A NOTE ON
DETERMINING THE 3-DIMENSIONAL CONVEX HULL
OF A SET OF POINTS ON A MESH OF PROCESSORS+

(Preliminary Version)
by

Frank Dehne, Jérg-R. Sack,
School of Computer Science, Carleton University
Ottawa, Canada K1S 586

and
lvan Stojmenovié
Institute of Mathematics, University of Novi Sad
21000 Novi Sad, Yugoslavia

Abstract

This paper discusses the construction of the 3-dimensional convex hull for a set of n points stored on a
Vn x Vn mesh of processors. Lu has shown that this problem can be solved in Vn log n time if all points
are located on a sphere. Here, we solve, in the same time-complexity, the 3-dimensional convex hull
problem for arbitrary point sets. Furthermore, we observe a time/space trade off: if each processor is
allocated O(log n) space then Vn time is sufficient to determine the 3-dimensional convex hull.

* Research supported by Natural Science and Engineering Research Council of Canada. This work was done in

part while the third author was visiting Carlston University in November 1087.

F. Dehne, J.-R. Sack, and I. Stojmenovic, "A note on determining the 3-dimensional
convex hull of a set of points on a mesh of processors," in Proc. Scandinavian Workshop
on Algorithm Theory, Halmstad (Sweden), 1988, Springer Verlag, Lecture Notes in
Computer Science, Vol. 318, pp. 154-162.

155
I. INTRODUCTION

The study of computational geometry algorithms on parallel architectures has recently received
considerable attention as demonstrated e.g. by [ACGDY8S5], [JL87], [MSB6]. Yap has shown that
"almost all* computational geometry problems are in NC, Ii.e. can be solved on a PRAM in poly-log time
[Y87]. By a designing algorithms for a particular geometric problem frequently a more efficient
solution can be obtained than by the general method due to Yap. A survey of the current state of such
activities is given in [MS88] and [DS88].

One of the most extensively studied problems in computational geometry (both sequential as well as
parallel) is the determination of the convex hull for sets of points in two or three dimensions. For
sequential algorithms and for a discussion of many applications the interested reader is referred to
[PS85]. Parallel algorithms for solving these problems are surveyed in [DS88).

This paper addresses the problem of determining the convex hull of a three dimensional point set using
the mesh connected computer architecture (MCC). The problem is to determine the faces of the
smallest convex polytope enclosing the given 3-dimensional point set.

A particular instance of the problem arises in the computation of the 2-dimensional Voronoi diagram
when the well known dual transformation due to [B79] is applied. To compute the 2-dimensional
Voronoi diagram the input point set is mapped onto a sphere, the 3-d convex hull of the mapped points
is computed, and the convex hull then determines the 2-d Voronoi diagram.

In 1986, Lu has given an O(‘fﬁ log n) time mesh-algorithm for determining the Voronoi diagram of a
planar set of n points using this technique. The procedure to compute the 3-d convex hull has been
designed for the particular instance of the point set lying on a sphere. For arbitrary sets of points it is’
easy to find examples for which the algorithm will fail. Furthermore, this technique does not seem to
generalize to arbitrary 3-dimensional point sets.

In this note we will present an O(\f?\ log n) time algorithm for a ¥n x ¥n mesh of processors to
determine the 3-dimensional convex hull of an arbitrary point set in %3. The general structure of the
algorithm, also employed by Lu, follows the well known divide and conquer paradigm for 3-d convex
hull determination [PH77].

156

Algorithm 3-Dimensional Convex Hull

lnput: A set S={pq, ...,ppn} of n points in %3 where each point is stored in one of the Vn x Yn
processors.

Outpul: The (triangulated) faces of the convex hull stored in the processors

(1) Split the point set S by a plane parallel to the y-z plane Into two (roughly) equal-sized
halves called S1 and Sp; move Sq and Sy into one half of the MCC, each. :

(2) Recursively compute the convex hulls H{ and Ha of 8¢ and S, respectively, in parallel.

(3) Merge the convex hulls obtained from Step (2).

Step (1) can be performed in time O(\/T\) by applying an O(‘fﬁ) time sorting algorithm [TK77]. The
recursion (Step(2)) induces an overhead of O(\/?‘) [UL84], we thus focus on the crucial merging step:
Given two 3-dimensional convex hulls each stored in one half of the MCC, determine the convex hull
faces of their union.

Excluding degeneracies, each face of the convex hull of S that Is not a face of Hy or Hp Is determined by
an edge-vertex pair, where the edge and the vertex belong to different hulls. These edges and vertices
are referred 10 as circuit edges and verlices, respectively [Lu87].

To determine whether a given edge is part of the final hull, Lu tests whether at most one of the planes
incident to the edge is interior to the final hull. Unfortunately, for arbitrary point sets this test may
fail, since an edge may belong to the final hull although both of its incident faces are interior. (An
example of this situation is easily constructed and is left to the reader.)

The approach taken in this paper is to examine all edges of one hull (in parallel) and construct for each
edge its supporting plane with respect to the other hull. If, for some edge o in Hy, no such plane exists
then the line containing e intersects Hp and, therefore, e Is not on the final hull. Otherwise, it is easy
to determine from the two faces incident with e in Hy and the supporting planes, whether e Is an edge of
the final hull,

In the following section we will describe an O(\/?\ log n) time algorithm for computing on a MCC of size
n for an n-vertex polyhedron P and a set of n edges in %3 for each edge e its supporting plane, l.e. the
plane which contains e and is a tangent plane to P, if exists. This method is based on the hierarchical
decomposition techniques developed in [DK87).

Utilizing this method we will then introduce, in Section 3, an 0(\/3 log n) time implementation of step
(3) which yields an O(\/; log n) time complexity for the entire algorithm.

In Section 4 we will show that if each processor is allocated O(log n) space our method can be modified
to run in time O(ﬁ).

157

2. MULTIPLE TANGENT PLANE DETERMINATION

Consider an n-vertex convex polytope P and a set E={e4,....ey} of m=0(n) edges in ®3 (which are
located exterior to P). The multiple tangent plane determination problem consists of finding for each
edge e; the tangent planes 4, tp (if it exists) which contain e; and are tangent planes to P.

This problem has been solved in [DK87] for the CREW-PRAM model in time O(log n log*n). Since the
vertices and edges of a convex polytope form a ptanar graph, Dadoun and Kirkpatrick [DK87} are able
to use a hierarchical representation of P which is equivalent to the well known hierarchical
representation of a planar graph used for planar point location [K83].

The hierarchical representation of P is a sequence Py, ..., Pk of convex polytopes with vertex sets Vq,
..» Vi , respectively, such that

. Py =P

* |Vkl is bounded by a constant

. Visi e Vi

. the vertices of V; which are not in Vi, and are independent (i.e., non-adjacent) in Pj

. [Vis1l S a |Vil, 0<a<l1, therefore ksO(log n) with |Py| denoting the size, i.e. number of

vertices, edges or faces of P;

In [DK87] the hierarchical representation is computed iteratively starting with Py=P. Note that in
the general case (no more than three points lie on the same plane) P consists of triangular faces only;
therefore, constructing an initial triangulation, as in the general case considered in [DK87], is not
necessary. In case of non-triangular faces, these can be triangulated in time O(*/?\) as follows: all
edges of the polygon can be ranked (with respect to their circular order) using the list ranking
technique in [AH86] and then a triangulation can be obtained by repeatedly connecting alternate
vertices.

The main problem in computing P;, 1 from Pj is to identify in P; an independent set | of low-degree
vertices such that |I| > |Vjl/c for some fixed constant ¢. In [DK87] this problem Is referred to as the
fractional independent set problem and its time complexity is denoted by FISP(|Vjl). There, it is shown
that on the CREW-PRAM FISP(]Vil) s O(1) + ¢ L-FISP(|Vj])

where L-FISP{|V;]) denotes the time complexity on a CREW-PRAM to solve the fractional independent
set problem for a linear list with with |Vj| vertices.

Since every O(1) time CREW-PRAM operation on Vj can be simulated on an MCC in time oWivin, it
follows
FISPycc(IVil) < OWIVil) + ¢ LFISPucc(IVil)

158

where FISPycc(lVil) and L-FISPycc(lVil) denote the time complexity to solve the fractional
independent set problem and fractional independent set problem for linear lists, respectively, on an
MCC. Note that we assume that the data for P; are compressed into a subsquare of the MCC.

Furthermore, it is easy to see that L-FISPMCC(|V;[)=O(\/T_/—iB : .
Using the algorithm in [AHB6) to compute on an MCC the depth of all nodes of an n-vertex tree
in time O(‘G) all vertices of a linear list with |V|| vertices can be ranked. A fractional
independent set can, thus, be determined in time 0(\/|v—,|).

Hence, FISPpycc(Vi) < O(\/W and, therefore, we get for the time Tyy(n/2) for computing on an
MCC the hierarchical representation of P the recurrence
TH(n) < TH(ae n) + O(Wn), O<a<t,
thus, T(n) = O(n).
Note that since |Vj, 1] < @ [Vj|, 0<ti<1, the space necessary to store all polytopes Pj is O(n).

In order to compute on an MCC for all edges e; (1<i<m) the tangent planes with respect to P, first, the
langent planes for all e with respect to Py are determined by broadcasting Py to all ;. Together with
these tangent planes each e;j also receives information about the constant number of edges and vertices
of Py_q it has to test in order to find its tangent planes with respect to Pk-1. Hence, the tangent planes
for all e; with respect to Pic_y can be computed by a constant number of random access read operations
(see e.g. [MS84]) in time O(\/F). This process is iterated O(log n) times until for all e; the tangent
planes with respect to P have been computed.

Summarizing, we have shown that given an n-vertex convex polytope P and a set E={eq,....ep} of
m=0(n) edges in R3 together stored in an MCC of size n

a) the hierarchical representation of P can be computed in time Ty(n)= O(\fﬁ), and

b) the multiple tangent plane determination problem can be solved in time TMT(n)=0(‘f; log n).

3. MERGING 3-DIMENSIONAL CONVEX HULLS ON AN MCC

We will now show how to merge two convex hulls Hy and Ha for sets S{ and S respectively, In time
O(\fﬁ log n), on an MCC of size n. First, we determine those edges in Hy or Hp which are also edges of
the resulting hull H:

(3.1) Solve the multiple tangent plane determination problem for all edges of Hy with respect to
polyhedron Hy, and for all edges of Hp with respect to polyhedron Hy.

(3.2) For each edge e of Hy [Hp] consider its tangent planes ty, tp (if exists) as well as its two
adjacent faces fy and f5 in Hy [Hp, respectively].

159

Ifty and to do not exist then, obviously, e is not an edge of H. Otherwise, e is an edge of H if and
only if at least one of the two tangent planes t1and t5 is also a tangent plane of H. The plane t4
[to] is a tangent plane of H If ty [t4], f1, and fo are contained in the same halfspace created by
t4 [tp, respectively]; see Figure 1.

; ' g

interidr
f 0'H1 f

o

Figure 1: Deciding whether e is an edge of H ; 14 is a tangent plane of H while to Is not.

(Seen after projection onto the plane perpendicular to e)

The following steps determine all edges and faces of H.

(3.3) All faces of Hy and Ha for which all three edges are edges of H, are faces of H.

(3.4) The additional edges and faces of H which are not contained in Hy and Hp can be easily obtained
from Step (3.2) as follows: Each additional face (triangle) corresponds to a tangent plane of an
edge e of Hy [Ha], which is also a tangent plane of H, i.e. it is defined by e and the point of Hg
[H4] contained in the tangent plane.

From Section 2 we know that Step (3.1) can be performed on an MCC in time O(Vn log n).
Furthermore it is easy to see that Steps (3.2}, (3.3), and (3.4), together, can be performed in time
O((\fﬁ)). Hence, given the convex hulls Hy and Hp of S¢ and S5, respectively, the convex hull H of S -
can be computed on an MCC of size n in time O(ﬁ log n). Therefore, this implementation of Step (3) of

the algorithm presented in Section 1 results in the following main theorem:

Theorem: The 3-dimensional convex hull of an n point set in ®3 can be determined in O(ﬁ log n)

time on an MCC of size n.

4. MERGING 3-DIMENSIONAL CONVEX HULLS ON AN MCC OF SIZE N
WITH O(LOG N) SPACE ALLOCATED AT EACH PROCESSOR

Usually, the definition of an MCC of size n implies that each of the processors has only a constant
amount of memory available. As shown above, the 3-dimensional convex hull can then be computed in
time O(‘/T\ log n). In this section we will show that the time can be reduced to O(‘IFI) if each processor
has O{log n) memory available.

160

The only step in the above algorithm which induces time O(‘/E log n) is Step (3.1), l.e. the solution of
the multiple tangent plane determination problem for a set of m edges with respect to an n-vertex

convex polytope P. Provided that this problem could be solved in time O(\/F) the entire algorithm
would have a running time of O(ﬁ).

The hierarchical representation Py, ..., Pk of P can be computed in time O(¥n) as shown in Section 2.
The O(‘/r—1 log n) time complexity for the multiple tangent plane determination problem resuits from
iterating the search processes for all edges exactly k=O(log n) times, once for each Pj. To reduce this

time, we exploit the fact that the sizes of P; and Py, ¢ are related as [P, 1| < a [Pyl for some «,
O<a<t.

Assume for a moment that we only want to store one of the polytopes, say Pj on the MCC. In this case
only n afi-1) processors suffice. Therefore, we can store multiple copies of Pjon the mesh by
partitioning the MCC .into (roughly) o(1-) subsquares of size n ali-1); each such subsquare stores

one copy of P;. The storage structure for the entire hierarchical representation of P is constructed by
overlaying the storage structures for all Pj, 1<i<k. An example for a=7 and k=3 is given in Figure 2.

Notice that the construction time for creating the hierarchica! subdivision remains O(ﬁ). This is
seen by observing that for all i, each subsquare containing P; computes in parallel P;;q independent
on the other processor elements; these processors are idle in the previous algorithm described above.
Subsequently Pj, 4 is duplicated the appropriate number of times. Every processor is part of k storage

structures and needs O(1) space for each of Py,...,Py. Since k=O(log n), the storage requirement per
processor is O(log n).

Y T -V
3| P3| P3| P
P2 p2
P Pa [Pa| Ps|Ps
1
Pa{ P3| P3| Ps
P2 p2
Pa| P3| Pa| P3

Figure 2: Storage structure for the hierarchical representation of P
(Overlay all partitionings)

Every processor is part of k storage structures and needs O(1) space for each of Py,...,Py. Since
k=0O(log n), the storage requirement is O(log n) per processor.

In order to compute on an MCC for all edges the tangent planes with respect to P, the tangent planes for
all e; with respect to Py,Pk.1....,P},Py are determined. However, in contrast to the solution In

161

Section 2, the determination of all tangent planes in Py (after those in Py,...,Pj.; have been
determined) can now be performed in time ON n a“‘”). This fact Is easily verified by observing

that all broadcast and random access read operations can now be executed in parallel on all n o{1-1)
subsquares of size n afi-1) in time O(\/n ali-1). Hence, the time to compute for all edges the
tangent planes with respect to P is:
Z o(Vnal-1)) = onn.
1<i<k (\/) (V)

Theorem: Using O(log n) extra storage allocated to each processor element, the 3-dimensional convex
hull of an n point set in %3 can be determined in O(‘f;) time on an MCC of size n.

CONCLUSIONS

We have shown that the 3-dimensional convex hull of n points stored on a MCC of size ¥n x ¥n can be
" determined in O(‘/E log n) time. It is also demonstrated that by allocating O(log n) storage to each
processing element an O(\/?n) algorithm was designed. It Is open whether an O(\/?\) MCC algorithm for
this problem exists, with O(1) extra storage.

REFERENCES

[ACGDY85] A. Aggarwal, B. Chazelle, L. Guibas, C. O. Dunlaing, and C. Yap, "Parallel computational
geometry”, Proc. IEEE Symp. on Found. of Computer Science, Portland, Oregon, Oct. 1985

[AHBE] M. Atallah, S. Hambrusch, “Solving tree problems on a mesh-connected processor array”,
Information and Control, Vol. 69, Nos. 1-3, 1986.

[B79] K. Q. Brown, "Voronoi diagrams from convex hulls”, Information Processing Letters, Vol.9,
1979, pp. 223-228.

[DK87] N. Dadoun, D. G. Kirkpatrick, "Parallel construction of subdivision hierarchies", Proc. of
the 3rd ACM Conference on Computational Geometry, 1987, pp. 205-214

[DS88] F. Dehne, J.-R. Sack, "A survey of parallel computational geometry algorithms”, Tech.
Rept. School of Computer Science, Carleton University, Ottawa, Canada, 1988, to be
presented at Parcella '88, Berlin, GDR, October 1988

[K83] D. G. Kirkpatrick, "Optimal search In planar subdivisions”, SIAM Journal of Computing
12,1, 1983, pp. 28-35.

[JLB7] C. S. Jeong, D. T. Lee, "Parallel geometric algorithms on mesh-connected computers"”,
FJCC, 1987.

[Lu87] M. Lu, "Constructing the Voronoi diagram on a mesh-connected computer”, Proc. of the
1986 IEEE Conference on Parallel Processing, St. Charles, M., 1986, pp. 806-811.

(MS84] R. Miller, Q. F. Stout, "Computational geometry on a mesh-connected computer”, Proc. Int.
Conf. on Parallel Processing, 1984.

