PARALLEL AND DISTRIBUTID ALGORITHMS

M Cosnurd et al. editors
© Flsevier Science Publishers BV (North Holland:, 1989 137

AN OPTIMAL VLSI DICTIONARY MACHINE
FOR HYPERCUBE ARCHITECTURES

FRANK DEHNE ' AND NICOLA SANTORO 2
Center for Parallel and Distributed Computing
School of Computer Science, Carleton University
Ottawa, Canada, K1S 5B6

Abstract. In this paper we present a VLS| dictionary machine implemented on a
hypercube architecture. The proposed machine consists of two structures, a snake and a
broadcast net, which are both embedded in and operate simultaneously on the same
hypercube. All cperations (Insert, Delete, Search, Extract Min, and Find Min) can be
pipelined with O(1) period, and the response time for Search and Find Min operations is
O(log n) and O(1), respectively. Furthermore, the proposed solution is capable of handling
duplicate insertions and redundant deletions.

1. INTRODUCTION

A digtionary is a device which stores a set of records and provides a set of operations on these
records, called dictionary operations. With each record there is associated a unique key k from
a totally ordered set K. For simplicity, the record whose associated key is k, will be denoted by

record k . The standard dictionary operations are

(1) Insert(k) : insert record k in the dictionary

(2) Delete(k) : delete record k from the dictionary

(3) Search(k) : retrieve record k if currently stored; return a negative response
otherwise.

In addition to the above operations, the following priority queue operations may also be

requested:

(4) Find Min retrieve the current minimum record

(5) Extract Min : delete the current minimum record.

Note that only some of these operations require an answer be produced: Search(k) and FindMin;
these operations will be called qQuery operations.

A VLS| dictionary machine recieves a sequence of instructions (i.e., requests to perform
dictionary or priority queue operations), executes the corresponding operations in a pipelined
fashion, and in case of query operations reports the responses via the /O port (one designated
processor of the hypercube). The delgy of an instruction is the mimimum number of time
units, after the instruction has arrived at the dictionary, necessary before the next instruction

can be sent to the machine; the period of the machine is defined as the maximum of all

1 Research supported by NSERC grant No. A917
2y Research supported by NSERC grant No. A2415

F. Dehne and N. Santoro, "An optimal VLSI dictionary machine for hypercube architectures," in Proc. Workshop
on Parallel and Distributed Algorithms, Bonas (France), 1988, North Holland, pp. 137-144.

F D
F. Dehne and N. Santoro, "An optimal VLSI dictionary machine for hypercube architectures," in Proc. Workshop on Parallel and Distributed Algorithms, Bonas (France), 1988, North Holland, pp. 137-144.

138 F. Dehne and N. Santoro

instruction delays. For a query operation the latency (or response time) is the number of time
units elapsed from the time the query arrived to the time a response is produced at the /O port.
In the literature, many VLS| dictionary machines have been proposed for several architectures:
for trees [AK85, L79, ORS82, SAgS, CCIR88], cube-connected-cycles and shuffle-exchange
networks [SL87], meshes [DS87]. As for the hypercube architecture, the implementation of a
dictionary was discussed in [OB87]; the resulting dictionary is however a concurrent date
stucture rather then a VLS| dictionary machine {e.g., no instruction pipelining, every
processor is an /O port, etc.). Only some of the existing machines can handle the redundancy
problem; that is, the problem of ignoring an instruction to insert an element already in or to
delete a non-existent elerhent from the dictionary.

In this paper, we propose a VLSI dictionary machine which implements the dictionary and
priority queue operations on a hypercube of size n=2d, i.e. a set of Zd processors PO, P1,
Pzd.1 where processor Pi is connected to processor Pj if the binary representations of i and j
differ in exactly one bit position (see Figure 1 for an illustration of a hypercube of size
16=2%).

1100 1110

11}—— 1111

1001 1011

Figure 1: A Hypercube of Size 24

The proposed dictionary machine has the asymptotically optimal performance listed in Table 1:
it can fully handle the redundancy problem. The basic strategy employed to develop the
dictionary is based on previous results obtained by the authors for the design of optimal

dictionary machines for mesh architectures [DS87].

Operation Performance

Insert O(1) delay

Delete O(1) delay

Search O(1) delay, O(log n) latency
Find Min. O(1) delay, O(1) latency
Extract Min. O(1) delay

Table 1. Performance of Proposed Dictionary Machines

i optmdd VESTdictionary machine for ivpercube arciniectures 139
2. BASIC STRUCTURE OF THE DICTIONARY MACHINE

The proposed VLS! dictionary machine consists of two known logical structures, a snake and a
broadcast net, which are both embedded in the same physical hypercube and operate on it
simultaneously. All incoming search instructions are handed over to the broadcast net, whereas

all other instructions are executed by the snake.

The gnake is basically the well known systolic priority queue {e.g., [L79], [KL84]). The
embedding of the snake in the hypercube is such that every processor is contained in the snake
exactly once. All Insert, Delete, FindMin , and ExtractMin instructions are sent to the processor
which contains the minimum element; this processor is called the VO processor of the snake.
Note, that if only the snake is operated on the hypercube, Insert, Delete, Extract Min, and Find

Min can be performed with C(1) delay and latency, respectively.

The broadcast net is a systolic structure whose function is the handling of Search instructions.
its topology consists of two acyclic directed graphs, Gy and Gp, where
(a) Gy is a spanning graph of the hypercube with only one source ;
(b) Gy is a subgraph of the hypercube with only one sink, whose scurces coincide with the
sinks of Gy.
{c) The source of Gy and the sink of Gp coincide; this processor is called the /O processor of
the broadcast net. it also coincides with the /O processor of the snake.
Each Search(k) instruction is sent to the 1/O processor of the broadcast net and processed as
follows. The /O processor (the sole source of Gy) will "broadcast” a message
<"broadcast’ k,v,r> through G, where v is a Boolean value denoting whether record k has been
found, and 1 is a field containing record k if found. The sinks of Gy will then start a "reverse
broadcast” process by sending <'reverse broadcast”kv,r> messages through Go; this process
has the final effect of collecting at the /O port (the sole sink of G2) either record k (if it is in
the dictionary) or a negative acknowledgment (v=0).
The only additional constraint on the structure of the broadcast ret is that, if more than one
message is received on the same graph by the same processor at the same time, they must all
contain the same search key k.

Note, that if only the broadcast net is operated on the hypercube, then (i) the latency for Search
instructions is d1+d2 time units where d1 [d2] denotes the distance between the source of G1 [a

source of GZ] and a sink of G [the sink of G?_] and (i) the delay necessary after each Search

instruction is one time unit and, hence, the period of the broadcast net is one time unit.

When simultaneously embedding and operating the snake and broadcast net on the same

hypercube, several factors must be taken into consideration; in fact, most embeddings would not
achieve the desired performance and, even worse, would not correctly perform the desired

operations. The following factors have to be taken into consideration:

140

F. Dehne and N. Santoro

Processor and line contention may occur if both processes try to use the same resource
(a processor or communication line of the hypercube) at the same time.

The simultaneous execution of Insert and Delete instructions by the snake process may
cause problems for the correct execution of Search instructions handled by the
broadcast net. In particular, the search process must (1) take into account any update
instruction started before it, even if the snake has not yet completed the update
instruction, (2) consider update instructions which are currently executed by the
snake and may cause other data (maybe the data which are currently searched for) to
be shifted within the snake, and (3) disregard all update instructions started after it.

In [DS87] a solution to these problems for the concurrent execution of a snake and broadcast net

on a mesh architecture has been introduced. It is easy to see that this sofution can also be

applied to the hypercube; it can be summarised as follows:

If the embedding of the broadcast net and snake are edge disjoint then processor and line
contention dees not occur; otherwise, the broadcast net and snake must be operated in
alternating phases which, howaver, slows down the performance of the dictionary
machine by a factor of two.
To ensure the correct execution of Search instructions some additional information
must be kept at each PE. The amount of information is proportional to A which is
defined as follows:
For each processor P let DIST(P) denote the number time steps necessary for a search
message to trave!l from the l/O processor to P (within the graph Gy of the broadcast
net), and

A(P):= max{ |DIST(P)-DIST(P')| : P and P' are directly connected by an edge in the

snake}, then A is the maximum A(P) of all processors P.

A is strictly dependent on the interconnection between snake and broadcast net when embedded

in the hypercube. In fact, given an embedding, the value A and whether the embedding is edge

disjcint or shared completely characterize the interference between snake and broadcast net.

The major problem is now to find an edge disjoint embedding of the snake and broadcast net in a

hypercube while keeping A as small as possible in order to minimize the amount of additional

data to be stored at each processor.

3. AN EDGE DISJOINT EMBEDDING OF BROADCAST NET AND SNAKE
IN THE HYPERCUBE
In this section we will describe an edge disjoint embedding of the broadcast net and snake on a

hypercube which also guarantees A=3. This embedding induces a VLSI dictionary machine on a

hypercube with the asymptotically optimal performance listed in Table 1.
We will first describe the embedding of the broadcast net and then the embeding of the snake.

Awoptimael VEST dictionary machine for hypercube architectures 141

The global structure of the broadcast net embedding is shown in Figure 2a. The hypercube is
split into 2d‘4 sub-hypercubes of size 24. The processors in each sub-hypercube are
numbered from x..x0000 1o x..x1111.

For the remainder, two processors Pi and Pj will be called k-neighbors, 1<k<d, if the binary

representations |1i2..id and j1j2..jd of i and j, respectively differ exactly in the kth bit,
The processor PO 00000 is considered as the /0O processor of the broadcast net. After

receiving a Search(k) instruction, a copy of this instruction is first sent to the d-neighbor of
the I/O processor. Then, both processors send a copy to their (d-1)-neighbors. This process is
iterated a total number of d-4 times; i.e. for k=d...,5 all processors which have so far received
the message send a copy to their k-neighbor. The result of this process is that after d-4 steps
every processor Px..xOOOO has received a Search(k) message. Now, all processors Px..xOOOO
in paraltel send the Search(k) message through the broadcast net of their sub-hypercube of
size 24 as shown in Figure 2b. The messages arrive at the 2d-3 sinks, two for each sub-
hypercube, at the same time. The sinks then initiate the reverse broadcast process which is
exactly the same, but reverse.

In order to implement the pipelining of broadcast processes for a strem of Search instruction
arriving at the I/O processor, every processor Px..xOOOO stores incoming search messages in a

queue of length d-4 (with positions numbered from 5 to d) as shown in Figure 2c. An incoming
message from an (i+1) neighbor is stored at position i; for the I/O processor i=d. At every
step, each message stored at position k, 5<k<d, is sent 1o the k-neighbor and then all messages
are shifted one position towards the lower numbered end of the queue. A message which was
stored at position 5 is broadcast through the sub-hypercube of size 24.

The mechanism ensures that (1) search processes are correctly pipelined and (2) the
broadcast of a Search(k) message through the sub-hypercubes of size 24 starts at all sub-
hypercubes at the same time. (2) and the timing in subhypercubes indicated in Figure 2b
provide that the following constraint on the structure of the broadcast net is not violated: if
more than one message is received on the same graph by the same processor at the same time

then they contain the same search key.

142 I Dehne and N. Santoro

2
3 3 3
time (after arrival at 1/O processod:
. 3 P at which Search(k) message is
H sent over this line
I/O processor of the |
broadcast net P /’ 94— ______ hypercube
x..x0000 of size 2°
Figure 2a: Global Sturcture of the Broadcast Net Embedding in a Hypercube of Size 27

P
x..x0000 1 1

distance from

p><.4)<OOOO @sénk (ofG1)

Figure 2b: Details of the Broadcast Net Embedding in Each Hypercube of Size 24

Anoptimal VEST dictionary machine for hvpercube architectures

143

incoming Search(k) message
from i+1 neighbor
(i=d for /O processor)

message Search(k} is shifted through
the queue (starting at position i

at each position x, 5sx<i, a Search(k) message
is sent to the x-neighbor

finally, a Search(k) message is sent through
the processor's sub-hypercube of size 24

Figure 2c: Handling of Search(k) Messages by Each Px x0000

The structure of the snake is shown in Figures 3a and 3b. Figure 3a shows the snake in each

. . 4 . .
sub-hypercube of size 2%. The snake has two endpoints px‘.xOOOO and Px..x1110 which are

labeled A and B, respectively. The snakes in the sub-hypercubes are then connected to form one

snake that contains all processors as shown in Figure 3b. The processor PO 00000 is the /0

processor of the snake. Note, that the direction in which the snakes in the sub-hypercubes are

operated alternates between the sub-hypercubes.

Ve

o

istance from P .. x0000 in the broadcast net

Figure 3a: Details of the Snake Embedding in Each Hypercube of Size 24

144

I Dehne and N. Santoro

o6 'R) A4 § 4 'R
A B A B A B A B A B A B A B A B
F’X“” 110 ‘ /O port of the snake
o | 4—___ hypercube
p A B of size 24
x..x0000
Figure 3b: Global Structure of the Snake Embedding in a Hypercube of Size 27
In order to prove the correct concurrent execution of the snake and broadcast net, the following

two properties are easily established:

Within each sub-hypercube of size 24, the embedding of the snake and broadcast net
are edge disjoint (compare Figures 2b and 3a) and the “"blobal wireing”, i.e. the edges
between sub-hypercubes, of the snake and broadcast net are also edge disjoint
{compare Figures 2a and 3b). Therefore, the embeddings of snake and broadcast net are
edge disjoint.

The broadcast of a Search(k) message starts at processor Px..xOOOO of each sub-
hypercube at the same time. Therefore, all edges of the global wireing of the snake only
connect processors with the same distance from the I/O port with respect to the
broadcast net. From Figure 3a it is also easy to observe that within each sub-
hypercube the distance (in the broadcast net) of two processors from Px..xOOOO which
are connected by a snake edge is at most 3.

Hence, for the above embedding of the snake and broadcast net, A=3.

Finally, since in the broadcast net the distance of the 1/O processor from the sinks {of G1) is

d+1 = log{n)+1, the asymptotically optimal performance results listed in Table 1 follow
immediately.

REFERENCES

[AK85] M.J. Atallah, S.R. Kosaraju, "A generalized dictionary machine for VLSI", IEEE Trans. on

[CCIR86]

[DS87]

(KL84]

Computers C-34, 2 (Feb. 1985), pp.151-155.

J.H. Chang, M.J. Chung, O.H. lbarra, K.K. Rao, "Systolic tree implementation of data
structures”. Proc. 1986 Int. Conf. on Parallel Processing, St. Charles, ., 1986, pp.669-
671,

F. Dehre, N. Santoro, "Optimal VLS! dictionary machines on meshes”, Proc. 1987 Int.
Conf. on Paraliel Processirg, 1987, pp.83-840.

M.R.Kramer. J. v.Lesuwen, “Systolische Berechnungen und VLSI", Informatik Spektrum 7,
1984, pp.154-165

