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Abstract—The big data software stack based on Apache Spark
and Hadoop has become mission critical in many enterprises.
Performance of Spark and Hadoop jobs depends on a large
number of configuration settings. The manual tuning procedure
is expensive and brittle. There have been efforts to develop on-
line and off-line automatic tuning approaches to make the big
data stack more autonomic, but many researchers noted that
it is important to tune only when truly necessary because many
parameter searches can reduce rather than enhance performance.
Autonomic systems need to be able to accurately detect important
changes in workload characteristics, predict future workload
characteristics, and use this information to pro-actively optimise
resource allocation and frequency of parameter searches. This
paper presents the first study focusing on workload change
detection, change classification and workload forecasting in big
data workloads. We demonstrate 99% accuracy for workload
change detection, 90% accuracy for workload and workload
transition classification, and up to 96% accuracy for future
workload type prediction on Spark and Hadoop job flows
simulated using popular big data benchmarks. Our method does
not rely on past workload history for workload type prediction.

Keywords: Big data autonomic computing, on-line auto-
matic tuning, YARN, Hadoop, Spark, workload change detec-
tion, workload forecasting, big data performance optimisation.

I. INTRODUCTION

A. Background

Big data analytics has emerged as one of the most important
computing trends in high performance computing. Key big
data technologies such as Hadoop map-reduce jobs, Spark
applications, Hive, Hbase, and others run on large hardware
clusters that are managed by open-source and commercial
resource managers, such as YARN, Mesos, and Kubernetes.

Performance is a key challenge in this space. To be useful,
analytic jobs need to run fast enough to produce valuable
insights. This needs to be accomplished on very large and
often loosely structured data sets distributed over a large
number of compute nodes. Apache Hadoop and Spark job
performance, however, is dependent on a large number of
configuration settings, and has often been observed to be
brittle and inconsistent. Resource managers also present many
additional configuration parameters and scheduling policies
that can significantly affect job performance under multi-user
and multi-tenant conditions.

A poorly tuned configuration can result in order-of-
magnitude slower performance than for an optimally-tuned
one. Manual tuning involves experimenting with different
combinations of tunable parameters. Considering that each

experiment, at multi-Terabyte data scale, can take hours to
days to run this can turn into a very long and expensive
procedure. Also, parameters that are optimal for one job (input
data set) may not be well suited to another, and then the
experiments have to be repeated.

To address this issue there were a number of efforts to
develop automatic tuning systems specifically for big data
frameworks and resource managers [1], [2], [3]. While these
studies were able to demonstrate improvements, it should be
pointed out that in most cases relatively simple single-user
workloads were used.

Real big data workloads tend to execute multiple jobs
concurrently. The number and type of jobs will change over
time. To be truly effective automatic tuning systems need to be
able to detect significant workload changes and adapt to new
workload characteristics. To accomplish this they generally
need to be able to:

• Classify the currently executing workload.
• Find the ideal combination of tuning parameters for this

workload.
• Detect workload changes.
• Adapt to workload changes by finding a new ideal

combination of tuning parameters to suit new workload
characteristics.

B. Problem

State of the art approaches from the ’small data’ domain
rely on past workload history to predict important changes
in the workload characteristics. This may be good enough in
those situations where the same, or similar, jobs are being
executed day to day. In the big data space, however, analytic
jobs tend to focus more on exploration and experimentation.
This makes big data workloads less cyclical and repetitive than
those being run on the more traditional ’small data’ systems,
making it difficult to leverage the past history to predict the
workload type and performance.

Workload change detection and forecasting in big data sys-
tems present unique challenges. Analytic frameworks such as
Hadoop MapReduce and Apache Spark tend to produce very
abrupt changes in workload characteristics as they execute
different data processing stages. For example, as a Hadoop
MapReduce job transitions from the Map phase to the Reduce
phase the nature of the workload changes from CPU-memory
bound to network and disk I/O-bound. When multiple jobs are
running concurrently these changes can mask other important
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workload changes, such as the start or completion of new types
of analytic jobs.

Autonomic systems for big data need the ability to forecast
at least the near term workload characteristics and job perfor-
mance without relying on the past history. This information
can be used to make more intelligent resource allocation
decisions, and adjustments to the tuning parameters of the
currently executing analytic jobs and those that are queued
and about to start. Longer-term predictions are less useful.

C. Limitations Of Previous Approaches

To date there has been very little research focusing on
the workload change detection and classification in big data
workloads. Most research in this area comes from the more tra-
ditional Relational Database Management Systems (RDBMS)
and Web services areas. These earlier studies rely on analysis
of past database query and Web page request patterns to
predict workload shifts and cycles, and detect changes by
comparing workload characteristics at a given point in time
with predicted characteristics. This approach has only limited
applicability in the big data space.

In our earlier study [4] we demonstrated a simple tech-
nique for workload change detection in Spark and Hadoop
workloads. To date this is was the only published study
that demonstrated change detection in Spark and Hadoop
workloads. However, in order to build intelligent autonomic
applications it is not enough to simply detect the change in
workload. It is also important for the automatic tuning system
to be able to identify and classify the type of change that
has occurred, and to predict performance metrics that can be
expected in the subsequent observation windows.

D. Our Contribution

In this study we present a new autonomic architecture for
big data that uses machine-learning algorithms to classify
workload transitions as well as workloads, and applies this
classification to accurately predict future workload type with-
out relying on past workload history.

We demonstrate 99% change detection accuracy, 90% work-
load transition classification accuracy, and up to 96% workload
type prediction accuracy.

II. PREVIOUS WORK

To date there has been very little research focusing on
detecting and predicting workload changes in big data ap-
plications. Almost all research studies specifically focusing
on workload change detection and prediction come from
researchers working on autonomic database management sys-
tems (DBMS) in the more established ”small data” domain.
Most of these works focus on predicting shifts from On-
Line Transaction Processing (OLTP) to Decision Support
System (DSS) type of workload because these very different
workloads require different tunings to achieve acceptable
performance. Although big data frameworks have significant
architectural differences from the more traditional ”small data”
DBMS, techniques used for workload classification, change

detection and prediction are relevant. Below we discuss the
most relevant works in more detail.

Lin Ma et al. [5] describe QueryBot5000 (QB5000) - a
system for query-based workload forecasting that can be used
to implement autonomic qualities for RDBMS such as MySQL
and PostgreSQL. The authors asserted that the best way to
model the future workload was to build a model based on the
past query type and arrival rate rather than resource utilization.
The QB5000 architecture included 3 components: 1 - a Pre-
processor that replaced SQL constants with symbols, and used
heuristics to reduce millions of unique queries to a more
manageable set comprising thousands of query templates; 2
- a Cluster that used an on-line version of DBSCAN non-
supervised clustering algorithm to further reduce the total
number of models that need to be constructed; 3 - a Forecaster
component that used an ensemble comprising a Linear Regres-
sion (LR) algorithm and a Recurrent Neural Network (RNN) to
predict query arrival rates for cyclical and evolving workloads,
and Kernel Regression (KR) to predict query arrival rates for
workloads with spikes.

QB5000 used a combination of off-line training and on-line
prediction to provide input to the database optimizer. Ma et
al. evaluate several prediction horizons. Their results showed
improved accuracy when using LR+RNN ansemble, or KR
for longer prediction horizons or 2 or more days. For short
prediction horizon of 1 hr there does not seem to be much
difference in accuracy among several techniques evaluated.
Their approach relies on past workload history to predict the
future query arrival rates, and sudden change in workload
pattern would require re-training of the system.

Elnaffar and Martin [6] proposed a framework for predicting
shifts in DBMS workload from predominantly OLTP-type to
DSS-type. Their framework, called the Psychic-Skeptic Pre-
diction (PSP) framework, included several components - the
Workload Classifier, the Workload Predictor and the Skeptic.

The role of the Workload Classifier was to classify the
type of workload at any given point in time based on a
feature vector that includes features such as the number of
pages read and the number of rows returned for a query.
The Workload Classifier uses a technique called Decision Tree
Induction to construct it’s classification model. This technique
was chosen over other techniques, such as artificial neural
networks (ANN), because it provides for high interoperability
and produces a collection of rules that can be readily under-
stood by a human. The Workload Classifier produced a metric
called DSSness that expressed the OLTP vs. DSS nature of
the workload in a quantitative way.

Elnaffar and Martin noted that running the Workload Clas-
sifier continuously resulted in a significant performance over-
head [6]. Thus they introduced another component called the
Workload Predictor, that would examine a time-series of DSS-
ness, and predict a the timing of future workload characteristic
shifts from OLTP to DSS. The Skeptic component of PSP
would sample the workload characteristics at times close to
the predicted shift in the workload characteristics to validate
that the prediction was still accurate.
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Although the PSP included a mechanism for updating the
prediction model in those situations where differences between
the predicted and the actual workload characteristics were
observed, one main limitation of this approach was that it
relied on the past performance to predict the future and thus
required significant off-line re-training if a significant change
in the workload pattern occurred.

Holze and Ritter [7] presented a continuous, light-weight
solution for workload monitoring and workload shift detection
using n-gram-models. The authors use the term workload
shift to describe a number of situations: 1 - introduction of
new applications; 2 - sun-setting of obsolete applications; 3
- modifications to existing applications as a result of new
releases; 4 - application usage changes caused by, for example,
increasing the number of users. Holtze and Ritter [7] contend
that workload shifts can exhibit short-term and long-term
patterns, and focus their study on the detection of long-term
patterns.

Huang et al. [8] developed a deep recurrent model for server
load and performance prediction in data center. These authors
contend that since sequences of user requests are the root cause
of server performance, they should be used as the basis for
performance prediction. Their approach uses a type of RNN
- the Long Short Term Memory (LSTM) neural network to
analyse the server logs containing user requests and predict
the future user requests. They use a second LSTM with a
Multi-Layer Perceptron (MLP) output layer to predict the
performance metrics, such as the throughput and the server
CPU utilization based on the workload prediction.

Lei et al. [9] describe a method for detecting hot spots in a
virtualized environment. This is an important issue in the cloud
space because it affects workload balancing. Their architecture
was based on two parts: 1 - an agent that collected system
hardware utilization information from the hardware nodes;
2 - a Hadoop MapReduce-based algorithm that identified
virtual machines (VM) with anomalous memory utilization.
The algorithm scans the time-series of the hardware utilisation
metrics collected during the monitoring interval and counts the
number of times the average resource utilizations exceed a pre-
defined threshold to identify the hot-spots. The importance of
hot spot detection is relevant to big data workload analysis
because big data analytic jobs run on scaled-out clusters, and
the appearance of imbalance in the cluster utilization can
denote an important workload change.

Cherkasova et al. [10] proposed a framework for automated
anomaly detection and application change analysis. The main
objective of their research was to provide a way to pro-
actively identify poorly performing enterprise applications.
These authors distinguish between the terms performance
anomaly and workload change. They define the term per-
formance anomaly to mean that the observed application
performance (for example the CPU utilization) cannot be
explained by the observed application workload. Their method
uses an off-line statistical method - Non-linear Least Squares
Regression (Non-negative LSQ) in conjunction with step-wise
linear regression to identify significant transactions and model

their CPU demand, and an on-line algorithm that computes
the new application signature and compares it with the old
application signature to identify performance anomalies.

Khanna et al. [11] describe a method for autonomic char-
acterisation of workloads using workload fingerprinting. The
authors focus on cloud computing and the need for the
orchestration layer to forecast changing workload conditions
in order to be able to meet Service Level Agreements (SLA).
They describe the workload as consisting of a number of
phases. Their approach to forecasting consists of two steps: 1
- workload detection and classification; 2 - identifying distinct
workload phases. For step 1 they use the Adaboost [12] en-
semble algorithm to synthesize the workload detection model.
For step 2 they use the non-supervised K-means clustering
algorithm to identify the distinct workload phases. The idea
of describing workload as a series of phases or stages is
interesting for big data applications because Spark and Hadoop
analytic frameworks apply stages of distinct processing.

On reviewing the current state of the art it’s possible
to make the following generalized observations about the
approaches used to identify the workload changes and predict
performance:

• there is little standardization in the terminology used to
describe workload changes

• researchers use a combination of off-line and on-line
techniques

• off-line learning techniques are commonly variants of LR,
RNN and LSTM, and Decision Trees and use historical
data to construct prediction models

• unsupervised clustering algorithms, such as K-means and
DBSCAN, are sometimes used as a pre-processing stage,
to reduce the number of prediction models that need to
be constructed

• on-line algorithms compare actual executing workload
with predictions from historical data to detect workload
changes, shifts and anomalies.

The main weakness of this approach is that it relies on the
records of past performance to detect change in the currently
executing workload and predict the future performance. If the
current workload does not match the workloads executed in
the past, this approach is not accurate.

In the big data space analytic workloads often focus on
finding new insights and tend to be less repetitive and cyclical
than the workloads associated with the OLTP Web applications
and the more conventional ’small data’ RDBMS. Therefore,
below we discuss a different approach to workload change
detection and performance prediction.

III. WORKLOADS AND WORKLOAD CHANGES IN BIG
DATA APPLICATIONS

There are many definitions for the term ’workload’ in the
literature. There are also many different ways to describe
workload changes. Due to this, before delving into the theo-
retic basis and the architecture of our approach, it is important
to clarify the terminology and the definitions of these terms
as treated in our study.
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In this study, the term ’workload’ is used to represent any
continuous sequence of observation windows with feature vec-
tors that do not show any statistically meaningful differences.
Such a sequence represents a period of distinct steady-state
processing. Using this definition, for example, a Map stage
of a Hadoop MapReduce job would be a distinct workload.
Similarly, the reduce-shuffle and reduce stages would be
treated as distinct workloads as well. For Spark jobs, the job
stages would be treated as distinct workloads from the shuffles.

Genkin et al. [4] define the term workload transition to
indicate any significant change in workload characteristics. In
this paper we expand on our previous work and provide a more
rigorous description, definition, and classification of workloads
and workload changes in big data applications.

The term ’workload change’ is very broad and can be used
to indicate a number of different conditions. We define the
following terms to help discuss and analyse changes that can
occur in big data systems:

1) Workload Cycles. This term refers to regular, repeating
workload changes caused by shifts in the usage patterns.
This includes, for example, the shift from DSS to OLTP
processing, discussed in the section II. These changes
can be gradual and symmetrical, or they can be abrupt,
asymmetrical, or spiky.

2) Workload Drift. This term refers to long-term changes
in workload performance characteristics caused by: 1 -
changing volume of users; 2 - changing volume of data;
3 - systematic changes in the processing software stack;
4 - changes in the underlying hardware infrastructure.

3) Workload Anomaly. This term refers to a sudden, signifi-
cant, non-repeating, not planned change in the workload
characteristics. A sudden spike in the usage activity of
a Web commerce site due to an on-line sale is one
example.

4) Workload Transition. This term refers to a period of non-
steady state processing that results when either the usage
pattern changes during a workload cycle, workload drift,
workload anomaly or as a result of the algorithmic
cycles within the analytic framework. One example of
this would be the transition from the map phase to the
reduce phase during the execution of a map-reduce job.

A Hadoop MapReduce job can present the following se-
quence of workload transitions during it’s processing:

1) The job start and the beginning of the map phase of
processing. This workload transition is typically marked
by a sharp spike in disk read activity, high level of
container creation and completion, as well as high CPU
and memory usage.

2) The completion of the map phase of processing and start
of the reduce-shuffle phase of processing. Completion of
the map phase is marked by sharp increase in container
completion rate, a drop in the CPU utilisation, and an
increase in the disk write rate produced by map tasks
writing to intermediate files. This is followed by an
increase in the container creation rate and a surge in

the network read activity as the newly created reduce
tasks fetch data from the other nodes.

3) The completion of the reduce-shuffle phase of process-
ing and the start of the reduce phase of processing.This
event is marked by a marked reduction in the network
read rate, and a surge in the disk read rate as the reduce
tasks load data fetched from other nodes.

4) The completion of the reduce phase of processing, and
of the job itself. This event is marked by a surge in the
container completion rate and a corresponding surge in
the disk write rate caused by the reduce tasks writing
out the final data.

A Hadoop MapReduce, single-user job flow can involve
many jobs and many workload transitions described above.
Workload transitions for a single-user job flow should show
a regular and distinct temporal patterns. For example, the
transition marking the start of a job will be typically followed
by the transition from the map to the reduce phase.

For multi-user job flows temporal patterns of workload
transitions may not be as clear-cut as for the single jobs and the
single-user job flows. For example, the start-of-job workload
transition may be followed by more start-of-job workload
transitions. Nevertheless, for each start of job transition it is
reasonable to expect that a map-to-reduce workload transition
will follow.

Although Spark processes data differently than Hadoop
MapReduce, similar reasoning can be applied to describe
workload transitions that can be produced by that framework:

• The job start. Similar to Hadoop MapReduce job start,
the start of a spark job is marked by a surge in container
creation activity, and disk read activity.

• The job stage transition. Spark breaks the submitted job
down into a number of stages for execution. Unlike
Hadoop MapReduce, Spark requests containers at the
beginning of the job, and then re-uses them until all of the
required processing has been completed. Nevertheless,
transitions from one stage of the job to the next can
result in significant workload changes. Transition into
the shuffle stage is marked by a surge in network read
activity. End of the shuffle stage is marked by a surge in
disk write, as intermediate results are saved.

• The job end. The result stage of the Spark job is marked
by a surge in container completion activity coupled with
a surge in disk write activity.

Table II summarizes the different types of workloads and
workload transitions for Apache Hadoop and Spark.

IV. ARCHITECTURE

Figure 1 shows how the different theoretical constructs in
our analysis relate to one another. The automatic tuning engine
aggregates real-time streaming data emitted by the resource
manager and the cluster infrastructure into observation win-
dows. Each observation window is described by it’s start time,
it’s end time, and a feature vector. Observation window data
are essentially multi-variate, real-time, time-series data. Each
feature in the feature vector is a real number.
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Transition Label Description
Workloads

HDMAP Hadoop MapReduce Map phase processing.
HDSHUF Hadoop MapReduce shuffle processing.
HDRED Hadoop MapReduce Reduce phase processing.
SPSTAGE Spark job stage processing.
SPSHUF Spark shuffle processing.

Workload Transitions
HDJSTART Start of a Hadoop job. Could be under single or multi-user conditions.
HDMAPSHUFL Map ends and reduce-shuffle starts.
HDSHUFRED Reduce-shuffle ends.
HDJEND Reduce ends, end of Hadoop MapReduce job. Could be under single or multi-

user conditions.
SPJSTART Spark job start.
SPSTSTART Transition from shuffle to the start of a new job stage.
SPSTSTEND Transition from a job stage to shuffle.
SPJEND Spark job end.

TABLE I
WORKLOAD AND WORKLOAD TRANSITION CLASSES AND LABELS.

Feature Type Description
numContStarted Integer Number of containers created during this observation window.
meanStarted Double Average response-time of containers started in this observation window.
rsdStarted Double Relative standard deviation of containers started in this observation window.
numContainersFinished Integer Number of containers completed during this observation window.
meanFinished Double Average response-time of containers started in this observation window.
rsdFinished Double Relative standard deviation of containers finished in this observation window.
avgCPU Double Average actual CPU utilization of the cluster during this observation window.
averageActiveMem Double Average actual active memory utilization on the cluster during this observation window.
avgNetRead Double Average actual network read rate on the cluster during this observation window.
avgNetWrite Double Average actual network write rate on the cluster during this observation window.

TABLE II
OBSERVATION WINDOW FEATURES AND THEIR DESCRIPTIONS.

The real-time stream of observation window data can be
treated as a sequence of steady state periods connected to
each other by periods of non-steady-state processing, which
we term workload transitions. During steady state process-
ing differences in the feature vector data between adjacent
windows do not show statistically meaningful differences.
During workload transitions differences in the feature vector
data between adjacent observation windows do show statisti-
cally meaningful differences. Observation windows that form
workload transitions can be described by an additional feature
vector that captures the rate of change that has occurred
relative to previous observation windows. Each feature in this
transition vector is also a real number.

Observation window data typically contain significant
amounts of random statistical fluctuation. It is therefore nec-
essary to smooth these fluctuations by applying a sliding
analytical window. As shown in Figure 1, the sliding analytic
window is defined as a multiple of an observation window.
During our study we used sliding analytic window that ag-
gregated data from 3 observation windows and would slide
over 1 observation window at each step. Each analytic window
is described by a feature vector containing the average and
standard deviation values for each observation window feature.

Statistically meaningful changes in the workload charac-
teristics can be detected by comparing feature vectors of the

current analytic window with the feature vector of the previous
analytic window. Feature vectors associated with the steady-
state and the workload transition observation windows can be
used as the basis for workload classification. This concept
serves as the basis for our architecture.

Our high-level architecture is shown in Figure 2, and
contains four main components: 1 - ChangeDetector; 2 -
WorkloadClassifier; 3 - TransitionClassfier; 4 - WorkloadPre-
dictor. We describe the design and the responsibilities of each
component below.

The real-time stream of observation window data ini-
tially passes through the ChangeDetector component. The
ChangeDetector is a binary classifier that classifies a given ob-
servation window as either steady-state or workload transition
window. To accomplish this it implements a sliding analytic
window that is n observation windows wide. As shown in
Figure 1 the analytic window covers observation windows t-
2 to t, where t is the current observation window. With the
arrival of each new observation window the analytic window
slides over one step.

The ChangeDetector is an ensemble of of statistical classi-
fiers. Each statistical classifier performs the Welch’s statistical
significance test on a single feature from the analytic window’s
feature vector. It compares the mean and the standard deviation
of the feature at observation window t with the mean and the
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Fig. 1. Theoretical relationship between workloads, workload transitions,
observation windows, and analytic windows.

Fig. 2. High-level architecture for on-line automatic tuning system for big
data.

standard deviation at observation window t-1. If the Welch’s
test indicates that there is a statistically meaningful difference,
it registers one vote. Each feature classifier also has a weight
assigned to it. This weight defaults to 1 and can be optionally
adjusted by manual configuration. The ChangeDetector counts
votes from all 10 feature classifiers and compares the sum of
the votes against a threshold parameter. If the number of votes
equals or exceeds the threshold, the ChangeDetector classifies
the current analytic window and the observation window
as workload transition windows. The ChangeDetector is an
unsupervised classifier, and does not require off-line training
to learn the weights and the threshold. These parameters need
to be established experimentally during pre-production testing,
and set manually.

If the ChangeDetector classifies the current observation
window as steady-state, it will pass the observation window
data to the WorkloadClassifier for further classification into
the workload sub-types listed in Table II. If the ChangeDetec-
tor classifies the current observation window as a workload
transition window, it will pass the corresponding analytic
window feature matrix data to the TransitionClassifier for
further classification into one of the workload transition sub-
types listed also in Table II. The TransitionClassifier uses the
analytic window data to calculate the transition feature vector,

that is used for classification. This is further described in the
section below that discusses the TransitionClassifier.

The WorkloadClassifier uses the random forest ensemble
algorithm to classify the observation windows as workload
sub-types. This classifier is trained off-line using a represen-
tative training set of the observation windows selected from
the previously executed and recorded workloads. It classifies
the observation windows in real-time, and outputs one of the
workload labels from Table II.

The TransitionClassifier, like the WorkloadClassifier, also
uses the random forest ensemble algorithm, and is also trained
off-line. In fact these classifiers share a common abstract
base class that wraps the random forest algorithm. Unlike
the WorkloadClassifier, the TransitionClassifier operates not
on the observation window, but on the associated analytic
window. The sliding analytic window has the same time index
as the current observation window, but references several
(the number is configurable) previous observation windows
in addition to the current observation window. This enables
the TransitionClassifier to calculate the rate of change for
the feature vector. The new derivative vector is used for
the real-time classification. The TransitionClassifier outputs
a transition label from Table II for each observation window.

The ChangeDetector, the WorkloadClassifier, and the Tran-
sitionClassifier are implemented in Scala using Apache Spark
2.4.3 Structured Streaming and MLib APIs.

After passing through the classification pipeline the real-
time observation window stream containing feature vectors is
transformed into a real-time stream of workload and transition
labels. This is shown in Figure 2.

For example, a simple Hadoop MapReduce job that has
all relevant stages could produce a label stream/sequence
that reads something like this: ”HDJSTART HDJSTART
HDMAP HDMAP HDMAP HDMAP HDMAP HDMAP
HDMAPSHUF HDMAPSHUF HDSHUF HDSHUF HD-
SHUF HDSHUFRED HDSHUFRED HDRED HDRED
HDRED HDRED HDRED HDJEND”. We now have a stream
of data that very much resembles a textual representation of
natural languages, and can be operated on using algorithmic
techniques from that domain.

The WorkloadPredictor component uses a Long Short-Term
Memory (LSTM) neural network to predict workload and
workload transition types that are likely to occur in subsequent
observation windows. LSTM neural networks have demon-
strated considerable success predicting which words will come
next in the real-time natural language processing applications,
and the WorkloadPredictor uses the same approach. The
LSTM is configured with a single layer, and is trained off-
line using segments from the recorded workload time-series.
During the processing of each current observation window,
it predicts a sequence of workload and workload transition
classes that can be expected in the next 10 (configurable)
observation windows.

The WorkloadPredictor is implemented in Python using
the popular TensorFlow machine-learning framework. It runs
as a separate process and writes predictions into a file that
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is continuously read by the tuning engine, which uses the
predictions to decide whether or not it makes sense to perform
parameter searches.

V. EVALUATION METHODOLOGY

Our evaluation methodology focused on simulating common
Apache Hadoop and Spark workloads and workload transitions
using well-understood big data benchmarks. The experiments
were planned and performed in increasing order of complexity.
Starting with simple single jobs, we then proceeded to the
more complex single-user job flows, and then to multi-user
job flows.

Before capturing performance statistics for each experiment,
experimental runs were performed to establish the optimal
observation window duration. The observation window du-
ration was chosen so that the majority of windows had a
statistically valid number of containers recorded. For example,
if all container creation and completion events were recorded
during a single very long window then this would not make
for a compelling analysis.

All metrics were compiled using log analysis. Container
performance metrics were compiled from KERMIT [2] logs.
System performance metrics for the cluster were captured
using the NMON utility that was executed during the run on all
cluster nodes. A Spark application was developed that merged
container performance metrics with system metrics, producing
an integrated time-series of observation window data. Each
observation window feature vector included all container and
system performance metrics collected during that window.

A file containing the location of the known workloads and
workload transitions was prepared for each time series. The
exact time span for a particular workload, and the time at
which workload transitions occurred, was established by a
Spark application that performed log analysis on YARN logs,
Spark event logs, and workload driver logs. The application
looked for the key log entries indicating which type of work-
load was running, or that a workload transition had occurred.
The time stamp was then converted to an observation window
number, and an entry was added to the known transitions file
to indicate the location and the type of workload or workload
transition in the time-series. This file was later used to evaluate
the accuracy of the classifications and the predictions.

During evaluation each time-series was replayed as a real-
time stream of data. The KERMIT streaming engine was im-
plemented as an Apache Spark structured streaming consumer
configured to read a file source as a stream. The streaming
engine would read the file contents into a streaming data
frame. It would then apply SQL and custom stored procedure
transformations to the data frame to execute the classification
pipeline described in the section IV. The result would be a
stream of classification labels listed in Table II, and it would
be written into a separate text file. This file would be read by
the WorkloadPredictor component, that would be running as
a separate process.

This file, containing detected workloads and transitions was
then compared with the known workloads and transitions file.

The confusion matrix measures, such as accuracy, Positive
Predictive Value (PPV) and error rate, were then calculated
on the basis of this comparison. To evaluate the workload
transition detection accuracy, the transition type was ignored,
and detection was treated as a binary classification problem
aiming to classify steady state vs. change from steady state.
To evaluate workload and workload transition classification
accuracy, one vs. the rest approach was used.

The time series were separated into a training and testing
sub-sets using 70/30 ratio when evaluating the supervised
learning algorithms. Five-fold cross-validation was used to
evaluate variance in the classification results and to mitigate
over-fitting.

Evaluation measures and approach varied depending on the
component. Procedures specific to each component are further
discussed below in the section VI.

A. Parameter Settings

Unless stated otherwise, the Hadoop MapReduce and
Spark configurations used default values. For YARN,
the yarn.nodemanager.resource.cpu-vcores parameter in
the yarn-site.xml file was set to the total number of
CPUs shown by the operating system on each of the
cluster nodes. The yarn.nodemanager.resource.memory-mb
and yarn.scheduler.maximum-allocation-mb parameters
were set to the total amount of memory on each
data node. In the mapred-site.xml file, the parameter
mapreduce.job.reduces was set to 36. The parameters
mapreduce.output.fileoutputformat.compress and
mapreduce.map.output.compress were set to true. The
parameters mapreduce.output.fileoutputformat.compress.codec
and mapreduce.map.output.compress.code were set to
org.apache.hadoop.io.compress.Default in order to avoid
running out of space in the HDFS during longer runs. The
parameter mapred.child.java.opts was modified to increase
the maximum JVM heap size setting from the default to 850
MB. This was done to remove the possibility of a memory
bottleneck impacting container performance. On the Spark
side, the spark.executor.memory configuration parameter was
set to 6G to ensure that most memory on our nodes was
utilized.

B. Hardware And Software

All measurements were performed on an 8-node cluster
comprising 1 management node and 7 compute/data nodes (all
KVM virtual machines running on IBM S822L Power8 with
Dual 10-core Power8 processors at 3.42GHz; one bare metal
server was used for every two VMs). Each node was equipped
with a 100 GB SSD drive for operating system and the Hadoop
stack installation. All the nodes shared access to a 12TB
network shared drive connected through a 10Gb fibre switch.
Each virtual node was also configured with 48 GB RAM and
10 virtual cores. All nodes were running the Ubuntu 16.04
ppc64le operating system. The test cluster topology is shown
in Figure 3. We used Hadoop 2.7.3 and Spark 2.4.3. In order to
facilitate container metric collection, a jar file containing the
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Fig. 3. Test-bed topology.

YARN resource manager and our KERMIT library [2] was
built and deployed to replace the standard YARN jar.

VI. RESULTS

We discuss our findings in the sections below. The sub-
section VI-A discusses binary classification results observed
when classifying observation windows as steady-state vs. non-
steady state using the ChangeDetector component. The sub-
section VI-B discusses the results achieved for the Work-
loadClassifier component. The sub-section VI-C discusses
the results achieved for the TransitionClassifier component.
The sub-section VI-D discusses the results achieved for the
WorkloadPredictor component.

A. Change Detection

Evaluation of the ChangeDetector component involved the
following experiments:

• The experiments to determine the optimal threshold for
the ChangeDetector, and the weights for feature classi-
fiers.

• The experiments to determine the optimal width of the
analytic window.

Figure 4 shows the Receiver Operating Characteristic (ROC)
plot summarising the results of the experiments performed to
establish the best threshold value and weights. The best results
were achieved using a threshold value of 4 votes, and equal
weights for the feature classifiers.

After ideal values for the threshold and the weights were
established, additional experiments were performed to deter-
mine the ideal width of the analytic window. The best results
were achieved using the smallest possible analytic window of
3 observation windows.

Figure 5 shows the summary of key confusion matrix
measures for the ChangeDetector. A very high accuracy rate
of 0.995 was achieved. It should be pointed out, however, that
the observation window data displayed significant amount of
class imbalance. There were roughly 100 times more steady-
state windows than workload transition windows, and thus the
accuracy measure was dominated by the negative case (no
statistically significant difference). For this reason we also
focused on the Positive Predictive Value (PPV) and the miss
rate measures.

The PPV measure was considered to be a more interesting
measure for the ChangeDetector than accuracy because it
evaluates how well the classifier did vs. the positive case

Fig. 4. ChangeDetector ROC for different thresholds, and equal weights.

Fig. 5. ChangeDetector summary of key classifier performance metrics.

(workload transition). As shown in Figure 5 PPV was observed
to be lower than accuracy. At 0.95 it was still observed to be
very good. The miss rate, which evaluates the proportion of
actual transitions missed by the classifier, was observed to be
low, at 0.05.

B. Classifying Workloads

The training set for the WorkloadClassifier component
was assembled manually. Time-series data were separated
into training and testing time-series using a 70/30 split, as
discussed above. The sample observation window data was
extracted from the training time-series, and manually labelled
using libsvm format. The observation window training set
covered all of the workload classes listed in Table II. The
classes in the training set were reasonably well balanced.

As with the ChangeDetector, multiple confusion matrix
measures were used to evaluate the performance of the
WorkloadClassifier. Accuracy, PPV and False Positive Rate
(FPR) were decided to be the most important measures to
focus on. One-vs-the-rest approach was used to calculate the
measures for each class. From the class-specific data, average
metric value and associated standard deviation were calculated,
and are shown in Figure 6. Experiments were performed to
determine the optimal number of trees and categories for the
random forest ensemble algorithm used by the classifier. The
best results were achieved using 100 trees and 10 categories.

2842



Fig. 6. Average Accuracy, PPV and FP Rate achieved for the WorkloadClas-
sifier.

Fig. 7. Average Accuracy, PPV and FP Rate achieved for the TransitionClas-
sifier.

The WorkloadClassifier achieved fairly high average ac-
curacy (0.90) and PPV (0.88), and a fairly low average
FPR (0.09). The standard deviation in these measures for all
workload classes was observed to be reasonably small (0.02
to 0.06). This is shown in Figure 6.

C. Classifying Workload Transitions

The training procedure for the TransitionClassifier compo-
nent was very similar to that used for the WorkloadClassifier.
The only difference was due to the fact that the Transition-
Classifier needs to be trained on the analytic window data,
rather than the observation window data.

To accomplish this segments of observation window data
containing known transitions were selected from the training
time-series. A utility program was developed to generate and
save corresponding analytic window data. The same confusion
matrix measures and evaluation approach was used as for the
WorkloadClassifier.

As with the WorkloadClassifier, experiments were per-
formed to establish the ideal number of trees and the categories
for the underlying random forest ensemble algorithm. In this
case the best results were observed with 200 trees and 20
categories.

Figure 7 shows the summary of the key measures. Results
were observed to be good, showing average accuracy of 0.91,

Fig. 8. WorkloadPredictor summary of accuracy by prediction horizon.

and quite similar to those achieved for the WorkloadClassifier.
This is not very surprising considering that the classifiers use
the same underlying algorithm.

D. Predicting Performance

After evaluation and optimization of the classification
pipeline was complete, time-series with class labels given in
Table II were generated for all time series, in both the training
and evaluation set. The WorkloadPredictor LSTM was trained
using complete time-series from the training set.

The testing data were then streamed through the Workload-
Predictor, and this component generated a sequence of 10
predicted class labels for each labelled observation window.
This sequence was then compared to the actual sequence of
labelled windows in the same time series, and accuracy at
3 prediction horizons was calculated. As with the classifiers,
one-vs-the-rest approach was used to calculate the accuracy.
In this case the workload and the workload transition classes
were treated as one set.

The automatic tuning engines and the resource managers
that comprise the orchestration layer care mostly about the
near-term, and so the following prediction horizons were
selected for analysis:

• t+1 observation window (i.e. the workload or the transi-
tion expected in the next observation window)

• t+5 (i.e. the workload or the transition expected in 5
observation windows from now)

• t+10 (i.e. the workload or the transition expected in 10
observation windows from now)

A summary of the accuracy results observed for the Work-
loadPredictor are shown in Figure 8. As expected, the best
accuracy was observed for the closest prediction horizon
(0.96). For the longest prediction horizon of t+10 accuracy
remained quite high at 0.87.

VII. CONCLUSION

In this paper we presented the first study focusing on
workload change detection, classification and prediction for
big data workloads. Unlike previous studies focusing on the
more traditional ’small data’ space, our approach does not
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rely on the longer-term past workload history to predict future
workload transitions. Instead we treat big data workloads as
sequences of more elemental steady state workload segments
connected by non-steady state workload transitions.

We use a classification pipeline to segment multi-variate
real-time workload data and convert it into a sequence of class
labels, forming a ’workload language’ that is similar in essence
to natural languages. We were able to use an LSTM, a very
popular natural language processing algorithm, to accurately
predict the type of workload, or workload transition that can
be expected to occur in the near to intermediate time horizon.
The automatic tuning engines and the resource managers that
comprise the future autonomic big data software infrastructure
can leverage this information to pro-actively manage resource
queues, container placement, and reduce search overhead.

Future research direction could focus on developing new
on-line machine learning algorithms that could achieve clas-
sification and prediction performance equal to, or better than,
the currently used supervised learning algorithms (random
forest and LSTM) that require off-line training. Although
training stages could be automated and could run in the
background, the need for off-line training complicates overall
system design, deployment and maintenance.
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