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Abstract. The big data software stack based on Apache Spark and
Hadoop has become mission critical in many enterprises. Performance of
Spark and Hadoop jobs depends on a large number of configuration set-
tings. Manual tuning is expensive and brittle. There have been prior ef-
forts to develop on-line and off-line automatic tuning approaches to make
the big data stack less dependent on manual tuning. These, however,
demonstrated only modest performance improvements with very simple,
single-user workloads on small data sets. This paper presents KERMIT -
the autonomic architecture for big data capable of automatically tuning
Apache Spark and Hadoop on-line, and achieving performance results
30% faster than rule-of-thumb tuning by a human administrator and up
to 92% as fast as the fastest possible tuning established by performing an
exhaustive search of the tuning parameter space. KERMIT can detect
important workload changes with up to 99% accuracy, and predict future
workload types with up to 96% accuracy. It is capable of identifying and
classifying complex multi-user workloads without being explicitly trained
on examples of these workloads. It does not rely on the past workload
history to predict the future workload classes and their associated per-
formance. KERMIT can identify and learn new workload classes, and
adapt to workload drift, without human intervention.

Keywords: autonomic computing, big data, machine learning, high-
performance computing

1 Introduction

1.1 Big Data Performance and Artificial Intelligence

Big data analytics have become mission critical in many enterprises. Big data
is used extensively in baking and securities, communications, media and en-
tertainment, health care, education, manufacturing, government, insurance and
retail industries. The use of big data has become so pervasive that today many
enterprises not only augment their more traditional Relational Database Man-
agement Systems (RDBMS) with big data technologies, but have completely
re-based their analytic processing around the big data technologies.
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Big data processing presents unique challenges due to the sheer volume of
the data that needs to be analyzed and to the fact that these data are typically
loosely structured. While the functional aspects of these important big data
frameworks are very important, so is performance. In many cases analytic jobs
must complete their processing within a specified time duration in order for the
results to be useful. Some big data jobs must complete their processing in sub-
seconds. Recommended systems are one example of systems that need to execute
big data very quickly in order to maintain an acceptable end-user experience.
Other jobs, especially those that aim to analyze large volumes of historical data
to enable accurate projections of future events, may take hours, days, or even
weeks to complete.

Today Apache Spark and Apache Hadoop form the foundation of the big
data software stack. Other analytic technologies, such as Apache Hive, Apache
Hbase, and Apache Tez, leverage these frameworks to implement their func-
tionality. The performance of Spark and Hadoop jobs depends on a very large
number of configuration settings. Manual tuning is expensive and brittle. Ideal
combinations of tuning parameters have to be established experimentally. Each
experiment often requires many hours to run due to the large volume of data
involved. The introduction on new jobs, or changes in the nature or volume of
the data, or the number of user executing jobs concurrently on the system often
require the experiments to be repeated. A system capable of optimizing big data
performance based on workload characteristics would be clearly beneficial, and
would help greatly reduce operating costs of big data systems and improve the
end user experience.

Recent advances in Artificial Intelligence (AI) and Machine Learning (ML)
enabled new approaches to autonomic system design. Supervised ML algorithms
can be used to classify objects and estimate their future quantifiable behavioral
characteristics, such as speed and direction for example. Advanced supervised
ML techniques, such as Zero-Shot Learning (ZSL), one-shot learning, and few-
shot learning are now available, and can help reduce the effort associated with
training data set construction. Unsupervised ML algorithms can be used effec-
tively to discover patterns in data, thereby discovering previously unseen classes.
Machine learning pipelines can be constructed to automate labeling and training
of supervised ML algorithms. And so, the overarching research question behind
this investigation is: ”Can we combine ML techniques to construct a coherent
architecture capable of optimizing big data performance without human inter-
vention?”

In the sections below we begin by recapping the key research problem and
our contribution to resolving it. We then discuss the most relevant previous
works in this area. Subsequently, we delve into the details of our architecture.
We begin with the definitions of key concepts and terms used in this paper. We
then proceed to discuss the key sub-systems of our architecture, and how they
operate.
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2 Problem

To date there has been a significant amount of research focusing on autonomic
computing. The majority of relevant research has focused on the more tradi-
tional, ’small data’ RDBMS space [7] [9] [13]. Some research on this area also
comes from network, cloud [10] [12], and web [6], but there has been no research
to date focusing on big data specifically.

Supervised learning algorithms investigated in [4] and [2] require explicit
labeling of each workload and workload transition type. The research investiga-
tion in [1] would significantly reduce the required labeling and training effort,
but would not eliminate it completely.

We don’t want to replace the manual tuning problem with a potentially
equally expensive labeling and training problem. We need a solution that can
automate labeling and training functions and minimize human intervention.

3 Limitations of Previous Approaches

This is the first study that focuses on autonomic performance optimization for
big data workloads. Previous works focusing on cloud and traditional small data
systems have the following limitations:

1. Coarse view of workload, such as DSS vs. OLTP, makes it impossible to opti-
mize job by job. Big data jobs can have very different optimal configuration
parameters.

2. Linear regression models typically used to predict workload characteristics
perform poorly with abrupt workload transition common in the big data
space.

3. Most methods depend on past workload history to predict future workload
characteristics. Coupled with coarse view of workload, this makes them in-
effective in situations where workload characteristics change frequently.

4. None of the previous works include the ability to anticipate new, previously
unseen, workloads.

Most previous works focus on one of the aspects of autonomic computing but
don’t describe a complete architecture that implements an autonomic feedback
loop.

4 Contribution

This work presents the first autonomic architecture specifically designed for
autonomic optimization of big data workloads. This architecture implements
the feedback loop based on pervasive implementation of machine learning algo-
rithms. The Knowledge Extraction Resource Management Interface (KERMIT)
architecture is able to interact with a wide variety of analytic frameworks and
applications regardless of their internal architecture and resource usage pattern.

KERMIT can:
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Fig. 1. The MAPE-K reference architecture for autonomic systems proposed by IBM.
This figure was constructed based on the reference architecture description in [11].

1. Learn new workloads and their characteristics without human intervention.
2. Anticipate the appearance of new, unseen, workload classes.
3. Detect changes in workload characteristics and classify workloads and work-

load transitions in real-time.
4. Predict which workload types and transitions are likely to occur in the future,

and when.
5. Minimize parameter search overhead.

Sections below will discuss previous work on autonomic architectures, and
then go into a detailed description of the KERMIT architecture.

5 Previous Work

The field of autonomic computing was introduced by IBM in 2001 with the goal of
creating computer systems capable of self-management. In 2005 IBM published
it’s reference architecture for autonomic systems [11]. This reference architecture,
referred to as MAPE-K, is shown in Figure 1. The acronym MAPE-K stands
for Monitor(M), Analyze(A), Plan(P), Execute(E), and Knowledge(K).

Since then, there has been considerable research focusing on developing auto-
nomic systems, but this paper is the first study focusing specifically on autonomic
workload optimization for big data. This section summarizes the most relevant
studies from the other problem domains. Works focusing on the cloud space and
networking are discussed first, followed by more relevant works focusing on small
data autonomic databases.

Movahedi et al. [14] present a survey of autonomic network architectures
(ANM). The authors classify ANM architectures into hierarchical and flat types.
The authors noted that only one of the reviewed architectures - the Cognitive
Network Architecture (CNA) - made use of learning techniques. The CNA archi-
tecture includes a cognitive plane responsible for data analysis and the decision-
making process. They highlighted that the use of learning mechanisms could
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significantly improve the performance of policy-based adaptation schemes to-
wards finding the optimal solution [14].

Carrera et al. [5] present a study on autonomic placement of batch and trans-
actional workloads. The authors present a technique that enables the existing
middle ware to fairly manage mixed workloads comprised of both batch ana-
lytic jobs and transactional applications. The authors define a simple objective
function to measure the difference between the actual response-time and the
response-time goal for interactive applications. Their architecture defines the
placement control loop and an application placement controller component that
periodically inspects the system to determine if placement changes are needed
in response to the changing workload. The period of the control loop is config-
urable. The placement algorithm uses a mathematical model to estimate appli-
cation performance relative to a given CPU allocation. Their method extrapo-
lates the applications’ performance over the duration of the current control cycle
and subsequent cycles. The authors claim that their technique improves mixed
workload performance while providing service differentiation based on high-level
performance goals.

This approach would have limited applicability in the big data space. This is
because the mathematical model used to estimate future performance is linear
and would not be able to predict the very abrupt workload transitions that big
data jobs present, such as the map-to-reduce transition that results in a major
change in workload characteristics. Their method does not have any provision
for learning. The mathematical model needs to be executed every time, even if
similar workload transitions recur.

Gergin et al. [8] describe a decentralized autonomic architecture for perfor-
mance control in the cloud. Their architecture utilizes feedback loops. It uses
a series of autonomic controllers to monitor virtual machine utilization under
a Web OLTP-type workload and provisions new virtual machines as needed to
achieve SLA objectives. Each controller independently regulates a tier of the
application and implements the proportional, integrative, and derivative control
laws. The mathematical model underlying each controller uses linear component
to extrapolate near-term performance. This approach, as discussed above, would
not work well for big data applications because they tend to produce very abrupt
workload transitions. Their architecture does not include a learning mechanism.

In their recent paper Nouri et al. [15] focus on a cloud Infrastructure-as-
a-Service (IaaS) use case. The authors describe a distributed architecture that
aims to maximize performance of a large number of applications deployed on
many servers. Each server is a virtual machine. Their view is that a centralized
controller would become too complex because it would have to monitor a large
number of applications on many server. It may not be able to respond in time
when presented with a rapid change in load. A centralized controller would also
become a single point of failure in the system.

Their architecture involves deploying an agent on each server. Each agent
is responsible for monitoring the application performance on that server. The
agents share a common knowledge base. Each agent has application and system
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monitoring components which feed information to a learning core. The archi-
tecture monitors the application response-time statistics and system resource
utilization values for the server.

The learning core is based on reinforcement learning. It maps a moving av-
erage of CPU utilization values to a set of states for the server. It then uses a
utility function that converts that state into a scalar reward value that is used
by reinforcement learning model to select from a set of actions for each state.
The states actions and reward values are stored in the knowledge base on each
server.

Nouri et al. [15] architecture is only of limited applicability to big data re-
source management because they consider a scenario whereby multiple applica-
tions running on a single server share a pool of resources. Thus exclusive resource
allocation to the application is not possible. Containerized big data applications,
on the other hand, rely on exclusive allocation of resources.

The architecture described in this work does not have any notion of search-
ing the parameter space to optimize the application performance. Instead the
controller can execute a limited set of actions to scale the number of appli-
cation instances and/or servers up or down. Another aspect that limits this
architectures applicability to KERMIT is the fact that this architecture uses lin-
ear regression to model system performance. Big data workloads present many
abrupt and highly non-linear workload transitions. Nouri et al. architecture is
reactive in nature. It does not predict future workload characteristics, and does
not anticipate new workload classes.

In recent survey Raza et al. [16] works focusing on autonomic performance
tuning in large scale data repositories. This survey explicitly excludes works
for focusing on big data. It focuses on the more traditional RDBMS-based data
warehouses and on DSS and OLTP workloads. The authors organize research into
several categories, including workload classification, performance prediction, and
self-adaptation. Most of the surveyed papers focus on one of these aspects and
only a few combine them into an architecture that implements the full autonomic
cycle. The most relevant ones are discussed in the paragraphs below.

Lin Ma et al. [13] describe QueryBot5000 (QB5000) - a system for query-
based workload forecasting that can be used to implement autonomic qualities
for RDBMS such as MySQL and PostgreSQL. Although QB5000 was able to
forecast future workload characteristics, the authors do not explicitly describe
how an autonomic loop could be implemented.

Elnaffar and Martin [7] proposed a framework for predicting shifts in DBMS
workload from predominantly OLTP-type to DSS-type. Their framework, called
the Psychic-Skeptic Prediction (PSP) framework, included a mechanism for up-
dating the prediction model in those situations where differences between the
predicted and the actual workload characteristics were observed - thus imple-
menting the autonomic feedback loop. The main limitation of this approach is
that the PSP relied heavily on past workload cycles to determine whether the
model needs to be updated.
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In summary, most previous works focus on one of the aspects of autonomic
computing but don’t describe a complete architecture that implements an au-
tonomic feedback loop. Most of the described methods tend to be reactive in
nature. They don’t have the ability to classify workloads or anticipate workload
changes. Most methods depend on past workload history to predict future work-
load characteristics. This makes them less effective in situations where workload
characteristics change frequently, or do not follow a regular pattern. None of the
previous works include the ability to anticipate new, previously unseen, work-
loads.

Furthermore, those works that do implement the ability to anticipate work-
load changes have a very coarse view of workload, such as DSS vs. OLTP, making
it impossible to optimize job by job. Big data jobs can have very different opti-
mal configuration parameters. Linear regression models typically used to predict
workload characteristics perform poorly with abrupt workload transition com-
mon in the big data space. Our architecture aims to address these shortcomings.

6 Autonomic Architecture for Big Data Workload
Optimization

Before we delve into the details of the KERMIT architecture it is important to
establish a clear description of the key concepts and terms used throughout this
work. Once this is done we describe the key autonomic architecture principles,
and finally we discuss, in detail, the design techniques used to implement them
in KERMIT.

6.1 Key Concepts and Terminology

The following key concept definitions underpin the KERMIT autonomic archi-
tecture:

1. Workload. Different researchers define the term workload differently. In this
work we use the definition presented during our earlier investigation [2].
Consistent with our previous definition, this term refers to a multi-variate
time-series of observation windows. Each observation window does not show
statistically meaningful differences with neighboring observation windows.
Thus, workloads are uniquely identifiable periods of steady-state processing.
The concept of workload is represented with the symbol Ω.

2. Workload transition. A workload transition, like a workload, is a multi-
variate time series of observation windows. Unlike a workload, it represents
a period of non-steady-state processing. Each observation window of the
workload transition will show statistically meaningful changes relative to
the neighboring windows.

3. Workload drift. Workload drift refers to changes, whether systematic or ran-
dom, that can occur to a workload over time. This term is defined in [2].
Sections below will further elaborate on this important concept.



8 Mikhail Genkin et al.

Fig. 2. Workloads are periods of steady state processing connected by workload tran-
sitions [2].

The broader set of processing performed by the system can be described as a
sequence of workloads connected together by workload transitions. This is shown
in Figure 2 [2].

This view of workload is more granular than that generally used by other
researchers (for example in [9], [7]). Nevertheless, it allows for a more systematic
and automated treatment of workload analysis and optimization.

6.2 Autonomic Architecture Principles

The MAPE-K architecture, shown in Figure 1 implements a feedback loop
designed to achieve the key properties essential for an autonomic systems, as
defined by IBM. These properties were defined as:

– Self-configuration. An autonomic system must be able to configure, or re-
configure, itself without requiring human intervention.

– Self-healing. In the event of a fault, an autonomic system must be able to
find a way to mitigate the fault without human intervention.

– Self-optimization. An autonomic system must be able to optimize its perfor-
mance within specified goals without human intervention.

– Self-protection. An autonomic system must be able to defend itself against
misuse without human intervention.

Within the framework of the MAPE-K reference architecture (see Figure 1)
the Autonomic Manager uses Sensors to Monitor a Managed Resource. Monitor-
ing generates Knowledge that pertains to the Managed Resource. This knowledge
is Analyzed and used to Plan the system’s response to changes. During the Ex-
ecute phase the Autonomic Manager uses the Effectors to affect the Managed
Resource in accordance with the Plan.

The research presented in this paper focuses on achieving the self-optimization
characteristic. By extension some aspects of the self-configuration, self-healing,
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Fig. 3. Mapping the KERMIT sub-systems and components onto the MAPE-K refer-
ence architecture.

and self-protection characteristics are drawn in as well. This is due to the fact
that in order to change the performance characteristics of the big data stack
changes to the configuration are required.

The self-healing and self-protection properties were not directly the subject
of this investigation. Nevertheless, it can be said that the KERMIT architecture
partially addresses those properties as well. For example, failure of one or more
nodes in the cluster can present itself as the appearance of new workload types
because the loss of the CPU and memory resources will alter the observed fea-
ture vector of the observation windows. The KERMIT architecture, as described
below, will be able to react to this and find a new optimum. This type of re-
sponse can-be characterized as partial self-healing. The self-healing is partial in
this case because KERMIT does not address bring replacement nodes on-line.
Similarly, KERMIT’s ability to respond to new workload types can be viewed as
partial protection form a sophisticated type of DoS/DDos attack targeting back
end systems.

Sections below describe how the KERMIT architecture layers map onto the
MAPE-K reference architecture, and describe key components and algorithms
in detail.

6.3 The KERMIT Architecture

Figure 3 shows the mapping of the key KERMIT sub-systems and components
onto the MAPE-K reference architecture. The KERMIT architecture is broadly
divided into two subsystems: 1 - On-line; 2 - Off-Line.

The On-line sub-system operates in real-time, and includes the Workload
Monitoring sub-system, the Agents sub-system, the Dynamic Configurator sub-
system, and the Workload Classification, Prediction and Optimization sub-system.
The Off-line sub-system operates asynchronously in batch mode, and includes
the Workload Discovery and the Workload Characterization sub-systems. All
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Fig. 4. The high-level KERMIT components shown in relation to the resource manager
and the big data cluster.

KERMIT sub-systems both update, and read from the Workload Knowledge
Base sub-system.

Figure 4 shows the high-level components of the KERMIT architecture, and
how it relates to a typical big data cluster. The On-line sub-system interfaces
with the Resource Manager process (RM Process in Figure 4) using a plug-
in (KPlg). The core of the Workload Monitoring sub-system is the KERMIT
Workload Monitor (KWmon) component. This component is a streaming engine
that receives messages from the KPlg component and from the KERMIT system
monitoring agents (KAgnt) deployed on cluster nodes.

The KERMIT Workload Analyzer (KWanl in Figure 4) is the main com-
ponent in the Off-line sub-system. The KWmon and the KWanl components
implement real-time and batch machine learning pipelines form the core of the
KERMIT architecture. The details of each sub-system architecture are described
in the sections below.

6.4 Workload Classification, Prediction, and Optimization

Figure 5 shows the logical architecture of the KERMIT workload knowledge
base. The KERMIT workload knowledge base is implemented using a shared
distributed file system, such as HDFS. The KERMIT workload knowledge base
contains a Landing Zone (LZ in Figure 5), a Transformation Zone (TZ), and an
Analytics Zone (AZ).

The raw time-stamped data generated by the KERMIT agents and the KER-
MIT plug-in components are stored in the LZ. These data are mostly loosely
structured text files or log files. There is one file for each agent, and one for
the KERMIT plug-in. The KERMIT workload monitor reads these data in real-
time, treating each file as a streaming source, as new time-stamped data are
appended. It transforms the time-stamped data into a structured format and
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Fig. 5. Logical architecture of the KERMIT knowledge base.

Fig. 6. The comparison of the classification accuracy for different machine learning
algorithms [4].

aggregates them into observation windows Ot with the associated feature vector
zt.

The KERMIT workload monitor applies the workload classification pipeline
described in [2] to transform the input stream of observation windows {Ot}nt=1

into a stream of labels {Yt}nt=1, and writes out a sequence of workload context
objects {Ct}nt=1.

The workload context at observation window t, Ct, contains the following
information:

– The workload label for the current observation window t.
– The predicted workload label for time horizon t+1.
– The predicted workload label for time horizon t+5.
– The predicted workload label for time horizon t+10.

The KERMIT plug-in code is called whenever the resource manager responds
to a resource request from an analytic framework. The integration between the
KERMIT plug-in and the resource manager is described in [3]. The KERMIT
code intercepts the resource managers’ response to the analytic frameworks’
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Fig. 7. TransitionClassfier algorithm performance [2].

resource request and engages the low-overhead, conceptually simple, Explorer
search algorithm to find an optimal configuration [3].

The Explorer demonstrated that it was capable of achieving up to 30% bet-
ter performance than rule-of-thumb tuning by a human practitioner, and up to
92.5% tuning efficiency relative to the best possible tuning by a human practi-
tioner. However, many real-world workloads are repetitive in nature. For exam-
ple, the job to tally up the daily financial results is run at the same time every
day. Some jobs are executed many times daily. If we consider that our definition
of the term workload is more granular than a job - it stands to reason that the
same workload type may be encountered many times during the day, or even the
hour.

It only makes sense to enhance the KERMIT plug-in architecture, described
as the KERMIT Architecture in [3], with the ability to recognize workloads that
have already been executed, and for which the optimal configuration has already
been found. This allows KERMIT to avoid repeating the same parameter search
multiple times, and achieve further performance gains under realistic workload
conditions.

The KERMIT plug-in extends the KERMIT Analyzer component presented
in [3] with the capability to read the workload context stream generated by the
KERMIT workload monitor. When called by resource manager it first checks
the workload monitor stream output and retrieves the workload context object.
It then checks the label of the currently executing workload, and retrieves the
workload descriptor object from KERMIT workload knowledge base.

The workload descriptor object contains the following items of information:

– Statistics for each feature in the workload feature vector (described further
below).

– Centroid values for the workload (described further below).

– A true of false flag indicating whether or not an optimal configuration has
been found.

– A a set of configuration values to be used.



Autonomic Architecture for Big Data 13

The main high-level algorithm used by the KERMIT plug-in is described in
Algorithm 1. When the resource manager calls the KERMIT plug-in code in
response to a resource request from one of the analytic frameworks, the An-
alyzer component reads the workload context stream {Ct}nt=1. It reads in the
latest context Ct, and compares the current time with the observation window
associated with the context to make sure that the plug-in and the KERMIT
workload monitor are in-sync. If they are not then an error is logged and a
default configuration is used until the error is resolved.

Once the context has been read in, the plug-in checks the workload type
label for the current observation window Ct.currentLabel. When the KERMIT
workload monitor first starts and the different workload types have not yet been
determined, the type will be UNKNOWN. In this case the KERMIT plug-in will
simply use the default configuration JD as the optimal configuration Joi for this
workload. The plug-in will wait until the off-line sub-system workload discovery
catches up, and will continue to check the current workload type each time it is
called by the resource manager.

Once the KERMIT plug-in encounters a current workload label that is known,
it will check the KERMIT WorkloadDB to see if an optimal configuration for this
label has already been established. If so, it will simply retrieve this configuration
from the WorkloadDB.

If there is no optimal configuration associated with this workload, then the
plug-in will check if workload drift has been detected. If so, then there will be a
configuration in the WorkloadDB associated with this workload label, but this
configuration will not be optimal. In this case the KERMIT plug-in will retrieve
this configuration and pass it to the Explorer algorithm to initiate a local search
described in [3]. Once the local search finds the optimal configuration, the plug-
in will update the KERMIT WorkloadDB with this configuration, and set the
optimal configuration field in the database to the value ”True”.

If workload drift has not been detected then the WorkloadDB will not have
a sub-optimal configuration stored for the workload because the workload has
just been detected by the off-line sub-system. In this case the KERMIT plug-
in will start the Explorer algorithm’s global search described in [3]. Once the
global search finds the optimal configuration the KERMIT plug-in will update
the WorkloadDB with this configuration, and set the optimal configuration field
in the database to the value ”True”.

The algorithms used to identify different workload types and detect workload
drift are discussed in the section below.

7 The KERMIT Off-Line Sub-System Architecture

Figure 8 shows the high-level processing pipeline flow in the off-line sub-system.
The high-level component KERMIT workload analyzer (KWanl in Figure 4)
implements the off-line analytic pipeline which performs the following stages of
processing:

1. Workload discovery and labeling.
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Algorithm 1 Main KERMIT plug-in algorithm.

Require: {Ct}nt=1 6= {} {Workload context stream must be started and available.}
Require: Ot 6= ∅ {Current observation window.}
Ensure: Jo

i {The optimal configuration for this workload}.
if Ct.currentLabel is UNKNOWN then

Jo
i ← JD {Use the default configuration for unknown workloads.}

else
if Ct.currentLabel has optimal config in WorkloadDB then

Jo
i ← get optimal config from WorkloadDB

else
if Ct.currentLabel has workload drift then

Jo
i ← Explorer.localSearch(Ji) {Do a local search starting with the last good

configuration.}
else

Jo
i ← Explorer.globalSearch()

end if
Update WorkloadDB with Jo

i

end if
end if

Fig. 8. The high-level steps in the off-line sub-system processing pipeline.

2. Workload characterization.

3. Workload anticipation.

4. Training set generation.

5. Classifier training.

Sections below begin by discussing processing pipeline and the algorithm used
to detect and identify new workloads. The next section builds on this discussion
to describe the algorithm for detecting workload drift.



Autonomic Architecture for Big Data 15

7.1 Workload Discovery, Characterization, and Drift Detection

As discussed in the sections above, the KERMIT workload monitor stores the
aggregated stream of workload windows {Ot}nt=1 in the transformation zone
of the KERMIT knowledge base (see Figure 5). The high-level algorithm for
workload discovery, characterization and drift detection is given in Algorithm 2.

Algorithm 2 The workload discovery and drift detection algorithm.

Require: {Ot}nt=1 6= ∅ {Landed observation window time-series.}
Ensure: {Y}kj {Set of identified workload labels.}

run ChangeDetector.batch() to identify transition windows
extract transition windows from {Ot}nt=1

run DBSCAN on {Ot}nt=1 to get a set of clusters
for all clusters in the set do

calculate workload characterization statistics
if find match in WorkloadDB is True then
Yj gets matched label from WorkloadDB
if L2 norm between the mean vectors of workload characterizations differ by
more than ε then

update isDrifting to True in WorkloadDB
update workload characterization for matching label in WorkloadDB with
new data

end if
else

generate new label for the new workload
insert new workload label and characterization data into WorkloadDB

end if
end for

The algorithm begins by using the ChangeDetector component in batch mode
to scan the persisted time series of observation window data, and flag workload
transition windows as described in [2]. The logic of the batch operation is exactly
the same as in the real-time use case. The workload transition windows are then
removed from the original set into a separate set, and clustering analysis is
performed on the now filtered set of workload observation windows.

Figure 10 shows the key performance metrics for several different clustering
algorithms. The effectiveness of each algorithm was evaluated using time-series
workload data recorded during the execution of Apache Hadoop and Spark
benchmarks. Clustering results were compared to ground truth interpretation
made by a human specialist using Apache Hadoop and Spark logs.

The key metrics indicated in the figure are Awt and Purity. Purity indicates
how many of the observation windows were classified correctly by the on-line
sub-system. The Awt metric is also an accuracy-type metric. It measures how
accurately the algorithm was able to identify different workload types. For ex-
ample, if the benchmark executed 3 different workload types and the algorithm
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Fig. 9. ChangeDetector algorithm performance [2].

Fig. 10. Workload discovery performance for clustering algorithms.

detected 3 clusters whose centroids call within the observation window range of
each workload type, then the Awt metric for this algorithm would be 100%.

Workload discovery in KERMIT is accomplished by running the DBSCAN al-
gorithm on filtered observation window data. DBSCAN identifies clusters within
the observation window data. Each cluster represents a distinct workload type.

The next step (see Algorithm 2) is to check if the newly identified workloads
have been encountered before by calculating the workload characterization statis-
tics for each cluster, and comparing with workload characterization statistics for
workloads already identified and stored in WorkloadDB. This is accomplished
by using the ChangeDetector off-line to compare statistical data.

Workload characterization involves calculating the relevant statistics for each
subset of observation windows that were grouped by the DBSCAN algorithm
into the corresponding cluster. A full set of statistics, including the mean, the
standard deviation, the max, the min, the 90th percentile, and the 75th percentile
are calculated. This set of statistics is the workload characterization.

If a matching workload characterization is found in WorkloadDB (as identi-
fied by the ChangeDetector), then this is an existing workload. All of the windows
in the cluster get tagged with the matched workload label from WorkloadDB.
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Fig. 11. Entity-relationship model of the WorkloadDB schema.

The next step is to check the workload for drift. This is accomplished by
calculating the L2 norm of the distance between the mean vectors of the new
cluster and the one stored in WorkloadDB. If the difference is larger than the
configurable hyper-parameter ε, then drift has occurred, and the WorkloadDB
is updated with the workload characterization for the new cluster.

If no matching workload is found in the WorkloadDB, then the KERMIT
workload analyzer generates a unique integer label for the cluster. The generated
workload labels do not need to be human-legible. They just need to be unique to
each identified cluster of observation windows. Currently KERMIT implements
a simple integer counter, because this facilitates the generation of libsvm files
for model training. Then new label, along with the workload characterization, is
inserted into WorkloadDB.

Figure 11 shows the WorkloadDB data model. Each workload is uniquely
identified by its unique automatically generated label. Each workload contains
the workload characterization statistics, a true/false field indicating whether the
optimal configuration has been found, and a true/false field indicating whether
workload drift has been detected. Each workload can have one configuration
stored in the WorkloadDB. This configuration may or may not be the optimal
configuration.

When a workload is initially identified, it will not have a configuration asso-
ciated with it. This is because the configuration search is performed in real time
by the on-line sub-system. Once the KERMIT plug-in performs the global search
for the workload, it will update the WorkloadDB with the optimal configuration,
and set the field indicating whether the optimal configuration has been found to
True.

The next time clustering analysis is performed this occurs on a set interval,
and on a new set of {Ot}n+kt=n+1 data collected during the last interval, where
k is a constant hyper-parameter that controls the length or the batch used for
clustering analysis. The entire process described in Algorithm 2 is repeated.
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This approach allows KERMIT to continuously learn new workloads. New
workloads are added to the WorkloadDB as they are detected during the off-
line batch processing. Already known workloads are protected against workload
drift because their characterizations are regularly updated. Workloads are never
deleted from WorkloadDB. Thus KERMIT retains a long-term memory of work-
loads, and the ability of the KERMIT on-line sub-system to recognize workloads
improves over time.

7.2 Automated Classifier Training

The KERMIT on-line analytic pipeline includes several classifiers described in
[4], and [2]. Paragraphs below provide a quick overview of their function and
purpose, discuss their training requirements and describe how the process is
automated.

The KERMIT on-line classification pipeline uses the following classifiers:

– ChangeDetector. This statistical classifier is a binary classifier that simply
uses the Welch’s statistical test to distinguish steady state processing from
workload transitions. This classifier does not require off-line training.

– WorkloadClassifier. This classifier is based on the random forest ensemble
algorithm This is a supervised classifier that does require off-line training.

– TransitionClassifier. This classifier is also based on the random forest en-
semble algorithm. It also is a supervised classifier that does require off-line
training.

– ZSL Workload Classifier. This component, described in [1] re-uses the Work-
loadClassifier class, and introduces the WorkloadSynthesizer component.
This component needs to be trained off-line. It also generates synthetic class
instances, which need to be merged into the training process for the Work-
loadClassifier.

– WorkloadPredictor. This component is based on an LSTM neural network
algorithm.

The training pipeline performs the following high-level steps (some of the
steps performed as part of workload discovery are repeated for completeness):

1. Extract observation window range for each workload in WorkloadDB.
2. Use workload observation window id set to extract a set of analytic windows

from the analytic window stream {At}nt=1 created by the Workload Monitor.
For every observation window there is a matching analytic window. This
becomes the training set for the WorkloadClassifier DpTrΩ .

3. Establish window ranges for workload transitions by scanning the sequence
of analytic windows and marking ranges of windows that connect window
sets that belong to each workload cluster, and correlating with workload
transitions identified during the workload discovery phase.

4. Generate labels for each workload transition type. The same algorithm is
used for label generation as that used for workloads. The labels don’t need
to be human-readable, just unique and consistent.
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5. Transform the analytic window sequence {At}nt=1 to a rate of change se-
quence {A′

t}nt=1.
6. Extract transition windows from the transformed sequence - this forms the

training set for the TransitionClassifier DTr
∆ .

7. Execute the WorkloadSyntesizer component on DpTrΩ to account for possible
anticipated hybrid, multi-user workloads. This involves the following steps:
(a) Generating the Class Descriptor file described in [1]. Each workload entry

in the Workload DB is used as a pure class. Possible hybrid workloads
are constructed by pairing the pure workloads.

(b) Generate labels for the anticipated, hybrid workloads using the same
algorithm as for pure workload classes.

(c) Update the WorkloadDB with synthetic class prototypes - these contain
the same information as the workload characterizations calculated for
the seen classes.

(d) Merge the synthetic workload instances with the observed workload in-
stances to construct the final, merged, WorkloadClassifier training set
DTr
Ω .

8. Generate the training set for the WorkloadPredictor component DTr
f by

extracting segments from the label sequence {Yt}n+kt=n+1.
9. Train the classifiers.

Most of the steps described above, with the exception of steps needed to
train the WorkloadClassifier, can be executed in parallel given sufficient compute
resources.

8 Conclusion

This paper presents the first architecture intended for autonomic optimization of
big data workloads. The KERMIT architecture implements an autonomic feed-
back look that includes on-line and off-line processing stages. It uses machine
learning pervasively to analyze workload characteristics, identify new workload
types, detect changes in real-time, classify workloads, and predict future work-
load types and characteristics. Change detection, workload classification, work-
load prediction, and parameter search are performed on-line, in real time. Clas-
sifier training is performed off-line as a batch machine learning pipe-line.

Experimental investigations focused on the critical proof points of the auto-
nomic feedback loop demonstrate that the KERMIT architecture can:

– Real-time workload classification with up to 90% accuracy [2].
– Detect workload changes in real-time with up to 99% accuracy [2].
– Predict workload type with up to 96% accuracy [2].
– Anticipate new, unseen workload types, and classify them with up to 83%

accuracy [1].

The KERMIT architecture, as discussed above, can anticipate the appear-
ance of new unseen, multi-user, hybrid workloads that can present a mix of
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characteristics observed with the currently identified workloads. This is a capa-
bility that has not been previously described in any of the earlier works focused
on small data and cloud workload segments.

The ability to adjust to workload drift is another key element of the KER-
MIT architecture. The on-line sub-system will do its best to classify workloads
in real-time. If a previously unseen and unanticipated workload is encountered,
the KERMIT on-line sub-system will initially classify it as one of the known
workload types, with the closest characteristics, and use the best available con-
figuration for that workload. This is often better, in terms of reducing the tuning
overhead, then immediately performing a global search for that workload.The
new workload will be discovered by the off-line sub-system the next time it
performs clustering analysis.

This architecture can operate with minimal configuration by a human ad-
ministrator. Although there are still a number hyper-parameters that need to be
set, these, unlike many of the Apache Hadoop and Spark configuration settings,
do not require frequent tuning. For the most part these hyper-parameters can
be left at their default settings. These default settings (for example the µ hyper-
parameter for the DBSCAN algorithm) in many cases apply to a broad range of
conditions and are well-documented in the scientific and technical literature.
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