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Abstract. Big data Hadoop and Spark applications are deployed on
infrastructure managed by resource managers such as Apache YARN,
Mesos, and Kubernetes, and run in constructs called containers. These
applications often require extensive manual tuning to achieve accept-
able levels of performance. While there have been several promising
attempts to develop automatic tuning systems, none are currently robust
enough to handle realistic workload conditions. Big data workload analy-
sis research performed to date has focused mostly on system-level param-
eters, such as CPU and memory utilization, rather than higher-level con-
tainer metrics. In this paper we present the first detailed experimental
analysis of container performance metrics in Hadoop and Spark work-
loads. We demonstrate that big data workloads show unique patterns of
container creation, completion, response-time and relative standard devi-
ation of response-time. Based on these observations, we built a machine-
learning-based workload classifier with a workload classification accuracy
of 83% and a workload change detection accuracy of 74%. Our observed
experimental results are an important step towards developing automati-
cally tuned, fully autonomous cloud infrastructure for big data analytics.

Keywords: Big data cloud performance + On-line automatic tuning -
YARN - Hadoop - Spark

Introduction

1.1 Background

Key big data technologies such as Hadoop map-reduce jobs, Spark applications,
Hive, Hbase and others run on hardware clusters that are managed by open-
source and commercial resource managers, such as YARN, Mesos, and Kuber-
netes. Resource managers arbitrate resources available to different applications,
to form a key architectural layer in the cloud computing paradigm. Resource
managers use constructs called containers to manage analytic and other appli-
cations running on the cluster. Containers manage, and gate, CPU memory and
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disk resources assigned by the resource manager to the application. Containers
make sure that a given application does not exceed it’s allotted share of resources.
Applications, and analytic frameworks, interact with the resource manager to
schedule tasks to run in these containers. The way a container is implemented
by the resource manager varies among resource managers. In some cases, such as
in YARN, containers are explicitly defined data structures used by the resource
manager for resource arbitration and internal book-keeping. In other cases, such
as with Mesos, the resource manager uses an operating-system-level technology,
such as Docker, to attach container semantics to it’s internal resource arbitra-
tion mechanism. Regardless of how the container concept is implemented, the
end result is essentially the same - application tasks run in containers, and thus
examining container performance can provide insights into application perfor-
mance.

1.2 Problem

Apache Hadoop and Spark each have dozens of configurable parameters that
can significantly affect performance of analytic jobs. A poorly tuned configura-
tion can result in order-of-magnitude slower performance than for an optimally-
tuned one. Manual tuning involves experimenting with different combinations of
tunable parameters. Considering that each experiment, at multi-Terabyte data
scale, can take hours to days to run, this can turn into a very long and expensive
procedure.

1.3 Limitations of Previous Approaches

To solve this problem, there have been a number of attempts to automatically
tune big data applications [1,2,4-13]. These focused primarily on automati-
cally tuning the Hadoop MapReduce framework. More recently there have been
attempts to automatically tune Spark as well. In our previous work we devel-
oped KERMIT - the first on-line automatic tuning engine for YARN, capable of
automatically tuning CPU and memory for both Apache Hadoop and Apache
Spark [3]. KERMIT was able to demonstrate better tuning efficiency for stan-
dard Hadoop and Spark benchmarks.

Most studies demonstrated improvements only on small data sets that are
not representative of data volumes in big data applications. Furthermore, per-
formance improvements were only documented on very simple, single-user work-
loads based on a few sample applications. For real-life big data applications,
systems such as Hadoop or Spark need to be dynamically tuned to handle large
scale, big data workloads that arise from a multitude of applications and user
requirements, and change over time. Such real-life scenarios are not addressed
by any of the published automatic tuning approaches.

For on-line automatic tuning applications - “to tune or not to tune?” - is
the key question that the tuning engine needs to be able to answer accurately
in order to achieve optimal performance. Too much tuning causes an overhead
that can sometime cancel out any performance benefit from optimizing tunable
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parameters. Not enough tuning results in jobs running slower due to sub-optimal
tuning.

A number of researchers studied big data workload characteristics [4,6,9].
However, virtually all of these studies focused on lower-level operating system
metrics such as CPU, memory and disk utilization, and even lower-level hard-
ware counters such as L1, L2 and L3 cache hit rates. While these data provide
important insights about the workload, it is difficult to relate them directly to
Hadoop and Spark tunable parameters and develop a tuning strategy at the
resource manager level. No published research to date has focused on container
performance analysis. However, as discussed above, resource managers operate
on and interact with containers. Optimizing performance of big data applica-
tions deployed on containerized cloud infrastructure requires optimizing the per-
formance of the containers in which they run.

1.4 Owur Contribution

We present the first experimental study of container performance patterns
observed in Hadoop and Spark workloads. We focus on the following container
performance metrics:

— container duration (response-time),

— container response-time relative standard deviation (RSD),
— container creation rate,

— container completion rate.

We demonstrate that for realistic big data workload sizes (e.g. 2 TB data
sets) all important workload changes that are relevant for on-line automatic
tuning are accompanied by:

— order of magnitude changes in container creation rate,
— statistically significant changes in RSD.

Our experiments demonstrate that the above metrics provide very clear sta-
tistical markers that can be used by automatic tuning systems to detect changes
in workload characteristics and initialize local and global parameter searches. We
also observed that many Hadoop MapReduce and Spark jobs have distinctive
signatures that can be used by machine learning systems to identify jobs on the
fly and apply effective tuning parameters.

Based on these observations, we built a machine-learning based workload
classifier with a workload classification accuracy of 83% and a workload change
detection accuracy of 74%. Our observed experimental results are an important
step towards developing automatically tuned, fully autonomous cloud infrastruc-
ture for big data analytics.

1.5 Resource Managers and Containers

YARN, Mesos and Kubernetes are the most popular open-source resource man-
agers used today. Resource managers arbitrate system resource such as CPU,
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memory and disk among different applications that run on a cluster. Resource
managers use containers to assign and track resource allocations to different
applications. In the context of this study the term container refers to a con-
struct the resource manager uses to track resources allocated to an application.
The container may be an abstract construct, or it may be backed by a technology
such as Docker that enforces resource utilization at the operating system level
and ensures isolation of one application from another. Most resource managers
available today implement this container concept even though it is not called the
container in all cases. YARN, Mesos and Kubernetes provide Docker integration.

2 Evaluation Methodology

Our evaluation methodology focused on simulating common Hadoop and Spark
workloads and workload transitions using well-understood big data benchmarks.
Container performance metrics were compiled by analyzing log data.

Before capturing container performance statistics for each workload transi-
tion experiment, runs were performed to establish the optimal sampling window
length. The sampling window duration was chosen so that the majority of win-
dows had a statistically valid number of containers recorded. For example, if
all container creation and completion events were recorded during a single, very
long, window then this would not make for a compelling analysis.

2.1 Container Performance Metrics

As part of our experiments, the following container performance metrics were
collected and analyzed:

1. Container Creation Rate. This is the number of containers created during
a given observation window.

2. Container Completion Rate. This is the number of containers that finish
execution during a given observation window.

3. Container Average Response-Time. This is the average response-time
calculated for all containers that complete execution during a given observa-
tion window.

4. Container Response-Time Relative Standard Deviation (RSD). This
metric measures the degree of scatter among container response time measure-
ments in a given observation window. It is defined as the standard deviation
of container response-times, divided by the average container response-time
for container response-times in a given observation window. Small RSD indi-
cates tightly clustered data while large RSD indicates widely scattered data.
Increase in the RSD value across a workload transition can indicate the intro-
duction of a bottleneck due to a change in processing.

Our analysis focuses on calculating both the absolute values for container
metrics at steady state, and the relative amount of change that occurs as the
workload passes through each transition. The relative amount of change equals
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the average metric value observed in two observation windows after the transi-
tion, divided by the average metric value in the two windows immediately before
the transition.

2.2 Workloads and Workload Transitions

Table 1 summarizes the different workloads and workload transitions analyzed
in this study, with the benchmarks, data size, and procedure used in each case.

2.3 Parameter Settings

Unless stated otherwise, the Hadoop MapReduce and Spark configurations used
default values. For YARN, the yarn.nodemanager.resource.cpu-vcores parameter
in the yarn-site.xml file was set to the total number of CPUs shown by the operat-
ing system on each of the cluster nodes. The yarn.nodemanager.resource.memory-
mb and yarn.scheduler.maximum-allocation-mb parameters were set to the
total amount of memory on each data node. In mapred-site.xml, the param-
eter mapreduce.job.reduces was set to 36. The parameters mapreduce.output.
fileoutputformat.compress and mapreduce.map.output.compress were set to true.
The parameters mapreduce.output.fileoutputformat.compress.codec and mapre-
duce.map.output.compress.code were set to org.apache.hadoop.io.compress.
Default in order to avoid running out of space in the HDF'S during bigger runs. The
parameter mapred.child.java.opts was modified to increase the maximum JVM
heap size setting from the default to 850 MB. This was done to remove the pos-
sibility of a memory bottleneck impacting container performance. On the Spark
side, the spark.executor.memory configuration parameter was set to 6G to ensure
that most memory on our nodes was utilized.

2.4 Hardware and Software

All measurements were performed on a 8-node cluster comprising 1 management
node and 7 compute/data nodes (all KVM virtual machines running on IBM
S822L Power8 with Dual 10-core Power8 3.42 GHz; one bare metal server was
used for every two VMs). Each node was equipped with a 100 GB SSD drive
for operating system and Hadoop stack installation. All the nodes shared access
to a 12 TB network shared drive connected through a 10Gb fiber switch. Each
node was also equipped with 48 GB RAM and 10 virtual cores. All nodes were
running the Ubuntu 16.04 ppc64le operating system. The test cluster topology
is shown in Fig. 1. We used Hadoop 2.7.3 and Spark 2.1.1. In order to facilitate
container metric collection, a jar file containing the YARN resource manager and
our KERMIT library [3] was built and deployed to replace the standard YARN
jar.
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Table 1. Workloads, workload transitions, and benchmarks.

Transition

Description

Benchmarks, procedure and data size

Hd-sj-1

Transition from map to reduce processing in a
single Hadoop map-reduce job

HiBench WordCount benchmark. 2 TB

Hd-sj-2 Transition from map to reduce processing in a/TeraSort benchmark. 2 TB
single Hadoop map-reduce job

Hd-sj-3 Transition from reduce-shuffle to reduce TeraSort. 2 TB
processing in a single Hadoop map-reduce job

Hd-sufl-4 |Transition from TeraGen to TeraSort TeraGen-TeraSort-TeraValidate sequence of
processing in a Hadoop single-user job flow jobs. 2 TB

Hd-sufl-5 |Transition from TeraSort to TeraValidate TeraGen-TeraSort-TeraValidate sequence of
processing in Hadoop single-user job flow jobs. 2 TB

Hd-sj-6 Transition from one iteration to another HiBench K-Means. 2 TB
'within Hadoop K-Means machine learning job

Hd-sufl-7 |Transition from Hadoop WordCount reduce |HiBench WordCount-TeraSort-K-Means job
processing to TeraSort map processing in a flow. 2 TB
single-user job flow

Hd-sufl-8 |Transition from TeraSort reduce processing to/HiBench WordCount-TeraSort-K-Means job
K-Means processing in a single-user job flow [flow. 2 TB

Hd-mufl-9 [Multi-user transition from TeraSort shuffle to |2 users (1 running TeraSort, and 1 K-Means)
K-Means 2 TB

Hd-mufl-10Multi-user transition from K-Means iteration |2 users (1 running TeraSort, and 1 K-Means)
back to TeraSort reduce phase 2 TB

Hd-mufl-11Multi-user transition from TeraSort map 2 users (1 running TeraSort, and 1 K-Means)
phase to K-Means iteration 2 TB

Hd-mufl-12Multi-user transition from K-Means iteration 2 users (1 running TeraSort, and 1 K-Means)
to TeraSort map phase 2 TB

Hd-mufl-13Multi-user transition from TeraSort map 3 users (1 running TeraSort, and 2 K-Means)
phase to K-Means iteration 2 TB

Hd-mufl-14Multi-user transition from K-Means iteration |3 users (1 running TeraSort, and 2 K-Means)
to TeraSort reduce phase 2 TB

Sp-sj-1 Transition from map() to reduceByKey() Spark ARL TeraSort. 2 TB
processing in a single Spark job

Sp-sufl-2  Transition from Spark K-Means processing to SMB-2 1 user, use case 2 (batch analytics)
TPC-DS-inspired Q3 Spark job sequence. 2 GB per application

Sp-sufl-3  Transition from Spark TPC-DS-inspired Q3 toSMB-2 1 user, use case 2 (batch analytics)
Q53 Spark job sequence. 2 GB per application

Sp-sufl-4 Transition from Spark TPC-DS-inspired Q53 |SMB-2 1 user, use case 2 (batch analytics)
to Q89 Spark job sequence. 2 GB per application

Sp-sufl-5 |Transition from Spark TPC-DS-inspired Q89 |SMB-2 1 user, use case 2 (batch analytics)
to Q8 Spark job sequence. 2 GB per application

Sp-mufl-6 |Transition from Spark single-user batch SMB-2 1 batch user + 3 interactive users, use
processing to multi-user (3 interactive users) |case 3 (mixed analytics) Spark job sequence. 2

GB per application

Sp-mufl-7 (Transition from Spark multi-user (3 SMB-2 1 batch user + 3 interactive users, use
interactive users) to single-user batch case 3 (mixed analytics) Spark job sequence. 2
processing GB per application

Sp-sufl-8 [Initiation of Spark streaming spark-perf benchmarking suite

Sp-sufl-9  |Completion of Spark streaming spark-perf benchmarking suite

Sp-sufl-10 |Transition from Spark aggregateByKey to spark-perf benchmarking suite, data scale 3
aggregateByKey(Int)

Sp-sufl-11 |Transition from Spark aggregateByKey to spark-perf benchmarking suite, data scale 3
sortByKey()

Sp-sufl-11 (Transition from Spark count() to filter() spark-perf benchmarking suite, data scale 3
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Fig. 2. Radar chart showing average Hadoop and Spark workload metric values.

3 Results

Below we present our workload analysis, workload classification and workload
transition detection findings.

3.1 Steady State Workload Characteristics

Figure 2 shows a radar chart that compares container performance metric aver-
ages observed for Hadoop and Spark workloads. To construct this chart, a ran-
dom sampling of observation windows for Hadoop and Spark observed during
steady state conditions were selected for analysis. Container performance statis-
tics, including maximum, minimum, average, and standard deviation were cal-
culated for all metrics. Although averages are shown in Fig. 2, maximum values
were also examined and found to show almost exactly the same trend as averages.
For brevity, only averages are shown.

It was observed that for Hadoop workloads, average container metric values
showed much greater range than for Spark workloads. Average container cre-
ation rate, container completion rate, container response-time and RSD were all
observed to be about 3x greater for Hadoop than for Spark. There is an area on
the radar chart where Hadoop and Spark workloads do overlap, but there is a
much larger area where they do not overlap.
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Fig. 3. Radar chart showing average Hadoop and Spark workload transition values.

3.2 Dynamic Workload Characteristics - Workload Transitions

Figure3 shows a radar chart that compares container performance metric
changes observed for Hadoop and Spark workloads. The change of a metric
is defined as the average metric value observed after the workload transition
divided by the average metric value observed before the workload transition.
Figure 3 shows average changes observed for all transitions measured during this
study. As for steady-state performance statistics, full statistics including maxi-
mum, minimum, average, and standard deviation were calculated and examined
for all cases. Since maximum values were found to show almost exactly the same
trend as averages, only averages are shown.

Hadoop workloads were observed to produce container creation rate changes
and container response-time changes that were on average 3x greater than corre-
sponding changes produced by Spark workloads. Changes in RSD and container
completion rate were observed to show a similar trend. As with steady-state met-
rics, an area of overlap between Hadoop and Spark workloads can be observed
in Fig. 3. However, we observe a larger area where workload transition metrics
do not overlap.

4 Identifying and Classifying Workloads

A prototype classifier using several popular machine-learning algorithms was
constructed. The prototype was developed in Scala, using Apache Spark Mlib
to implement k-means, logistic regression, decision tree, gradient-boosted trees,
and random forest algorithms. A machine learning data-set (in libsvm format)
was compiled from workload transition data that were labeled as either Spark or
Hadoop. The data set was randomly split into training and testing data sets using
a 70-30 rule, and the accuracy of prediction for each algorithm was evaluated.
The process of splitting, training and testing was repeated 100 times for each
algorithm to study the variance produced by the random splits.
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Fig. 4. Workload classification accuracy for common machine-learning algorithms.

Creation Rate +Completion Rate + Response-time +RSD
Dimensions

Fig. 5. Impact of using different container performance statistics on the classification
accuracy of the Random Forrest algorithm.

The average classification accuracy (and standard deviation) for each algo-
rithm is shown in Fig. 4. We observe that the Random Forest algorithm achieves
the best workload classification accuracy of 83%.

To investigate how different container performance measures affect accuracy
of prediction, several additional experiments were performed. The following data
sets were prepared: (1) Container creation rate data only. (2) Container cre-
ation rate data plus container completion rate data. (3) Container creation rate
data plus container completion rate data plus container response-time data. (4)
Container creation rate data, plus container completion rate data, plus con-
tainer response-time data, plus RSD data. The same random split procedure as
described above was performed on each data set. The accuracy of classification
was evaluated for the Random Forest algorithm. Results are shown in Fig. 5.

The findings are surprising. We observe that using container creation rate
data alone resulted in the best classification accuracy. Adding data from other
dimensions reduced rather than enhanced the classification accuracy.

5 Detecting Workload Transitions

Data collected for a typical Hadoop single-user job flow are shown in Fig.6.
This flow executes the following benchmark sequence back-to-back: WordCount-
TeraSort-K-Means. Workload transitions are marked with vertical dashed lines
and indicated in Fig. 6. The horizontal axis records the observation window num-
ber. The job flow is divided into a series of observation windows. Window number
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Fig. 6. Container performance metrics observed for Hadoop WordCount-TeraSort-K-
Means job flow, using a 2 min observation window and 2 TB data size.

0 represents the very beginning for the entire job sequence. The duration of each
window is fixed (set at the beginning of the job flow). The y-axis records the
value of each container metric for a given observation window.

Figure 7 shows a multi-user Spark job flow. In this case a single-user thread
was started. This thread executed the sequence of batch-type Spark jobs includ-
ing a K-Means machine learning job and longer-running TPC-DS-inspired
queries Q3, Q8, Q53 and Q89. After a delay of 600s, 3 more user threads were
started. Each of those user threads executed a sequence of 8 shorter TPC-DS-
inspired queries running under a single Spark context. These queries were meant
to simulate interactive drill-down operations initiated by a human analyst.

Container metric values measured during the course of a single observation
window are shown as different symbols described in the figure legend. As we move
right along the x-axis we can see drops and jumps in the patterns of symbols as
we cross the workload transitions, represented by vertical dashed lines.

Observation window data collected for all data points were replayed as a real-
time stream. A rolling average and standard deviation for each container metric
were computed for 5 consecutive windows in the stream. During each computa-
tion, Welch’s test was performed to evaluate whether a statistically meaningful
difference existed between the means observed at current and previous steps.
Welch’s test was performed double-sided, using 95% confidence.

In those cases where a statistically meaningful difference was observed, our
prototype code recorded the current observation window and noted a transition
there. Transitions identified by the prototype were compared with transitions
identified manually by examining YARN, MapReduce and Spark executor logs.
Transition detection accuracy for each metric was calculated by dividing total
transitions identified by the prototype by total transitions identified manually
from logs and multiplying by 100. Results are shown in Fig. 8.

Surprisingly, workload change detection was observed to be the least accu-
rate when using the container creation rate metric (18%), and the most accurate
(74%) when using the RSD metric. Changes in nature of processing being per-
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Fig. 7. Container performance metrics observed for multi-user Spark workload with
batch and interactive query components, using a 30 sec observation window, 2 GB
data.

formed by containers result in increased variance of the data. This is reflected
in different RSD values before and after the transition even in those cases
where changes in average container creation rate, container completion rate,
and response-time are not statistically significant.
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Fig. 8. Workload transition detection accuracy for different container performance met-
rics.

6 Relative Value and Importance of Container
Performance Metrics

Based on our findings presented above, it is possible to propose a ranking of
container performance metrics:

1. Container Creation Rate. This metric was observed to deliver the most
accurate workload classification. It is possible to achieve very good classifica-
tion results using this metric alone.

2. Container Response-Time Relative Standard Deviation (RSD).
Although less effective than the first two metrics for both workload classifica-
tion, RSD was observed to be very effective for detecting important workload
transitions.
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3. Container Average Response-Time. The average container response-
time was observed to allow reasonably accurate identification of workload
transitions.

4. Container Completion Rate. Container completion rate was observed to
be less useful than the first three metrics for both workload classification and
workload transition detection.

7 Conclusion

In this paper we presented a new way of capturing and analyzing workload
characteristics of Spark and Hadoop workloads. We demonstrated that is possible
to identify and classify big data analytic workloads with high degree of accuracy
using their container performance characteristics. We also demonstrated that it
is possible to use container performance metrics to accurately identify important
workload transitions.

The most useful metrics were found to be the container creation rate and
RSD. Using these metrics, it was possible to accurately distinguish Hadoop and
Spark workloads, and identify important workload transitions. Based on these
observations, we built a machine-learning based workload classifier and transition
monitor with a workload classification accuracy of 83% and a workload change
detection accuracy of 74%.

Our observed experimental results are an important step towards developing
automatically tuned, fully autonomous cloud infrastructure for big data analyt-
ics. The next generation of on-line automatic tuning systems can leverage our
findings to develop tuning approaches that are more fine-grained than tuning
end-to-end performance of a job. Resource managers and analytic frameworks
can begin to move away from exposing large numbers of tuneable parameters,
and instead focus on implementing intelligent automatic tuners.
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