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Abstract

The Voronoi diagram of n sites on the surface of a cone has a combinatorial structure
rather different from the planar one. We present a sweepcircle algorithm that enables
its computation within optimal time O(n log n), using linear storage.
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1.

INTRODUCTION

The Voronoi diagram of n sites p; on a curved surface in space is a map whose regions
R(p;) are in one-to-one correspondance to the sites; the region R(pj) contains all those
points of the surface that are closer to p; than to any other site Pj-

If the surface is a plane, the Voronoi regions are well known to be convex and simply-
connected. Furthermore, the common boundary between two regions is always a
connected set. However, these properties do not hold for general curved surfaces.

In the next section we determine the structure of Voronoi diagrams on the surface of a
cone. We show that the bisector of two points can be a closed curve if the cone's slope is
large enough. Thus, the Voronoi regions can encircle each other. This makes it hard to
apply a divide-and-conquer algorithm, since for the merge step no method is known for
efficiently finding starting points of the closed loops, the bisector of two sets possibly
consists of (compare Chew, Drysdale [1]).

In section 3 we introduce a sweepcircle algorithm for the computation of Voronoi
diagram. Instead of sweeping a line upward across the plane as suggested by Fortune [2]
we use a circle emanating from the cone's peak for computing a certain transformation of
the Voronoi diagram. We first consider the special case when the cone is flat, i.e., a
plane. Here the sweepcircle technique yields an optimal O(n log n) algorithm, as was
independently observed by Thurston {5].

Schoo! of Computer Science, Carleton University, Ottawa, Canada KiS 5B6.
Research supported by NSERC Grant No. A8173

Institut fir Angewandte Informatik und Formale Beschreibungsverfahren, Univ. Karlsruhe,
Postfach 6980, D-7500 Karlsruhe, W.-Germany.

1




Then, in section 4, we chow that the sweepcircle algorithm can be generalized to work on
a "proper" cone, too. Again, the Voronoi diagram of n points can be computed within
optimal O(n log n) time, using linear storage.

2. VORONOI DIAGRAMS ON THE SURFACE OF A CONE

The distance d(p,q) between two points, p and g, on the surface cf a cone is the minimum
length -as taken in 3-space - of all curves on the cone's surface that connect p with q. -

For a point p on the cone {different from the peak 0) let L(p) denote the ray from 0O
through p and let L'(p) be the intersection of the vertical plane through 0 and p with the
surface of the cone minus L{p), i.e. the ray "opposite" to L(p}. These rays divide the
surface into two sectors, SL(p) and SR(p); see Figure 1.

L'(p)

Figure 1

Clearly, each shortest path from p to a point z in SR(p) runs entirely in SR(p); only for
points in L'(p) there is a symmetric shortest path running in SL(p).

If we are given a curve on a cone and a cut from the peak of the cone to infinity that
doesn't intersect the curve, then slicing the cone along this cut and unfolding it doesn't
change the length of the curve. Thus, a shortest path on the cone must become a straight
line segment in the plane; see Figure 2. We call these shortest paths straight curve
segiments.

Figure 2




Now we have to investigate the bisectors B(p,q)={ze cone's surface; d(p,z)=d(q,z)} of
two points, the constituent parts of the Voronoi diagram.

Lemma 2.1
A bisector between two points on a cone consists of one or two straight curve segments.

Proof: Assume that p and g are as shown in Figure 3. No shortest path from p or g to a
point in A = [SL(p)MSL(Q)] v [SL(p)NSR{g)] U [SR(p)NSR(q)] intesects the shaded

area A' = SR{p)"SL(a). Hence, slicing the cone along a cut in A" and unfolding it doesn't
affect these straight curves.

SR(p) M SL(q)

cut line

L(p)

Figure 3

Thus, the piece of B(p,q) running in A becomes the usual Euclidean bisector after
unfolding the cone. In Figure 4 the ray L'(p) was chosen as the cut line in A
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Figure 4




For dete nining the part of the bisector B(p,q) in the area A' consider cutting and
unfolding the cone with respect to L(g). In Figure 4 this is equivalent to rotating the
sector between L(g) and L'(p)y clockwise such that L'(p)y and L'(p)o coincide. This
rotation maps g into the point g'. Now, for every point in A" the shortest paths to p and ¢’
do not cross the new cut line L(a); thus the unfolded bisector in this region is the
Euclidean bisector betwen p and g'.

Note that one the intersections can be empty. In this case B(p,q) consists of one straight

line segment only, see Figure 5. 0

@) Lip)
Figure 5

The next Lemma shows that the Voronoi diagram on a cone can have a structure different
from Voronoi diagrams in the plane.

Lemma 2.2
A bisector between iwo points on a cone can be a closed curve if and only if the top angle

of the cone is less than 60°.

Sketch of Proof: Given a cone with top angle o, cutting and unfolding the cone creates
a planar slice with angle B as depicted in Figure 6. It is easy to observe that o is less

than 600 if and only if B is less than 1800. If B is smaller than 1809 than a closed
bisector can exist, see Figure 6. On the other hand, Figure 5 indicates that a bisecior
consisting of one segment cannot intersect both boundaries created by the cut line if B is

greater than 180°. For a bisector which consist of two segments the proof is more
involved and given in the full paper [2]. ¢

Each closed bisector circumscribes the peak of the cone and has a unique outermost point
(the point v in figure 6). The existance of closed bisectors implies that Voronoi regions
can encircle one another. Thus, they are not simply connected. The common boundary of
two regions can consist of several disconnected pieces (see Figure 14). In general, the
Voronoi regions R(p;) are not convex but they are star-shaped with respect to pj, i.e.
for each z in R(p;) all points on a shortest path connecting p; and z are also contained in
R(p;); see Klein/Wood [4] for a general theorem on this topic. Hence, the Voronoi
regions are connected. Therefore, the Voronoi diagram V of n points on a cone is a planar
graph with n faces. Besides the vertices of degree d>3 in V (common boundary points of d
regions) we call the outermost points ol closed bisectors which are present in V vertices
of degree 2.
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Theorem 2.3
The Voronoi diagram of n points on the surface of a cone is a planar graph with n faces
and O(n) edges and vertices.

Proof : A vertex of degree 2 is either the origin of a cyclic edge or it has two outgoing
edges leading to vertices of degree 23. Thus, the Theorem follows from Euler's formula.

3. THE SWEEPCIRCLE ALGORITHM FOR POINTS IN THE PLANE

The problem in computing the Voronoi diagram by a swep technique is how to determine
the halting points correctly.
In the situation displayed in Figure 7(a) the next halling point for the sweepline which
is moving upward should be the vertex v. In this situation, however, we don't even know
that vertex v exists because we haven't detected the site p, yet. This difficulty has been
overcome in Fortune [3] by bending the Voronoi diagram in such a way that (property
A):
- its combinatorial structure is preserved

each site becomes the bottommost point of its region

if a verlex isn't a site then all but one of its incident edges extend downward.

These properties enable the correct computation of the halting points. During the
bottom-up line sweep a "list" (usually a balanced tree) containing the regions and
bisectors currently intersected by the sweepline is maintained. Intersections of the
adjacent bisectors are computed as possible halting points. This yields an O(n log n)
algorithm because the swepline stops at most O(n) times and because at most O(n)
objects are intersected at any time.
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The bending transformation introduced by Fortune [3] is the following:

z=(X,y) -> 2'=(x,y+d(z)), where d(z)=min{]z-pj|; 1<i<n} denotes the distance
between z and its closest site. Figure 7(b) shows the transformed Voronoi diagram V*
(all sites are left fixed by *).

For computing the original Voronoi diagram V, the algorithm simply uses the
untransformed bisectors and evaluates the *-values whenever necessary

In order to apply a sweepcircle technique, we have to bend the Voronoi diagram outward
with respect to the peak 0 (of the flat cone). The transformation is:

z=(@,r) -> z*=(@,r+d(z)), where (¢,r) are the polar coordinates of a point z; see
Figure 8.
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This mapping * is not defined for z=0. For the time being we assume that no bisector of
two sites passes through 0, since otherwise the mapped bisector has a gap. We will
discuss this case later on.

Obviously, pi*=p; for all sites p;. Let *j be defined by *j(z)= (¢,r+|z-pjl) where z=

*

(o). Then * = * on R(pj).




Lemma 3.1
Let [pil>Ipjl, then *{B(p;,p;)) passes through pj and is strictly emanating outward in
both directions from p;.

Proof: In Figure 9 we have C+A<D+B because it is easy to ohserve that y cannot be
contained in the ellipse E={z; |z|+|p;-z]=C+A}.0

Figure 9

Again, properties equivalent to those in (A) hold.

Lemma 3.2

i)y V* has the same combinatorial structure as V.

ii) Each site becomes the unique innermost point of its region.

iii) If avertex of V* is not a site then all but one of its incident edges are emanating
inward.

The proof is analogous to the sweepline case (sec [3]). Figure 10 shows a Voronoi
diagram and its bent image under *.

Now, a sweepcircle expanding from the origin can be used to compute V*, since sites are
the first points of their regions to be hit and all vertices are detected due to Lemma 3.2.
The list of objects intersected by the sweepcircle must be cyclic now but can still be
implemented as a balanced tree.

If bisectors contain 0 then the respective sites are closest to 0 (and of equal distance);
hence, they are detected first by the sweep circle and this special case can easily be
solved by closing the gaps in the transformed bisectors.




Theorom 3.3
The swepcircle algorithm computes the Voronoi diagram of n points in the plane within
time O(n log n), using linear storage.

This observation was independently made by Thurston [4]. He also noted the folliowing
advantage over the sweepline algorithm. If the set of vertlices is very large (or even
infinite), then the sweepcircle technique allows to compute the Voronoi diagram locally,
stopping as soon as the circle has become farge enough. ,

This could be advantageous in an application where the computation of Voronoi diagrams
has to be combined with a windowing mechanism, e.g. for large scale geographic systems.

Figure 10

In the next section we show that the sweepline algorithm can be generalized to compute
the Voronoi diagram on the surface of a cone.

4. THE SWEEPCIRCLE ALGORITHM FOR POINTS ON A CONE

Once a radial ray on the cone's surface is fixed we have a system of polar coordinates
with the origin at the cone's peak, and the mapping * can be defined as in the planar case;
see Figure 11.

Observalion:
Let z be a point on the cone such that the shortest path from z 1o its nearest neighbor p;

is not intersected by some cut line |, then z* can be computed by cutling and unfolding
the cone along |, applying the mapping * in the plane, and refolding the cone.

This observation allows to apply our previous results.




L.emma 4.1

Given two points p; and Pj such that Pj is ¢ ser to O than pj, then the image
*i(B(pi,pj)) of B(p;,pj) comntains pj, and the distance of the points on *,'(B(p;,pj)) to
0 is monotonically increasing in both directions from p; (up to the maximum, if
B(pi.pj) is closed).

Proof: Lemma 2.1, Lemma 3.1, and the above observation.’
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Figure 11

The counterpart to Lemma 3.2 can be reduced to the planar case, too. Only property iii)
needs to be modified: A 2-vertex (outermost point of a closed bisector) has no edge
emanating outward.

Theorem 4.2
The Voronoi diagram of n points on the surface of the cone can be computed in time O(n

log n), using linear storage.

Sketch of proof: As long as the angle o at the cone's peak is greater than or equal to
600 the situation is quite the same as in the plane, except that bisectors can consist of
two straight curve segments (Lemma 2.1); this can be handled as part of the description
of bisectlors.

If o is less than 60° we have to generalize the algorithm to handle closed bisectors
(Lemma 2.2). This is accomplished by treating the two branches of "{(B(pjpj))
extending from p; (depicted in Figure 12) as if they were adjacent pieces of different
bisectors. Their intersection, the 2-vertex ", is computed as a halting point, but no
new edge is created when g is encountered.

Figure 13 shows a snapshot of a sweepcircle algorithm stage, as seen from top of the
cona. C is the cyclic list of the active (=intersected) regions (R;) and bisector branches
(Bi,j) in sorted @-order. Q is the event queue of halling points in r-order containing
sites and inlersections of active bisector branches that are neighbors in C. Figure 14
displays the final Voronoi diagram.0
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Figure 12
(Projection on the plane perpendicular to the main axis of the cone)

5. CONCLUDING REMARKS

We have discussed the structure of Voronoi diagrams of sites on a cone (=mountain) and
shown how to compute them in optimal time. This is one step towards our goal of
computing shortest paths and Voronoi diagrams for sets of sites on general curved
surfaces (=natural landscapes).

To our knowledge the only other curved surface for which an algorithm for computing
the Voronoi diagram has been considered is the surface of a sphere [5].
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Figure 13
(Projection on the plane perpendicular to the main axis of the cone)
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Figure 14
(Projection on the plane perpendicular to the main axis of the cone)
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