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Abstract

in this paper we contend that a systolic mesh is an
efficient architecture for implementing dictionaries.
Several implementations are considered and their
complexity analysed, the difference being in the trade-oft
offered between performance (i.e., response time, period)
and link complexity (i.e., linear, quadrilateral, hexagonal,
octagonal).

The proposed VLS dictionary machines consist of two
structures, a snake and a broadcast net , which are both
embedded in and operate simultaneously on the same mesh.
The problems arising from having these two concurrent
structures on the mesh are discussed and solutions
presented. All proposed implementations are
asymptotically optimal. In particular, all operations
(Insert, Delete, Search, Extract Min, and Find Min) can be
performed with O(1) period, and the response time for
Search and Find Min operations is O@ny and O(1),
respectively. Furthermore, the proposed solutions are
capabie of handling duplicate insertions and redundant
deletions. The ditference in performance between the
proposed machines rests solely in the size of the constant,
which depend on the simultaneous embedding of the two
structures in the mesh; in particular the best performance

is achieved by using a novel disjoint embedding.

1. Introduction

A dictionary is a basic data type which allows for
update and retrivial operations. Because of its general and
fundamental capabilities, several researchers have studied
the problem of designing special-purpose VLSI chips
implementing dictionaries or more restricted types (e.g.,

priority queue).
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Almost all proposed implementations are based on the
complete binary tree structure: Ataliah & Kosaraju
[AK8S5], Leiserson [L79], Ottman et al. [ORS82], Somani
and Agarwal [SA85], and more recently Chang et al.
[CCIR86]}. The reason tor the popularity of this structure
rests in the fact that in a complete binary tree of n nodes,
the maximum distance between any two nodes is O(log n);
thus, from a theoretical viewpoint, the time to perform
most of the dictionary operations when using such a
structure is also O(log n).

Unfortunately, the practical layout of a binary tree
leads to the presence of "long" wires (of lenght at least
Q((nog n)t/2) [PRS81]); depending on conditions,
models ranging from O(1) to O(Ienghtz) may be appropiate
for the delay to traverse such a wire [MC80], [CM81a].
Furthermore, if the tree is embedded in a systolic mesh
[BC86, GKS82] or in a programmable grid [S82] of size
Vn x Vn, the maximum delay is at least Q(vn) since the
“long" wires are implemented by actual processors. In
other words, the advantages of an O(log n) delay, which was
the main reason for choosing binary trees, is often lost in
the layout process, and it is definitely fost if the tree
structure is to be embedded in a mesh.

Also for these reasons, research on dictionary
machines has focused on using trees with fewer but more
complex nodes (e.g., Carey and Thompson [CT841, Fisher
[F84]) as well as on employing different structures {e.g..

the cube-class architectures studied by Schwartz and Loui
[SL87]). In this paper, this line of research is followed

and the systolic mesh (or systolic array) is considered.

The use of a mesh as a dictionary machine was first
proposed by Chazelle and Monier {CM81b] whose solution,
however, does not handle duplicate insertions and redundant
deletions.




Unlike trees, theoretical bounds on systolic meshes
always correspond directly to the actual performance of the
VLS! implementation. Because of its simplicity and its
inherent correspondence with VLS chips, the mesh has
been the natural choice, as a VLSI machine, for a variety of
applications : geometric problems (e.g., [MS84]), numeric
computations (e.g., [KL80Q)) etc. .

In this paper, it is shown that systolic meshes are an
efficient architecture for implementing dictionaries (even
with added priority queue operations) which can handle the
problem of duplicate insertions and redundant deletions.
The proposed VLS! dictionary machines consist of two
structures, a snake and a broadcast net, which are both
embedded in the same mesh and operate on it
simultaneously. The problems encountered in designing
such an architecture are studied. Several implementations
and their complexity are analysed, the difference being in
the trade-off between performance (i.e., latency and
period) and link complexity (i.e., linear, quadrilateral,
hexagonal, octagonal). It is shown that all the proposed
implementations have the following performance: all
operations (Insert, Delete, Search, Extract Min, Find Min)
can be performed with O(1) period, and the response time
for Search and Find Min is O(¥n) and O(1), respectively;
since in a mesh the maximum distance is at least Q@n), it
follows that the proposed solutions are asymptotically
optimal.

The paper is organized as follows. In the next section,

basic definitions and terminology are introduced. In section
3, the two basic structures of the proposed design are
described and the problem arising from having them both
operating simultaneously on the same mesh are solved.
Finally, in section 4, several dictionary machines
corrsponding to different layouts of the two structures are

described and their complexity analyzed.

2. Mesh Capabilities and Dictionary Performance

The underlying architecture is the mesh of
processors: a set of n syncronized processing elements
(PEs) arranged on a Vn x Vn grid, with each processor
being connect by bidirectional communication links to its
direct neighbors. In tigure 1, two arrangements are shown
where each PE is connected to its four (quadrilateral) or
eight (octagonal) direct neighbors, respectively.
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Each processor has a constant number of registers
and within one time unit it can simultaneously send an
output to and receive an input from each of its
communication links.

For simpilicity it is assumed that the upper left PE
serves as the 1/O port to accept requests and deliver
answers; this apperant restriction can be easiliy lifted

without offending the results presented here.

Figure 1: quadrilateral (a) and octagonal (b) mesh of
processors

A dictionary is a device which stores a set of records
and provides a set of operations on these records, called
dictionary operations. With each record there is associated
a unique key k from a totally ordered set K. For simplicity,

the record whose associated key is k, will be denoted by
record k . The standard dictionary operations are
(1) Insert(k)
(2) Delete(k)
(3) Search(k)

:insert record k in the dictionary
: delete record k from the dictionary
: retrieve record k if currently stored or
return a negative response otherwise.
In addition to the above operations, the following priority
queue_operations might also be supported:
(4) Find Min : retrieve the current minimum record
(5)Extract Min : delete the current minimum record

Note that only some of these operations require an
answer be produced: Search(k) and FindMin; these
operations will be called query operations.

A VLSI dictionary machine receives a sequence of
instructions (i.e., requests to perform dictionary or
priority queue operations), executes the corresponding
operations in a pipelined fashion, and in the case of query
operations reports the responses via the /O port. The
latency of the machine for a query instruction is the




number of time units elapsed from the time the query
arrived to the time a response is produced at the I/O port.
The delay of an instruction is the mimimum number of
time units, after the instruction has arrived to the
dictionary, necessary before a next instruction can be sent
to the machine; the period of the machine is defined the
maximum of all instruction delays.

The proposed implementations of a dictionary and
priority queue of size n on a mesh of size Vn x Vn have the
asymptotically optimal performance listed in Table 1.

Operation Performance

Insert O(1) delay

Delete O(1) delay

Search O(1) delay, O(¥n) latency
Find Min. O(1) delay, O(1) latency
Extract Min. O(1) delay

Table 1. Performance of Proposed Dictionary Machines

3. General Structure of the Dictionary Machine
The proposed VLSI dictionary machine consists of two
logical structures, a snake and a broadcast net, which are
both embedded in the same physical mesh structure and
operate on it simultaneously. In this section, the snake and
broadcast net are described separately; and then the
problems arising from having both structures operating
simultaneously on the same mesh are discussed and solved.

3.1. The Snake

The snake is basically a linear array imptementation
[L.79], [KL84]). The
records are stored in increasing sorted order without gaps

of a systolic priority queue (e.g.,

starting from the /O port, see figure 2a.

The snake is embedded in the mesh such that it
contains each mesh processor exactly once, and the
leftmost /O processor which contains the minimum
element is coincident with the upper left /O processor of
the mesh (a possible embedding is shown in figure 2b).

Figure 2a: Priority Queue Structure
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Figure 2b: A Snake Embedding in the Mesh

Obviously, if only the snake is operated on the mesh,
the latency for FindMin queries is one time unit.

An insertion instruction Insert(k) is processed in
such a way that a message "Insert(k)" is shifted through
the snake until it encounters the first PE storing a record
k' with k'2k. Record K' is replaced by record k and, in case
k'>k, a message "Insert(k')" continues to travel through
the snake in the same fashion. When a message
"Insert(k')" arrives at the end of the snake (last PE that
contains a record) record k™ is stored in the next
(currently empty) PE. Note, that Insert(k) instructions
are processed in such a way that duplicates are avoided.

Upon a Delete(k) instruction, a message "Insert(k)"
is shifted through the snake until it encounters the PE P’
storing record k (if any). Record k is deleted in P and a
"shift leftwards” message is sent to all subsequent PEs
resulting in all subsequent records being shifted one PE
leftwards (towards the 1/0 port).

To ensure that no subsequent “Insert(.)" or
"Delete(.)" message encounters a gap, a delay of 2 time
units is necessary after each Delete(k) instruction.

The same holds for an ExtractMin instruction which
results in the record previously stored in the /O PE being
deleted and all records in subsequent PE being shifted one
PE leftwards.

3.2. The Broadcast Net
The broadcast net is a systolic structure whose

function will be the handling of Search instructions. its
topology consists of two acyclic directed graphs, G and G,
where
(a) Gy is a spanning graph of the mesh with only one

source ;



(b) G, is asubgraph of the mesh with only one sink and
whose sources coincide with the sinks of Gy.
(c) The 1O processor of the meshiis the source of Gy and

the sink of Go.

A Search(k) instruction is processed by the
broadcast net as follows. The /O port (the sole source in

G4) will "broadcast’ a message <"broadcast’kv,r>

through G, where v is a Boolean value denoting whether
record k has been found, and r is a field containing record k
it found. The sinks of G4 will then start a "reverse
broadcast” process by sending <"reverse broadcast” Kv,r>
messages through Go; this process has the final effect of
collecting at the /O port (the sole sink in Go) either
record k (if it is in the dictionary) or a negative

acknowledgment (v=0). A detailed description of the search
algorithm can be found in [DS87].

An additional constraint on the structure of the
broadcast net is that, if more than one message is received
on the same graph by the same processor at the same time,
they must all contain the same search key K.

An example of a broadcast net is given in figure 3,
where the dark lines are the edges of G4 and the shaded
lines are the edges of Go.

Figure 3: A Broadcast Net

A special class of the broadcast nets is the one of
broadcast trees : in a broadcast tree, G is a directed binary

tree rooted at the I/O port where all the leaves have the

same height, and G, is coincident with G4 except for the

direction of the edges which is reversed. In a broadcast
tree, each query is broadcasted down the tree (broadcast)
and then, starting from the leaves, the partial results move
upwards towards the /O port where the final result is
computed (reverse broadcast).

3.3.Integrating Snake and Broadcast Net

In the proposed dictionary machine, both a snake and
a broadcast net are embedded in the same mesh and operate
on it simultaneously. All incoming search instructions are
handed over to the broadcast net, whereas all other
instructions are executed by the snake. When embedding
and operating both structures on the mesh, several factors
must be taken into consideration; in fact, most embeddings
would not archieve the desired performance and, even
worse, would not correctly perform the desired operations.

In this section, these factors are identified and
conditions are established for a correct implementation.

3.3.1: Concurrent execution of different processes by a

Rrocessor
Since each processor belongs to both the snake and

the broadcast net on which different processes are
executed, a processor might have to execute different
processes in parallel creating the possibility of execution
contflicts. Such conflicts are avoided provided that each
direction of each communication link is used by at most one
process at a time. In fact, in this case, the information sent
to each output line is still a function of the values of the
received inputs, the system time, and the current register
contents. Depending on these values, the output for a line
might be with respect to a process in either the snake or
the broadcast net. Thus, each PE is totally described by the
set of such output functions, which can be easily and
directly implemented in hardware.

3.3.2: Using the same tine for broadcast and snake

commuynication
If the embeddings of the snake and the broadcast net

are not disjoint {see figure 4), contention for the same line
in the same direction by the two processes may occur. This




problem can be easily solved by splitting each step of the
dictionary machine into two distinct phases of one time unit
each, and executing snake operations only in the first phase
and broadcast operations only in the second phase. This
solution does, however, slow down the time performance of
the system by a factor of two. An alternative solution which
avoids this slow down consists in finding an embedding
where the snake and the broadcast net are edge disjcint (as
discussed in section 4); this solution, however, requires a
more complex link structure in the mesh.

snake

PE

\ broadcast net

13 hostl
A4

PE

) &4;
e

PN
13

-
émmunication
link

Figure 4: Boadcast Net and Snake Using the Same Line
in Both Directions

3.3.3: Insertion/deletion instructions not yet exequted
When an Insert(k) [Delete(k)] instruction is handed
to the snake, the insertion (deliton) is not performed until

its final destination processor P is found; this might
require O(n) time. This fact might conflict with the
requirement of O(1) period. In fact, itis possible that a
subsequent Search(k) operation (started on the broadcast
net) reaches P before the Insert(k) [Delete(k)] command
(traveliing on the snake) does; in this case it will be
incorrectly reported that record k is not in the dictionary.

The situation can be even worse. Consider the
following instruction sequence (left to right):

Insert(k), Delete(k), Insert(k), Search(k), Delete(k) .

In this case, the search has to retrieve the record
inserted by the second insert operation atthough this might
have not yet been completed. It also has to ignore the last
Delete(k) that, although started after the search, could be
encountered by the Search broadcast.

All these problems are however solved by simply
associating to each incoming instruction a time stamp (an
integer modulo 2n) and generalizing the broadcast process
for Search(k) as follows. Message are now a 7-tuples

<"Broadcast”, k, v,r ,t,UtU>

<"Reverse Broadcast"k,v,r tUtU>
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where

k: searchkey

v: boolean (0,1) indicating whether record k
has been found

r:  record k (if found)

t: timestamp associated to the Search(k)
instruction

U: most recent update on k (Insert(k) or
Delete(k,r))encountered by the process and
started before Search(k)

tU: time stamp of most recent update on K

Execution of a Search(k) process on the snake is
modified in such a way that the additional fields U and tU
are updated during the search process (i.e., broadcast and
reverse broadcast) to mantain the condition that Uis the
most recent update instruction on k not yet executed by the
snake which was encountered during the search process and
started before Search(k). When the messages arrive back
at the /O port, the final decision is made there on whether
record K is in the dictionary {and, thus, is to be reported)
or not. A detailed description can be found in [DS87).

3.3.4; Hidden information
In the previous section, it was assumed that the key k

(if in the dictionary) as well as every Insert(k) and
Delete(k) instruction (still in transit) will be found by a
subsequent Search(k) process. To ensure that this
condition is met, it is however necessary to consider and
solve yet another problem which might occur. In fact, itis
possible for the search process not1o find the sought record
even when it is stored in the dictionary. This is due to the
fact that deletion of a record causes all the tollowing
records (in the snake) to be shifted one PE towards the 'O
port in order to maintain the priority queue structure.
Consider the following situation depicted in figure 5:

Within the broadcast net, the search message arnves

simultaneously at processors A and B attime i,andis
forwarded by them to processors C and D at time i+1.
Assume also that at time i record k is shifted
backwards within the snake from processor D to
processor A following a Delete(k') instruction, k=K'
Hence, the seach process does not find record k

neither at processor A nor at processor D, possibly




resulting in an incorrect answer.

This particular problem may occur only if the snake
directly connects processors P and P' such that
t(P)-t(P)}| = 1, where t(P) denotes the time steps
necessary for a search message to travel from the /O port
to P (in case of a broadcast tree this is the height of P).
This problem is resolved by

1. having each PE remembering the record k* (it
any) held in the previous time step as well as the update
instruction (if any) performed in the previous time step.
This information shall be referred to as history record.

2. modifying the search process in such a way that
each search message is not only compared to the current
record but also to the history record.

110 i
search k

snake

Figure 5: Hidden Information

Similarly, in case of [t(P)-t(P)| = d>1, the

problem can be solved by keeping at each processor the
history records for the previous d time units.

Let A denote the maximum | t(P)-t1(P") | for ali
pairs of PEs which are directly connected in the snake; the
value of A depends on how the snake and the broadcast net
are simultaneously embedded in the mesh. Note that the
constraint on PE’s having a constant number of registers
implies that the only feasible embeddings (for our
technique) are the ones with Ac O(1). The embeddings
described in the following section guarantee A=1; thus,
only one history record needs to be stored in each PE to
solve the problem.
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4. Embedding the Broadcast Net and the Snake in
a Mesh

4.1. Non-Disjoint Embeddings

The problem which now remains to be solved is how
to simultaneously embed the snake and broadcast neton a
mesh. It is relatively simple to find non-disjoint
embeddings as the ones described in figure 6, where simple

arrows denote edges in G4-Go, double arrows denote edges

in GGy, andthe shaded lines denote the snake.

(0)
Figure 6: Two Non-Disjoint Embeddings

Period :

Each step of the dictionary machine consists of two
phases of one time unit each (see section 3.3.2). The period
of the snake is two steps and the period of the bradcast net
is one step; hence, the period of both dictionary machines
(shown in figure 6) is 4 time units.

Latency :

The latency for search instructions is 8vn time
units (4Vn steps) for embedding (a) and 4Vn time units
(2Vn steps) for embedding (b). The latency for Find Min
operations is 2 time units for both embeddings.

Number of history records:

it is easy to see that for both embeddings A-1: hence,
only one history record is required for each PE.
Link complexity:

Embedding (b) can be archieved on quadrilateral
meshes. Embedding (a) requires only a c-linear mesh;, i.e.,
a mesh where each PE, except in the top and bottom rows,
is connected to just two neighbors.




4.2. Disjoint Embeddings

Since non-disjoint embeddings slow down the time
performance of the dictionary machine by a factor of two
(see section 3.3.2) it is highly desirable to find disjoint
embeddings of the broadcast net and snake. Disjoint
embeddings are not as simple to derive and do not exhibit a
regular pattern easily scaled to meshes of arbitrary size.

In this section we present a technique for computing
a disjoint embedding in vn xVn meshes when vn is odd; a
full description of the algorithm can be found in [DS87].
The br r

The initial part of the broadcast tree is a linear chain
from the YO port to the center of the mesh; the center is
then connected to the four quadrants. The structure of the
broadcast subtree in each quadrant is different (so to
tacilitate the disjoint embedding of the snake). An example
of the embedding cbtained by the algorithm for a 9x9 mesh
is shown in figure 7(a); the regularity of the structure can
be observed by comparing it with the embedding obtained
for a 11x11 mesh shown in figure 8 .

oo
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Figure 7: Disjoint Embeddings on a Mesh of Size 9x9,
(a) broadcast net, (b) broadcast net and snake
The snake:
The snake (in reverse order) starts from the center
of the mesh and moves along a spiral until it has distance

one from all the borders; it then winds through the
remaining four quadrants.

1o}

Figure 8: Disjoint Embedding of Broadcast Net and
Snake in a Mesh of Size 11x11




In this embedding, the structure is ditterent
depending on whether [Vn / 21 is even or odd. If[Vn/ 2]
is odd, the structure is shown in figure 7b (just enlarged
for vn > 9); otherwise, the structure has the form shown
in figure 8 (again, just enlarged tor vh > 11).

The relayers:
The PEs on the diagonal from the /O port to the

center of the mesh are distinguished in the sense that they
only act as relayers in the search process and do not store
records.

The need for relayers derives from the fact that at
least one such processor R is directly connected in the
snake to a processor P with [H{P)-t{R)|=Q2(Vn); hence, R
cannot be used to store records (see section 3.3.4). In
order to maintain the correct operation of the snake and
preserve period 2 for the dictionary, the data storage and
processing activities which would be carried out if each
relayer R were a normal processor will be performed
cooperatively by its predecessor P and its successor S in
the snake. In particular, P will also store the record which
would have been stored in R: and both P and S will store
{for one time unit only) a copy of each message sent
through the snake to R. This will ensure that Delete(k),
Insert(k) messages and the current record (which would
have been stored at a relayer) are not missed by the search
process, and that the period for the snake ig stilt 2.

Taking the relayers out of consideration, it is not
difficult to verity that in our disjoint embedding A=1;
hence, every PE has to store one history record only (see
section 3.3.4).

Summarizing, we note that the disjoint embedding
introduced above induces a VLS| dictionary machine with a
period of 2 time units and a latency of 2 vn and 1 time
units for Search and Find Min operations, respectively.
However, to obtain these improved performance results, an
octagonal mesh is needed in contrast to a c-linear and
Guadrilateral mesh employed for non-disjoint embeddings.

The following table 2 summarizes all performance
results stated in this paper.
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layout non-disjoint disjoint
performance
fayout (a) layout {b)
{time ynits)
period 4 4 2
[ find min 2 2 1
latency . )
1 search 8in 4\n 2
link structure clinear Quadrilateral ociagonal

Table 2: Performance Resuits
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