as  starting  points  for

researchers looking to build their own customized datasets.

Figure  2  -  Historical  Growth  in  Data  Quality  in  Homo
sapiens. A substantial difference between the permissive and
conservative  dataset  sizes  can  be  observed  across  releases.
Growth in PPI data quality is not keeping pace with growth in
quantity of reported PPIs. 



Figure  2 - Heatmap Representation of Inter- and Intra-Species PPIs in the Current BioGRID Release. Organisms with at least
eight  intra-species  interactions  were  included.  Abbreviated  organism  codes  can  be  found  at
http://bioinf.sce.carleton.ca/POSITOME/supplemental.html.

E. Evalution of Datasets

We here demonstrate that  the improved quality of Positome
datasets  leads  to  increased  performance  of  PPI  prediction
methods.  The  increase  in  performance  was  established  by
comparing the results of a PPI prediction tool trained using
both  the  “permissive”  and  “conservative”  datasets  for  five
model  organisms:  Homo sapiens, Saccharomyces  cerevisea,
Arabidopsis  thaliana,  Drosophila  melanogaster,  and  Mus
musculus. 

The Protein-protein Interaction Prediction Engine (PIPE)
developed by the Carleton University Bioinformatics Research
Group  [32],  [39]–[41] was  used  to  train  and  evaluate  the
quality of the dataset.  Prevalence-Corrected Precision-Recall
(PR) curves are used to quantify prediction accuracy. 

For each organism, the “permissive” and “conservative”
datasets were obtained and a PIPE model trained on each, with
negative  PPIs  defined  as  in  [40].  Leave-one-out  cross
validation  (LOOCV)  was  performed  on  each  dataset  to
compare  performance  when  training  the  PIPE  binary  PPI
classifier. Given the class imbalance in the datasets, precision-
recall  (PR) curves  were  used in favour  of  receiver-operator
characteristic  (ROC)  curves,  as  recommended  in  [42].  The
prevalence-corrected precision is used to account for the class
imbalance  when  limited  negative  test  data  are  used.  A
conservative prevalence of 100 negative PPIs per positive PPI
was selected, based on previous work on the development of
interactome-scale  predictive  models  and  reported  estimates
[43]–[45].  While the entire  PR curve  is informative,  only a
portion  of  the  curve  is  of  relevance  when  users  demand  a
minimum level of precision. For example, a predictor that is

incorrect most of the time (Pr < 50%) is not a useful predictor.
Here,  the  recall  (i.e.  sensitivity)  at  a  prevalence-corrected
precision of 50% (Re@Pr50) was used to determine superior
performance between the conservative and permissive datasets
for each organism. 

The  permissive  method  was  able  to  leverage
significantly  more  training  data  than  the  conservative  set,
while the conservative method benefitted from higher training
data quality. However, to ensure that both the conservative and
permissive methods are  evaluated in  a  consistent  way, only
performance over PPIs appearing in both sets were used for
evaluating the methods (computing PR curves). We therefore
define  a  modified  LOOCV  for  the  evaluation  of  the
permissive model. Here, we perform the LOOCV using only
those proteins  within the intersection of  the permissive and
conservative  sets  (i.e. given  conservative  set,  C,  and
permissive set,  P, where  C ⊆ P). Each known PPI from the
intersection set  is  removed,  the remaining PPIs  are  used to
retrain  the  respective  models,  and  the  removed  PPI  is
predicted. In maintaining equal testing set conditions, the two
datasets are appropriately compared using the PR curves and
Re@Pr50.

III. RESULTS AND DISCUSSION

Machine  learning  requires  consistent  data,  free  of  noise  or
mislabeled  data,  to  generate  models  capable  for  meaningful
prediction tasks. To address challenges in data provenance a
flexible  method  to  specify  inclusion  parameters  allows
researchers  to  build  quality-assured  datasets.  Here  we
introduce a scientific tool as a layer between a dataset of mixed
quality and specific machine learning methods to enable the

http://bioinf.sce.carleton.ca/POSITOME/supplemental.html


scientific community to produce customizable and consistent
data sets suited to the task of prediction. 

A. BioGRID Source Data Quality vs. Quantity over Time

Fig.  1  illustrates  the  change  in  BioGRID  composition
across  12  model  organisms  over  its  archived  history  and
notable  trends  emerge.  First,  we  remark  that  some  model
organisms  (e.g.  H.  sapiens,  S.  cerevisea),  as  expected,  are
overrepresented  compared  relative  to  the  other  organisms.
Interestingly,  we  observe  the  periodic  introduction  of  new
organisms  in  addition  to  substantial  increases  in  interaction
count  at  various  points,  presumably  the  result  of  high
throughput experiments being published for a given organism.
It is important to note that this figure is plotted on a logarithmic
scale; the small variances in the upper regions corresponding to
increases  or  decreases  of  thousands or  tens  of  thousands  of
interactions.  With the active study of intra- and inter-species
interactions,  we  anticipate  a  gradual  increase  in  both  the
quality and quantity of interactions in the BioGRID database.
As the cost of high-throughput methods continue to decline,
more studies on non-model organisms also become feasible. 

The current composition of the BioGRID dataset (version
3.4.146), is illustrated in Fig. 3 using a logarithmic heatmap.
The  diagonal  captures  intra-species  interactions  while  the
remaining cells illustrate inter-species interactions. The matrix
is sparsely populated indicative that the majority of research
has been on intra-species interactions and certain bands with
greater representation indicate the bias towards studying intra-
species  interactions  with  a  small  subset  of  organisms  (e.g.
Homo sapiens). Interestingly, some inter-species combinations
appear to be strictly in vitro, such as between H. sapiens and
M. musculus. 

B. Evalution of Positome Datasets for PPI Prediction

LOOCV tests were used to evaluate the impact of Positome
data  quality  filtering  for  the  task  of  binary  classification  of
PPIs. PIPE trained on the conservative dataset outperforms the
permissive dataset across four of the five organisms considered
(Fig. 4A-E, Table II). We concern ourselves primarily with the
upper half of the PR curves,  where the prevalence-corrected
precision  is  greater  than  50%,  as  this  pertains  to  use  cases
where the number of predicted positives are actually true in the
majority of predictions. In reality, we would limit ourselves to
a more conservative margin depending on the cost associated

Figure 3 - Experimental Validation Results for Five Organisms. A-E are Prevalence-Corrected Precision-Recall curves comparing
the LOOCV results of the conservative and permissive datasets when used to create PIPE PPI predictors.  Figure F depicts the
historical growth of dataset sizes across the BioGRID history for Drosophila melanogaster.



to predicting a false positive. As we can see in M. musculus, A.
thaliana,  S.  cerevisea,  and  H.  sapiens,  the  conservative  set
consistently outperforms the permissive set within this range,
Pr  =  [0.5,  1].  Interestingly,  the  H.  sapiens performance
converges in both sets for precision values in the range [0.9, 1]
indicative that the quality-quantity trade-off in this range is less
well-defined (Fig. 4E). These findings support the hypothesis
that a smaller number of high quality interactions offer superior
prediction  performance  over  the  use  of  larger  quantities  of
lower  quality  data.  It  is  primordial  that  researchers  concern
themselves  with  data  provenance  so  as  to  use  datasets
consistent with their efforts.

In  the  case  of  Drosophila  melanogaster,  training  on  the
conservative  dataset  actually  results  in  significantly  poorer
performance. We attribute this to the fact that the conservative
parameters are excessively stringent for this organism. For D.
melanogaster,  only  568  PPIs  pass  the  conservative  filters
whereas the permissive dataset contains 37,251; this represents
approximately a 65-fold increase in data quantity (Table III). In
fact,  considering  the  historical  growth  in  PPI  number
throughout the BioGRID version history, we remark that the
conservative  dataset  remains consistently low relative to the
permissive  set  (Fig.  4F).  This  illustrates  the quality-quantity
trade-off where overly-severely limiting a training dataset to a
minute  dataset  of  high-quality  interactions  is,  in  fact,  more
harmful than beneficial to predictive performance. Lessening
the stringency of the conservative parameters by including the
“Phenotypic Suppression” (2.79 fold increase in PPI number)
in addition to “Phenotypic Enhancement” (4.29 fold increase in
PPI  number)  detection  methods,  the  two  methods  which
contribute the largest number of PPIs in the organism, to the
Drosophila melanogaster dataset, we observe a fold difference
of 16.3 and 11.4 with the permissive set, respectively; such a
fold-increase  is  more  in  line  with  the  other  four  organisms
(Table  III).  This  is  suggestive  that  obtaining  a  balance  of
appropriate  filtration  parameters  for  various  species  is
necessary  to obtain an appropriate  quantity-quality trade-off.
For this  reason,  beyond supplying the standard  conservative
and permissive filter sets, the Positome interface permits users
to  fine-tune  the  various  filter  settings  to  suit  their  specific
application. 

C. Quantification of the Strength of Publication

The Positome offers  MLoE filtration which,  when enabled,
retains only those PPIs reported by two or more publications,
as determined by PubMed IDs in BioGRID. Quantifying the
strength  of  a  publication  and  appropriately  synthesizing
evidence  in  support  of  a  PPI  remain  as  future  work.  The
STRING database offers a “combined score” which leverages

evidence  from phylogenetic  co-occurrence,  experimentation,
literature  curation,  and  genomic  context  [20].  This  is  an
actively debated problem and subject to further investigation
in the effort to resolve data provenance challenges.

D. Future Directions

The Positome is designed to automatically update every month
to use the latest BioGRID dataset. With monthly updates from
BioGRID, the Positome will leverage the continual increase in
known interactions.  It  is  expected  that  the  incorporation  of
PPIs from non-model organisms and from inter-species studies
will progressively increase. Thereby, the Positome’s value as a
research  tool  will  increase  with  time.  Future  work  will
investigate the incorporation of data from additional sources in
the  effort  to  address  data  provenance  challenges  and  the
development  of  standard  filter  settings  tuned  to  specific
species for which the default conservative set is inappropriate.
Additionally, a visualization of each stage of filtration will be
offered to further clarify data provenance of the resulting PPI
dataset.  Finally,  a  machine-accessible  (REST)  interface,  in
combination with an application programming interface, will
be developed. 

IV. CONCLUSION

Creating high quality datasets of positive PPIs is critical for
training PPI prediction algorithms to discover new meaningful
interactions.  In  an  effort  to  address  data  provenance
challenges in PPI datasets, we developed the Positome, a web
service to acquire sets of positive PPIs based on user-defined
criteria  supporting both intra-  and inter-species  interactions.
Using  a  number  of  model  organisms,  we  demonstrate  the
trade-off between data quality and quantity and the benefit of
higher  data  quality  on  PPI  prediction  precision  and  recall.
Cross-validation tests were used to detect overfitting and are
the computational equivalent to wet-lab validation to confirm
our results. Although the PIPE PPI prediction method is used
to  demonstrate  the  increase  in  prediction  performance  with
increasing  data  quality,  it  should  be  understood  that  the
Positome web service is in no way restricted to a single PPI
prediction paradigm.  
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