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Abstract
We survey computational geometry algorithms developed for various models of parallel computation
including the PRAM, hypercube, mesh-of-processors, linear processor array, mesh of trees, and
pyramid.

1. Introduction
In this paper we survey a number of resulis in a8 recent and fast growing field of research: the design
of parallel algorithms for computational geomelry problems.

Dwring recent years, computational geometry has emarged as a field of itls own and generated a large

number of rasults dealing with the compuiational complexity of geomelric problems. s recent offspring,

parallel computational geometry, 15 concerned with the computational complexity of geometrc problems
under parallel models of computation.

There are mainly two reasons why parallel algorithms for geometric problems have become of
special interest:

- A steadily Increasing number of parallel machines has become commernsially available.

. Geomelric akgorithms are mainly used for on-line applications where short respense times are a
necessity. However, these geomelric applications often require large amounis of data to be processed
which makes it hard to obtain reascnable response times on standard sequential computars, even if
oplimal algorithms can be applied.

In contrast to sequential compulational geometry, there exists a variety of maodsels which are
pansidered for designing parallel geometry algorithms. The following are some of the most commonly used
architectures which will be used throughout this paper:

{a) The parallel random access maching, PRAM (of size n): a sst of n processors which are all connecled
to a global shared memaory {Figure 1a). In the CREW PRAM model, processors are allowed to read
concurrantly fram ene memory location but may not write concurrently into it; in the CRCW FRAM
model, both operations can be executed concurrantly.

(b} The hypercube [of size n = 2d): a set of n processors Pg....,Pn.1 with 1) memory space, each,
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where processors Pj and Py are connected by a communication link if the binary representations of |
and | differ in exactly one bit (Figure 1b).

{c) The mesh-of-processors {of size n = m®): 8 set of n processors, with O{1) memory space, each,
arranged in a square grid whare gach processor s connecled 1o its direct neighbors (Figure 1¢).

{d} The linear processor array (of size n): a set of n precessors, with Of1) memory space, aach,
arranged in linear order where each processer i connected to s (al most twa) direct neighbors
iFigure 1d}.

(&) The mesh of trees (of size n): a mesh-of-processors of size n and in additien, for every row and
column, a tree of processor whose leaves are the processors of that row or column, rE'-Ei:IEC'ti'I.I'EhF;.

(f)} the pyramid (of size n): a sequence of k=logyn meshes-of-processors My..... My of size n, %. 16 =

1 where every processor In Mj,1 I8 connected to a quadruple of processors in My (Figure 1f).
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Figure 1: {a} PRAM, (b) Hypercube, (¢} Mesh-of-Processors
{d} Linear Processor Array, (e} Mesh of Trees, (f} Pyramid

Since the parallel complexity of a geometric problem is bes sledied using the PRAM model, a large
number of geometric algorithms has been designed for this model. In fact, Yap [Y&7] has shown by that
"maest” compulational geometry problems are in MG this result i3 derved by a reduction io the cell
decomposition problem which is known to be In NC [KY85]. Although this theoretical result is very
important, in practice it is sill necessary to design parallel PRAM algorithms for the individual problem



because, in general, the reduction technigue does nol yield eptimal solutions. A number of these resulis
will be presented in the lorhcoming seclions.

The major disadvantage of PRAM algorithms is, however, that even a CREW PRAM can not actually be
built because it requires each individual memory cell and any combination of them to be concurrently
accessible by an unbounded number of processors in constan! time. In practice, a mulli-processor muest
either be a set of processors connected by a bus system (which limits the number of processors which may
be connected to the bus without degenerating performance), or a bounded degree nelwork of processors
connected by point to point communication links, or a combination of bath.

This motivated the studies of parallel algorithms for other parallel models: the hypercube (this is
not & bounded degree network but it can be efficiently simulated on one [PYV79]), mesh-of-processors,
lingar processor array, mesh of frees, and the pyramid. These model resemble architectures which have
aclually been built, at least a8 a protolype. As I lurng oul, algerdthm design on these models is more
complicated than on the PRAM because a variely of data routing problems have o be solved which do not
occur in the PRAM. Because of its global shared memaory, the PRAM allows e.g. instant communication
betwaen any pair of processors,

Since the major reason for studying parallel architeciures s a decreass of the execulion lime, the
obvious question iz, how muoch of a speed-up can we sxpect.
Clearly, a lower bound of Tin) for the sequential {me complaxity of a particular problem implies that, on
any parallel machine with p processors, an O = time algorithm is optimal. In general, poly-
logarithmic time algorithms are considered eMficient for paraflel machines with a linear number of
processors [YB7). For processor networks, howewer, the lower bound for the majority of problems s the
diameater D of the network. For comparing two data items stored in two processors, D time steps may be
necessary o route the data from one processor o the other,
Hence, for most problams O(Yn} and Q{n) time sclulions are optimal for the mesh-of-processors and
linsar processor array, respectively, and Ofleg n} time algorithms are optimal for the hypercube, mash of
rees, and pyramid, In this sense, the latter ones appear to be superior o the former ones. However, the
mesh-of-processors and linear processar array have the major advantages that they are easy 1o scala and
that the kength of all communication links is the same and conglani. For the hypercube, mesh of frees, and
pyramid this is not the case; in fact, whatever geometric layout is used for building thesa neteorks, tha
maximum wire length increases with the number of processors. In the above computational models,
howevar, communication time is considered to be constant betwesen any two adjacant processors. In ihis
sencae, these models are nol realistic and one can alss consider other complexily models which take wire
length Into accowunt [CREB1], [MCED]). However, the majority of authars considers communication bebeesn
adjacent processors a constant fime operation which will also be done for the remainder of this paper.

In the following we will survey parallel algorithms for geometric problems which have been
proposed for the parallel models lisied above, The paper i3 sorted by geometric problems which are



grouped similar to [LP84]. For each group of geomefric problems, a survey of parallel algorithms is
given. Section 2 surveys convex hull and related problems, Section 3 inlersection problems, Section 4
proximity and geometric searching problems, Section 5 visiilty problems, and Section & decomposition
problems. It is, however, in the nafure of such a survey that it is not complete. An omission of & paper is
rat meant 1o imply 8 judgement on the part of the authors,

2. Convex Hull

Amang all problems studied in computational geometry, the determination of the comvex hull has
probably received the maost attention in the sequential or parallel model of computation. Thiz is due to the
varigty of applications this problem arises in {e.g., In robotics o0 approximale complex abjects), as well
as due to its cccurrence as intermediate step when solving other computational geometry problems (e.g., in
the calculation of the diameter of a set of painis),

Convax hull problems have been studied for sals of points, polygons, and polyhedra, in the plane, 3-
space and d-dimensional spaca. Varianis of the problam are:
Identity Convex Hull
determine the vertices of the convex hull
Daterming Convex Hull Polygon
compate the comvex hull polygon for a et of points, or for & polygon, in the plans {the owtput is an
orderad list of the comvaex hull wvertices),
Determing Convexs Hull Polyhedron
compute the comvax polyhedron for a set of points, or for a polyhedron, in space.

A relajed problem is that of finding the maxima of a set in 2 {or 3} dimensions where a point pis a
maximum if there & no other polnt in the set which has larger =, v (and 2) coordingte tham p. For a
dighized object the set of maxima (sorted by x-coordinate) is called the 151 contour. The kN cantour of an
object S is defined recursively as:

15! contour(S) = sorted maxima of 5

k+1 comour(S) := 18! contour{ S - (13! contour(S) w ... v KN contour(S)),

where the cperator ™" between sels denoles the sel difference.

Digitized objects are frequently described by rectilinear {orthogonal) polygons, For these objects,
the notion of reclilinear convexity has been sludied, A polygon is reglilinearly convex if any horizontal or
varical ling intarsects the polygon Im al most one connected region. The rectilinear hull of a rectilinear
pelyaen P is the smallest rectilinearly convex palygon containing P. We define the k!N rectilinear hull
analogously 10 contours, The following problems have been studied:



Daterming Racliinear Hull

Daterming the reclillmear hull for a given object
Determing AN gt Rectilinear Hulls

Determine all k!N rectilinear hulls for a given object

on the 1-dimenslonal array of processors, Chazelle [C84] gives simple O(n) algorithms for both,
Identify Conwex Hull and Determine Convex Hull Polygon problem for sets of poinis In the plane. Each
processor containing a point pcan determing whether it is a convex hull vertex or not by computing ihe
maximal wedge centered at p with respect to all other points. If this wedge is convex and containg all other
points of the set then p is a comvex bull vertex; otherwize, p Is interior 1o the convex hull. This operafion
iz done by propagaling the point p through the array, thereby visiting each other alement of the point st
ocnce and updating the wedge, if necessary, at each precessor visited. All points can perform this task in
parallel by a "fold-over* operation defined by Chazelle which can be seen as a row-rotation. This yields the
Oin} solution 1o the Identify Conves Hull problem. Having solved the ldentify Convex Hull problem, the
Daetarmine Convex Hull Polygon problem can be solved by sorting each of the convex hull points by polar
angle around amy interior point. Since soring on a 1-dimensienal array is performed In Qin) time, an
0{n} solution to the Delermine Convex Hull Polygon problem is derived. (For the latter problam, Chazells
describes a different approach.)
A variant of the 1-dimensional processor array, allowing cyclic shift operations among the array
glaments, has bean introduced in [CCLAT]; the convex hull algorithms derived for this model are simiar to
ones just discussed,

For the mesh-of-processor of size n, Miller and Stoul  [MSE88] give C'[\"I'I} tima algorithms for the convesx
hull prablems in two dimensions. Their approach is based on the divide and conguer paradigm. They first
partition the data into four roughly equal parts by sorting the points by x-coordinates and, recursivaly,
solve the problems in each of the four reglons. The remaining problem consists of merging the four hulls.
To merge two disjoint convex hulle, two bridges connecting the hulls need be found. A bridge has the
property that its endpoints belong 1o different convex hulls and that all other points of both hulls lie on the
same side of the line defined by the bridge. By using a binary search on the sored sub-list of verices
dofining the two convex hulls a bridge can be found in O{log n} stepa. Each step reduces the number of
points to be considered by a censtant factor. By using data compression after each step, the to1al time
complexity of the algorithm becomes O{¥n). An alternate EI{‘q'_n] comvex hull algorithm was presented in
(587

For the mesh-ol-processor architecture Dehne, Sack and Slojmenovic” have shown that the 3.
dimegnsional convex hull of a set of n peinis in 3-space can be found In ofn login)) time [DSS88), Thelr
approgch I8 using in addition 1o a divide and conquer and data compression, an efficient techniques far
finding supporting planes in 3 dimensions dus to [DKET].



They also noted a space/ftime trade-off by showing that an O{vn) algerithm can be designed for a mash in
which each processor has Oflog n) extra lacal memary. It is open whether an O(¥n} algorithm can be found

for the usual mesh-of-processor architecture {ie., each processor has only C(1) memary).

For digitized pictures, convexity iz defined as follows: a digitized point sel is conwvex iff the
corresponding set of integer lattice poinis is convex. The following results have been obtained [MSE4,
KEBS, DSSET].

The convex hull of a digitized point set is determined in G[’n"_n] time on a mesh-of-processors of size n.
Since tor cartain applications the input point set may belong to differently labeled sets, the convex hull
paints for each of these sets may have to be computed. This problem can also be salved in O(Wn) fime using
a variation of the above algorthm [MEE4].

Kumar and Eshaghian studied computational geomaliry algorithms on a mesh-of-trees os size n [KEBES].
They showed that in O{log n} time the convex hull verlices of a digitized picture can be identified and

enumearated, For several figures stored simultaneously on the mesh-of-trees, the convex hulls of all
figures can be determined in Gilagq' ny tme.

Deohna, Sack, Santoro [DSS87] have given optimal algorithms for the following problems related to conviex
hulls: determing all kM contours and all recitinear k-hulls of a digitized set of poinis. Furtharmere, their
results yield a parallel solution %o the problem of finding all longest common subseguencas of two strings.
The latter result improves on the algorithm by [ATBS] in that it computes all such subseguences and all
processing elements are of the same type.

For the hypercube architecture few resulls are known, as yel

On the Infel IFSC Miller and Miller discuss deslgn and implementation issues for 8 comvex hull algorithm
based on the gift-wrapping principle [MMBT].

In [S87] Stajmenavic’ showed that the 2-dimensional convex hull can be determined in O{logZn) fime by
adaplting the PRAM algorithm due 1o [AGES]. The frivial lower bound is Oflog n), thus this result is not
optimal, However, solving the convex hull problem takes at least as leng as sorling n numbers which
currantly requires Oflog=n} time, Thus, better convex hull algorithms can not be found before a better
garting algorithm has been discovered.

Many results have been obtained on the PRAM model(s). We commence our discussion with an
argument due io Akl [AB2] who remarked that if one allows the number of processors to be polynomial in
the number of inpul peints then a constant time algorithm can be designed to identity the convex hull
vertices. The reader will probably see that O{n¥) processcrs suffice 1o obtain a constant time algorithm.
This is using the simple geometric argument thal a peint is not a convex hull vertex if it is enclosed in a
triangle formed by three other peints In the set. Akl reduces this bound to O{nd) [AB2]. Akl also presented



an aptimal algarithm for computing the convex hull of n points in G{n€ log h) using On'"€) processaors,
whare h denates the number of edges on the convex hull [AB4].

Ii is easy 1o see thal, using N processors, an Drhgz n} time PRAM-zlgorithm can be designad by
implementing the seguential divide-and-conguer algorithm in parallel (see [CED , NMBE1]).

Atallah and Goodrich presenied an oplimal Oilog n} divide-and-conguer algorithm for determining the
convex hull (pelygon) of n points in the plane for the CREW-PRAM of size n [AGBS]. A similar strategy
was employed by [ACGDYES]. The idea iz to splil the point-zet into “n equal-sized subproblems and
subsaquently solve the subproblems recursively in parallel. The merging step consist of crealing the
bridges and s done by a reduction 1o sorting. Wagener independently solved the problem in the same time

using also the divide-and-conquer paradigm [WB5], his approach is fo half the problem rather than
splitting it into “n subproblems,

Wang and Tsin presented another optimal algorithm for finding the convex hull of a set of n points in 2
dimensions |[WTAa7]. They give an algorithm for triangulating the set of points which expliciily builds the
(upper) convex hull of the set, Their strategy is to partition the preblem into Vn subproblems of size i
and solve the resulting problems recursively, Each of the subproblems is triangulated and is (upper)
convex hull is found. The bridges for each palr of adjacent subproblems is compuled via a binary search.
Each polygon formed by a bridge edge and its two chains is of a simple nalure (one concave, ona Convex
ahain) which is easlly triangulated.

Recently, using Oinflog n) processors, Goodrich presented an (optimaly Oflog n) algarithm  for
delermining the convex hull of n points which are sorted along some axis [GET)].

In 3 dimensions, the convex hull of a sat of points can ba determined in Ojlog? n) time as was demonstrated
in [G80, ACGDYBS]. Furthermore, all 3-dimenslenal maxima can be determined in Ofleg n leglag n) time
[AGESal. The latter problem can be solved with high probability in time Oflog n) |RSB7]; ie. the
probability that the time is Oflog n) approaches 1, lor n approaching infinity.

As in the sequential mode! of computation several prablems can be solved efficiently in parallel ence
the convex hull is avallable. Such problams include: deciding whather a paint set is comvex, testing whethar
two sets are linearly separable, finding the smallest enclesing box for a set of points, delermining the
diameter, supporting etc. We refer the reader 1o the literature discussed above.

3. Intersection Problems
Another class of geometric problems which has been thoroughly studied under the seguential model of

computation deals with interssction problems for geomalric cbjects (e.g.. points, lines, rectanglias,
polygons). There exist twe major classes of intersection problems: interseclion detection problems are




concernad with detecting whather there exists an intersection betwsaen any two elements of 8 given set of
objects [yesno answar), inlérsection determination problems consist of computing the intersection (&.9.,
reporting all intersection polnts betwean any two of several palygons).

For parallel models of computation, nearly all of the proposed algorithma sobve intersection defection
problerms only; the major obstacle 1o soling intersection delerminalion problems on parallel computers Is
the potentlal slze of the owtput wwhich may cause boiflenecks in storing andfor reportimg the result. (Thus

current parallel algorithms for intersection determination problems typically reporl only the size of the
result.}

The intersection problems studied for parallel maching models are the following:
Ling Segment Intersection Detection
datect whether any two of n given line segments intersect
Polygon Infersection Detaction
datect whather two polygons (with a total of n edges) intersect
Areg of lntersection for lso-orented Hectangles
determine the area of intersection of n isc-griented rectangles
lzp-prignted Line Segmentz Intersechion Counting
count the numbear of intersections betwean n horizontal or verilcal line segmenis

For the mesh-of-processor architecture, independently, Miller and Stout [M386], [M3E7], and
Jeong and Lee [JLB7a), [JLE7H studied the problem of detecting whelher any two of n given line segmenis
{in the plane) inlersect. The solulions are quite similar and obtain an optimal (for the mesh) Gll'u'_nll ninme
complexity (using n processors). To achieve this bound, the sel of line segmenis is split, by verical lines,
into a constant number of subsets of equal size for which the problem is recursively solved in paraliel. The
problem arising is that portions of line segmenis may be contained in several subsets which may increase
the problem size during the recursive calls (exponantially, in the worst case). To solve this, they obsanva
that the portions of these line segments contained In one subsst can be ordered (i.e., sorted by y-
coprdinate). Detacting intersection among these as well as with the remaining line segments, is then easily
achisvaed: in case no Intersectlon occurs, these line segments are eliminated frem any further
consideration,

Atallah and Goodrich [AGEBa) studied the line segment intersection detection problem for the PRAM
madel. Their solutions are based on a parallel implementation of the well known (sequential) plane sweep
technigue [LP84]. For this intersection problem, they obiain Oflog2n} and Oflog n log log n) time
algerithms for the CREW (of size n) and CRCW PRAM (of size n log n), respectively.

The ahove algorithms lead to a varlely of algorithms of the same time complexity, in particular for
detecting whather any of several ghven polygons with a 1otal number of n edges intersect, They also sclve
the problem of counting the number of inlersections between n horizental or vertical line segments in



Oilog n logleg n) time [AGEG6a). Other problems solved using this technigue are discussed in the respeciive
saclions,

The line intarsection detection problam was also siudied by Chazelle [C84] for the 1-dimensional array of
processors. His algorithm has a time complexity of Oin) for n processors and s based on the same "fold-
over strategy used for convex hull determinatlon (see Section 2],

Lu, Varman [LVBE] studied the problem of determining the area of intersection of n izo-criented
ractangles. For the mesh-ol-processors of size n they obtain an I:)[".'_n]- time solution which is based an
splitting the set of rectangles into vertical slabs such thal each slab contains one vertical edge of a
rectangle. Within each slab the problem is solved directly {in parallel} and then the resulls are merged.

4 Proximily and Geometric Searching Problams

Proximity problems arige In a wide field of application such as spatial data analysis, image
processing, CAD, etc. Let S={s1. ...8n} be a set of n objects and |et dis; s) denole a distance metric
betwean objects & and 8- Some typlcal distance-related problems which have been extensively studied for
the seguential moded of computation are:;

Nearest Nelghbor Problem for a given abject 5 (not necessarily contained in 5} find its nearest naighbor in

3,

All Nearest Neighbor Problam for each 55 find its closest neighbor sje3-{sj}, and
Closest Palr Problem find the pair (5,8))eS which minimizes disjsj} over all index pairs i

Anothar related problem, referred 1o as the minfmum distance problem, is 1o find for two given seis
54 and S2 of oblects (e.g.. arbitrary or convex point sels) the pair (5(,8))c31x32 which minimizes
d(8§.8j)-

In [MS84] and [MS8E], Millar and Stout study the all nearest neighbor problem for sels of n points
in the plane and derive an O(vn) upper bound for the mesh-of-processers, The main technique applied in
this solution is to split the problem by four vertical lines info five subsets of equal size and recursively
solve each subproblem in parallel, Then the same procedure is again executed, this time, however, using
four harizontal lines, Now, every point has assigned 1o it the nearest neighbor with respect to 15 regien in
the 5x5 rectangular grid determined by the horizontal and vertical lines. 1t is easy 1o prove thal for every
region there are al most B points whose neares! nelghbor is outside the regions and thal these poinis are
closer to one of the corner poinis of the region than to the nearest nedghbor determined so far. These at
most 25*8 points are then simply broadcast to all peints.

For the 1-dimensional aray of processors, Chazelle [CB4] described an Oin) time algorithm for
computing all nearest neighbors; it is based on the same “fold-over” strategy wsed for convex hull
determination (zee Section 2} and, essentially, compares all pairs of points.



Alallah and Goodrich [AGBE] study the closest pair problem for the PRAM. They split the point set
ime ¥n sets, of size s[n, each, using wvertical cuf lines. For each sat, the closest pair is recursively
compuled in parallel. Let D denote the distance between the closest of these Wn pairs. The prablem is to
recduce the number of vertical cul lines with distance closer than D. For this, adjacent slabs which are ico
small are merged first, using a similar divide-and-congquer technigue (this time wsing horizonial cut-
lings). Subsequently, these solutions are combined. The fotal time complexity of their algorithm, wsing a
PRAM of size O(n), is Oflog n log log n).

For the related minimum disiance problem for two convex sets whose boundaries are convex polygons
(the sequential time complexily of this preblem is Qflog n)), Atallah and Goodrich described an O(k1*F)
lime algorithm for a PRAM with O(n1™®) processors (with arbifrary, selectable, k and arbitrasily small
gl. For k=1, this yields a consiant fime algorithm on a linear slze PRAM.
In [S870]. Sweimenovic’ describes an Oflog n) time hypercube solution for the same problam,

&n interesting generalization of the above problems was considersd by Boxer and Miller [BMET] wha
siudied dynamic versions, where n poinis are moving in Euclidean space. Each coordinale of a moving point
is given by a time-dependant polynomial, say of degree at most k. For such a system of maving points, they
salve the dynamic one-to-all nearest neighbor problem; i.e., they compule for the time interval from zem
to infinity the sequence of nearest neighbors of ane of the poinis. The fime complexity of their solution is
Oflagen) on a PRAM consisting of A{n-1,2k)} processors where A(nk) is the number of pieces of the
minimum of n polynomials of degree k [lower envelop); A(nkl=0n) and Link}=0[n log*n}. The
algorithm is based on an I:}[IWEn] lime parallel algorthm 1o compute the description of the minimum af n
palynomials of degree k (l.e.. the pieces of the minimum in sorled order).

The closest pair and minimum distance problems have also been studied for pixels of a digitized image
of gize Vnxyn. The mesh-of-processer architeciure of size n is opfimally suited to such image processing
tasks. For this model Miller and Stoul [MSB5] prasented D{‘-."_n} time algorithms for (a) computing the
minimum distance between sets of black pixels and (b) the maximum distance between two black pixels in
each set. For the pyramid computer ﬂ{-.lﬁj and Oflog n) time solutions to the closest palr problam for the
set of black pixels have been developed by [DBO| and [S587), respectively. [KE] presents Cilog n) time

mesh-of-tréa algorithms for the all nearest neighbor and minlmum distance problem.

Under the sequential model of computation, the nearest neighbor problem for sets of points in the
plang can be solved in time Oflog n) per query (with O{n log n) time preprocessing). Hence, inferesting
parallel solutions are hard 10 oblain; they should have a time complaxity close to O(1).

Therefore, the computationally more expensive problem of finding for m query poinis their nearast
neighbors among a set of n given sites has been considered; this problem will be raferrad to as the mull-



point nearest nelghbor probiem. For the remainder of this paper, we will assume, for simplicity, that

m=n.

Az in the seguentlal case, this problem has been solved via construction of the Vorenol diagram
[LP&4] for the set of sitas. For the PRAM of size n, Aggarwal et al. [ACGDYESE] have presented an D[Iuggn]
lime Voronol diagram construction algorithm; for the mesh-of-processors an ofvn) time algorithm is
described in |JLB7a] and [JLETh]. Both algorithms resemble the well known sequential divide-and-
canguer algerithm [SHTS]. First, the point set is divided into twe linearly separable subsets and,
recursively, the two Voronol diagrams are constructed for these sets. The main step is 1o consiruct the
"ling” at which the bwa Voronol diagrams are merged. Either algarithm dentlifies, in parallsl, those adges
in the Yoronol diagrams which are intersecting the merge line; subseguently, this merge line 5 actually
comipubed.

Besides i1s application to the nearesi neighbor problem, the Voronoi diagram is an interesting
structure of its own, has a lol of other applications, and generalizes 1o other meirics, higher orders,
highar dimensions and for fypes of cbjects other than points (see a.g. |[LPB4]).

Aggume thal the Voronol disgram has been computed ss deacribed. To sohlva the mulli-point nearast

neighbor problem, for each query point g, the Voronoi polygon confaining q is to be |ocated. This problem
i5 a particular instance of the more general mulli-peint location problem: Given a planar stralght-ling
graph defining a subdivision of the plane, determine for each guery point q from a given sel the region of
the subdivision g falls info.
For the mesh-of-processors, the mulli-peint locatien problem [{and, hence, the multi-point nearest
neightor problam) can be solved in fime ﬂ["'."_l'l-]- [JLBTa], [JLBTB]. For the PRAM, Dadoun and
Kirkpatrick [DKBT] present a wery interesting solution. They compute for any given planar subdivision,
on a PRAM of size n, the wall known subdivision higrarchy [KIB3] in time Qilog n log®n} {or Oilog n)
expecied time). The general siructure of the algorithm and the final result is the same as in the seguential
cage [Kig3). Onoce the subdivision hierarchy has been constructed, every processor can localeé one point in
Oflog n) sequential time; hence, their methods results in a Olleg n log®n) {or Qflog n} expected) time
soluticn to the multi-point location and multi-point nearest neighbor problem.

5. Visibility Problems

Problems dealing with the visibility of chjects have been studied extensively in computer graphics,
robotics and computational geometry, Different aspects of visibility problems have been consldered.

Lat P be a set of ssgmenis or polygonal region possibly containing holes. Two points p and q are mutually
wislble If the line-segment connecting them does not intersect any edges of P or of the holes {if preasnt).
Compute Visibility O Segments



Far a sat of line-gegments in the plane or in 3-space, determing which (portions of) azgments are
visibla fram a given point.

Compute Visibility Betwean Segments
For a given set of ine-segments compute all pairs of segments which are mutually visible, where
two segmenis see each other if there exists a pair of mutually visible poinis, located on different
segmarnts.

This problem arizes e.g. in VL3l-design for the particular instance of orihogonal line-segmeants.

Compute Visibility Polygon

For a polygon with or without holes determing iha portion of the polygon that is visible from a gieen
view-point p. This visibility problem arises in compuler graphics as well as in robotics (e.g., in planning
a shortest path for a polygonal object among polygonal obstacles). A view-point may be located eithar
inside or outside of the polygonal region. Both of these problems are referred to as perspeciive visibilify
problams. The parallel visibility probigm ariges i the view-point iz located at infinity. An alternale way
of soaing this problem is to determine which regions of the polygonal region{s) are illuminated by a light
source located at infinity. Motice that the bwo models are equivalent; l.e., one can transform one probiem
instanca ino the other by applying a simple geomairic tranaformation.

The Compute Visibility Of Segments  problem for n vertical line-segmeants can be solved in Ollag n)
fime on a mesh-of-trees architectura, as shown by Lodi and Pagll [LP86]. Their paper gives a detailed
low-level implementation as well as an area-time (ATZ ) lower bound of 0(n? log? n) for the visibility
prablem,

For the linear processor array Asano and Umes [AUST] gave am Ofn) algorithm to compute the
visibility palygon from a point {or from infinity) for a polygonal region possibly containing holes. They
classify each verlex v to be of one of four types, using the furns between the viewpainf, v, and the vertices
adjacent o v (in the polygonal order). Based on this, a 2-stage algorithm was designad, whera the first
stage consigts of loading the aray with the verfices and determining their type, while the sscond stage
tranemils the edges checking whether there exist edges which imersect the rays from the view-point. By
combining vertex-typa and intersection information the visibility problem is then selved.

On the mesh-of-processors work has been done, both, in image space (i.e., for digitized objects) as
well as in object space,
For a digitized set of objects stored on a mesh-of-processors of size n, the visibllity polygon in the
parallel model can be determined in G'l:"."_n Y time [DHSSE7]. They split the image Infe sirips parallel to the
direction of visibility. Through each sirip, in parallel, a hole is Is sent in the direction of visibilily which
rapresenis the portion of the sirip that is sill vislble frem the light source. It must be ensured that at
any time both (1) the size of messages sent by each processor, as well as (2) the number of messages sent
or received by a processing element are bounded by a constant.



LUzing message passing by layars starling at the point of visibilty and updating visibllity wedges instead of
strips, the parspective model of visibility has been solved in -D{‘nrn ] tima im [HBE].

Far polygons, possibly with holes, in object representation (i.e., each edge of the polygon or a hole ia
sfored in one arbitrary processor) oVn I tima algorithms for both models of visibility have been
presented in [DES). For the point visibllity problem (and similarly for parallel visibility), the polygon
iz split by rays, emanating from the view point, info sectors of equal number of vertices. For each sector
the problem is socheed recursively in parallel, and then the resulls (lLe., the porlons of the visibility
polygon in each sector) are merged. The merge siep is obvious; however, the split step creates problems
zince edges that intersect a split ray have 1o be duplicated (one part for each adjacent sector). This may
greata Ofn) new edges in each recursion step which would result in an over-flow of the mesh. The solution
consists of sevaral steps after each split phase which delete edges or paris of edges which are found to be
invisible and, If this is not sufficlent, determing a better split ray that intersects fewer edges.

As mentionad earlier, Afallah and Goodrich implemented the plane sweep technique in parallel
[AGBSa). One of the applications of this technique is an Oilog n log log n) algorithm for the problem
Compute Visibility Of Segments on an n processor PRAM architecture.

Very recently, Dehne and Pham [DPBE] presentad, for the hypercube archileciure, Oilogen) time
algarithms for solving the visibility problems, in image space, in the parallel and perspective model of
computation by reducing it 1o a generalized partial sum cperation and a tree parfial sum operation,
respectively.

6. Decomposition Problems

Dacomposition problems have been sludied in paltern recognition, image analysis and robetics. The
problem is to decompose an object inte simpler ofien more meaningful components. A common fask is 1o
decompose an object into convex parts. Decompaositions are obtained by adding segments inside the abject.
Several types of decompositions arise: partifonings, i.e., decompositions where no twe components may
overlap, and coverings where componenis may overlap. A decompaosilion may introduce new vertices, called
Steiner-points, or may consist entirely of segments, called diagonals, which join only exisling vertices. An
axample of the former category is the fraperoidal parfitioning, whera an object given as a simpla pelygon
is to be partitioned into trapezcids such that each newly insered segment s horizontal and incident 1o a
vertex of the polygon. An example of a decompesition without additional vertices is the trangulation: ie.,
the task of partitioning a simple palygon into triangles by inserting enly diagenals. A triangulation of a set
of points is a graph whosa vertices are the peints and whose edges are a maximal number of diagonals
making aach bounded face a nanghs.



For a survey of sequential decomposition techniques the reader is referred to [KSE5]. Thia reference deals
in particular with decompositions in which some criteron 5 1o be minimized; e.g., finding a minimum
welght trlangulation (where the wealght is the total length of all diagonals added), or minimizing 1he

numbsar of convex polygons resulting from a partitioning of a simple polygon into conves pieces, elc.

The following prablems have been studied in the parallel models of computation,
Trapezoidal Partitioning
Find a partitioning of the input polygon inte rapezoids
Trigngwlale Line Segmenis
Find a trlangulation of the input line aegments which are typically assumed 1o infersect at most al
their endpoints to include as a special case the frangulation of a polygon
Trianguiate Point Set
Find a trlangulation of the inputl point aet in 2 or highar dimension

Faor the linear processor array, Irapezoldal paritioning and friangulation of polygonal regions
[AUTT] and triangulation of sets of points [CB4] can be performed in linear time. Trapezoidal
decomposition on a mesh-of-processors of size n can be perfermed in O(Vn) ime as shown by Jeeng and
Lea [JLBT]. Their algorithm is based on the :‘.}i'-.l'_n} solution 1o the muli-point location problem discussad
In Sectlon 4.

As mentioned above, Atallah and Goodrich developed a parallel implementation of the seguential
plane-sweep technique for the PRAM. They showed thal, based on this parallel plane sweep, the problems
Trapezoidal Partitioning of Polygon and Triangulate Line Segments can be sakved in Oflog n loglogn) time
uging Qin} processors and O{n log n) space. If space is resiricted to Qin) then the time bound is Oflog? n)
[AGEBa). According to Yap [YE7] the Oflog n loghog n) bound has been improved fo Oflog n) by Atallah, Cole
and Goodrich, Optimal, randomized Cilog n) time, parallel algorithms for irlangulation and trapezoidal
pariitioning were given in [RSE7].

An optimal PRAM algorithm for riangulating a set of points in the plane was presented by Merks [M3E].
The algorithm is optimal in that it takes Ofleg n) time using n processors. Again, the divide and conguer
paradigm of splitting the peint sel inlo J'n subproblems is applied. They first show how 1o reduce the
problem inte the simpler one of triangulating a set of poinis located In a triangle. Then thay show how bo
sohve this simpler problem instance. The final merge iz to connect these subsolulions,

Maore recently, Wang and Tsin gave another algorithm for this problam [WTET]. Their approach was
discussed in the section on comiex hull problems and we refer the reader 1o that section.

ElGindy gave an O4fid) log? n} time PRAM algorithm for triangulating peints in d-dimensional space,
where fid) = d¥ log(49/(49-1}). The number of processors used by the algorithm is Oinfog n). The
algorithm iz an efficient parallel implementation of the sequential algorithm proposed in [AEEE]. For fixed
dimensions the speed-up (product of time and number of processors) is aptimal, It remains open whether
optimal speed-up can be achieved using O{n) processors for dimensions d=2.
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