PARALLEL AND DISTRIBUTED AL GORITHMYS
M Cosnard et al. editors:
© Flsevier Science Publishers BV, - North Holland i, 1989

THE COMPLEXITY OF PARALLEL SEARCH ON COARSE
GRAINED NETWORKS®

SELIM G. AKL
Department of Computing and Information Science, Queen's University, Kingston, Ontario
K7L 3N8, Canada.

FRANK DEHNE
Center for Parallel and Distributed Computing, School of Computer Science, Carleton
University, Ottawa, Ontario K1S 5B6, Canada.

Abstract. We study the time complexity of parallel search in a sorted list of n elements
on a coarse grained bounded degree network of N < n processors.

For an infinite sequence of search queries presented to the network and processed in a
pipelined fashion, the latency and period of any searching algorithm are Q(D + log n - log N)
and Q(log n - log N) respectively in the worst case. It is easy to see that thase lower
bounds are tight. For n »>> N, the period is Q{log n) which can be achieved sequentially by a
single processor. Hence, coarse grained networks are not particularly well suited, in the
worst case, for the search problem.

On the other hand, we show that a constant period can be achieved on coarse grained
networks probabilistically. A parallel search algorithm is described which has constant

expected period T provided that n £ N 2ATEN (assuming that sequential search in a sorted
list of x items can be performed in time é log x, for a constant si). Therefore, coarse
grained networks with N << n <« O(N 2N) are good, on the average, for the search problem.

1 INTRODUCTION

The parallel complexity of searching a sorted sequence S=(s1, ..., sp) of size n for a given
element s was studied by Snir [S85] for an N-processor shared memory model of computation.
For a variant of the model, where an item of information can be accessed by one processor only
at a time, he showed that searching for one element requires at least Q(log n - log N) steps.
(Henceforth, ali logarithms are with respect to the base 2.)

In this paper, we study the parallel complexity of searching for the more realistic model of a
bounded degree processor network of size N. In this model, a set of N processors Pq, ..., PN are
connected by bidirectional unit-time communication links between pairs of processors such
that the graph thus formed is of bounded degree (e.g., the mesh, tree, mesh-of-trees, pyramid,
or hypercube architectures [A88]). By contrast with the model studied in [S85], there exists
no shared memory in a processor network. Instead, each processor Pj has its own local finite

Research supported by Naturai Sciences and Enginesring Research Council of Canada under grants
A3336 and A9173.

S. Akl and F. Dehne, "The complexity of parallel search on coarse grained networks," in Proc. Workshop on
Parallel and Distributed Algorithms, Bonas (France), 1988, North Holland, pp. 127-136.


F D
S. Akl and F. Dehne, "The complexity of parallel search on coarse grained networks," in Proc. Workshop on Parallel and Distributed Algorithms, Bonas (France), 1988, North Holland, pp. 127-136.


128 S.G. Akland I Dehne

memory M; (which can solely be accessed by Pj); processors can communicate only by sending
messages via the communication links. The distance between two processors Pj and Pjis the
minimum number of direct communication links that a message has to traverse in order to
travel from Pjto Pj. The diameter D of the network is the maximum distance between
processors.

The time complexity of a parallel algorithm executed on a bounded degree network consists of
the local computation time for the processors and the time for the messages sent via the
communication links. As usual we count, for each processor, an arithmetic or comparison
operation as well as a transmission of a word of length O(log n) bits to an adjacent processor as
an O(1} time operation.

For the sequential model of computation, the worst case complexity of searching a sorted list
of size x is & log x, for some constant & (this complexity is achieved by the binary search
algorithm [AHU76]).

When solving the search problem on a bounded degree processor network, the sequence S is
distributed among the M;'s such that each receives a sorted subsequence of size n/N. A designated
processor receives as input the element to be searched for and, in the worst case, must
propagate it through the network to another processor P; at a distance D away. In addition, P;
has to search its subsequence sequentialy. Consequently, the worst case lower bound on the time
required to search is Q(D+Iognﬁ), i.e. Q(D+log n) when n >> N. For example, on the hypercube
architecture where D equals log N the lower bound is Q(log n), which can be achieved

sequentially by a single processor.

One justification for advocating parallel search is to improve throughput in the case of a
stream of queries presented to the network in a pipelined fashion. Therefore, we study the
searching problem for bounded degree networks within the following more realistic setting
which will be referred to as pipelined search (see Figure 1}):

. An infinite input sequence of search queries is sent, as an input stream, to a designated

processor of the network, the input processor.

. The search queries are processed in a pipelined fashion and the answers are reported

back via another processor, the output processor (which may coincide with the input

processor).

In this setting, the performance of a searching algorithm is measured by
. the latency, i.e., the worst case time between an arrival of a query at the input

processor and the reporting of the result by the output processer, and
. the period, i.e., the average time T between any two consecutive queries. (More

precisely, if the time between the arrival of the first and mth queries is ATtm then

Atm
T= 1 —
Moo (M-1)




Complevity of parallel scarci on course gramed nenworks 129

The obvious lower bounds for period and latency are (1) and Q(D}, respectively. Indeed,
for N close to n, Dehne and Santoro ([DS87] and [DS88)) have presented algorithms for mesh
and hypercube networks, respectively, with O(1) period and O(D) latency. This leads to m
queries being processed in time O(m + D). In fact, both of the above algorithms handie the
“dynamic" version of the pipelined search problem since they allow not only queries but also

“insert" and "delete” commands among the input stream of messages.

queries

input processor

outpul processor

answers
Figure 1: Pipelined Search

However, current attempts at implementing databases on parallel computers, involve coarse
grained networks. In these networks, each node is a relatively powerful processor with a
significant amount of memory. An example of such a system is the Intel iPSC hypercube which
consists of a relatively small number (between 8 and 512) of processors with up to 16 MBytes
of memory each; for the iPSC/3, currently under development by Intel, a hard disk can even be
attached to every sub-hypercube cf two or four processors. Under these conditions, the search
problem has to be solved for n much larger than N.

For this case we derive, in Section 2, Q(D + log n - log N) and Q{log n - log N) lower bounds
on the worst case latency and period, respectively. That is, for n >> N the period is Q(log n) and,
hence, m queries are processed in time O(m log n) at best. Since the same performance can be
achieved sequentially by a single processor, this result seems to suggest that coarse grained

networks are not particularly well suited, in the worst case, for the search problem.

On the other hand, we show in Section 3 that a constant period can be achieved on coarse
grained networks probabilistically. A pipelined search algorithm is described which has a

constant expected period T provided that
T

+N

n<N2"=




130 S.G. Akland I Delme

The algorithm involves a queue (referred to as the search queue) to be stored at each processor;
this queue has an expected length of at most Le O(1) provided that
T §L+1-'\/ L241 E_N
ns<N2 § .
Therefore coarse grained networks with N << n < O(N 2Ny are good, on the average, for the

search problem.

2 THE WORST CASE COMPLEXITY OF PIPELINED SEARCH
ON CCARSE GRAINED NETWORKS

In this section we derive worst case lower bounds for pipelined search on a ccarse grained
bounded degree network with N processors storing n »>> N elements. More precisely, we make

the following assumptions: n
A1) Each processor P stcres a subsequence Sj ofﬁ elements.

A2) For each processor Pj, the sequential search time on its subsequence S; is c';lognﬁ.
A3) All elements are stored in sorted order with respect to some total ordering. In
particular, each processor Pj has constant time access to the minimum element min;
and maximum element max; of Sj, and for two processors Pj and Pj the two intervals

{minj, max{] and [minj, maxj} are disjoint.

Theorem 1. With the above assumptions, the pipelined search problem for bounded degree
networks has the following worst case lower bounds:
(a) £2(D + log n) is a worst case lower bound on the latency, and

(b} L(log n) is a worst case lower bound on the period.

Procf. (a) This is identical to the single query case treated in the introduction.

(b) Assume that all queries sent to the network refer to elements contained in the subsequence
Si at one particular processor Pi. in this case, the searching network can also be seen as a
single-server queue where requests (i.e., search gueries) arrive via the input processor, are
queued within the network, and are finally processed by Pj before they leave the system via the

output processor (see Figure 2).

Queue P,
- @4 (JTITIITITIT]—» O —b@:
queries / results
input processor output processor

Figure 2: A Pipelined Searching Network as a Single-Server Queue




Conniplexits of parallel searchi on coarse grapied ek 131

Let A and 1 denote the average number of arriving queries and departing resulls per time uni,
respectively. That is, 1/4 is the period and 1/j1 is the average time between departing results
which is usually referred to as the service time. The queueing process is stationary if and only
it 1/ < 1/A; ie., if 1/ = 1/A then for an infinite sequence of queries the lerigth of the queue
becomes arbitrarily large ({(P84], p. 373). Since the entire searching network has only finite
memory available, it follows that if 1/u = 1/A then the network must overflow after a
sufficiently long sequence of queries. Hence, the period has to be larger than the service time.
Since Pj needs time (—)(Iog?\?:@(log n), for n >> N, tc process one query, the service time is at

least Q(log n) and, thus, Part b follows. *

From Theorem 1 it follows that the total time to perform pipelined search for m queries on a
bounded degree network with N processors storing n elements is (D + m log n) in the worst
case. However, the same problem can be solved on a single processor storing n elements in time
O(m log n) in the worst case; i.e., a single processor is at least as fast or may be even faster

than an N-processor network.

3 THE AVERAGE CASE COMPLEXITY OF PIPELINED SEARCH
ON COARSE GRAINED NETWORKS

The above worst case lower bounds are based on the fact that all queries may refer to records
in the same subsequence Sj stored in processor Pj. Obviously, this is not very likely to happen.
Hence, from a practical point of view, it is also important to study the average case complexity

of pipelined search on coarse grained networks.

In the following, we will present an algorithm to perform pipelined search on a bounded
degree network with optimal expected period and latency of O{1) and O(Din + Doug+lognﬁ),
respectively; here, Din and Doyt denote the expected minimum distance from the input and
output processors, respectively, to an arbitrary processor Pj. However, this results holds only
if n is bounded from above by a function f(N, ...) which grows exponentially with N.

For the given bounded degree processor network, the standard single-source shortest path
algorithm (JAHU76], p. 207) determines the shortest path from the input processor to every
one of the other processors. These shortest paths define a spanning tree of the network which
will be referred to as the routing tree. Likewise, the shortest paths from all processors to the

output processor define the report tree.

.oon .
The elements are stored such that every processor contains elements in sorted order and

the concatenation of these sorted subsequences, defined by the inorder traversal of the
processors with respect to the routing tree. is again a sorted sequence. Hence, every query s can




132 S.G. Akland F. Dehne

be easily routed on its shortest path along the routing tree from the input processor to the
processor Pj with s e [minj,maxj].
Note that for the above distribution of records, Assumptions A1 to A3 of Section 2 hold.

In addition to the data structure for searching S; sequentially, every processor P; maintains
two queues for storing pending queries and results which will be referred to as the search queue

and the report queue of Pj, respectively.

The pipelined search algorithm consists of three processes which are executed

simultaneously on all processors.

The routing process.
Every query s arriving at the input processor is sent via the routing tree to the
processor Pj with s € [min;,maxj]. There, s is inserted at the end of the search queue of

Pi.

The searching process.
Every processor Pj continuously removes the first query s from its search queue, if
one exists, and tests whether s € S;. The result is inserted at the end of the report queue

of Pj.

The reporting process.
Every processor P; continuously removes the first result from its report queue, if one
exists, and sends it to its successor on the shortest path from P; to the output processor
(as defined by the report tree).
Every processor receives the results from its predecessors in round robin fashion and

inserts them at the end of its report queue.

In the remainder of this section we will study the average-case behavior of the above algorithm
under the following assumptions:
Ad) For each processor Pj, the time to search its subsequence S; sequentialy is

¢ =& logy;.- (1)
A5) The arrival of queries at the input port is a Poisson process with period Te O(1); i.e.,
et atk 1
P{ni=k} = =7 o= (2)
where ni is the number of arriving queries within a time period of length t ([P84], p.

210).
AB) The probability is 1/N that the element searched for by a given query resides in a

particular processor.




Complexity of paratlel scarch on coarse grained nerworks 133

A7) The period T of the query stream is larger than the time to send a query result from one

processor to an adjacent one.

Lemma 1.
(a) The expected length of the search queue of an arbitrary processor P is constant if and
only if
In
neN2°
(b) The expected length of the search queue of an arbitrary processor Pjis at most a
constant L provided @”a_t_ B
T(an/ L2+1)
3 N
nsN2
(c) The expected length of the report queue of an arbitrary processor Pj is constant.

Proof. (a) Consider the search queue at an arbitrary processor Pj (see Figure 3). From
Assumptions A5 and A6 it follows that the period of the queries, s, which have to be handled by
P, (i.e., s € [minj,maxi]) is NT. Hence, the arrivals of these queries at Pi's search queue are a

Poisson process with

e'M()\,t)k
P{ni=k} = —— (3)
where A= —NLT- (4)

On the other hand, it follows from Assumption A4 that the time ¢ between two results departing
from Pj's search queue is fixed (for given n and N). Hence, the queue at Pj is an M/D/1 queue
(see [P84], p. 375). With
p:=Ac (5)
it follows from (1) and (4) that
Elogn-&logN

N . (6)
The queue is stationary (see [P84], p. 373) if and only if
pet (7)

i.e., if p < 1 then the expected length of the queue is a constant, otherwise it becomes
arbitrarily large. Hence, it follows from (6} and (7) that the expected length of the queue is a

constant if and only if
T

n<N2°
(b) In order 1o prove Part b, we use the fact that the expected length E(q) of an M/D/1 queue
is (see [P84], p. 375)
) pzp) (8)
2(1-p)
Hence, E(q) is at most a constant L if and only if
p2 - 2p(L+t)+2L = O (9)




134 S.G Akland F. Dehne

which is equivalent to

p = LotV 241 , since p<1 because of (7). (10)
On the other hand, (6) is equivalent to
To
<N
n=N2"> (11)

and substituting (10} in (11) we get
T (LH-\/ L241) N
n=N2 5 ~ (12)
That is, for this value of n, E(q) is at most a constant L and, hence, Part b follows since for all

smaller n, the time ¢ between two outgoing results from P; decreases (see Equation 1) and
therefore also the expected length of the queue.

(c) For every report queue, the period of the input stream is at least T. From Assumption A7
it follows that T is larger than the period of the output stream of the report queue. Hence, the
report queue is stationary; i.e., its expected length is a constant (see [P84], p. 372). ¢

T

!
L

queries results

Figure 3: The Searching Process

Theorem 2.
(a) The pipelined search algorithm has constant expected period Te O{1} which is optimal.
{b) it has optima!l expected latency O(Din+ Doyt +lognﬁ), where Djn and Doyt denote the
expected minimum distance from the input and output processors to an arbitrary
processor Pj, respectively.
e,
n<N2 X

(c) The expected search queue length is is at most a constant L provided that




Complexity of parallel search on coarse grained networks 135

Proof. This follows immediately from Lemma 1. *

As indicated in Table 1, L+1—\/ L2+1 is already sufficiently close to 1 for values of L as

small as 5.

L+1-\/L2+1
.5858
.7639
.8377
.8769
.9010
L9172
.9290
.9377
.9466
10 .8501
100 .9950
1000 .8995

OO ~NOOUH WM -

Table 1: Some Values of L+1-V L2+ 1

To iilustrate the significance of Theorem 2 in practice, consider for example an Intel iPSC
hypercube with N = 512 and L = 5. Table 2 shows the upper bounds on the number of elements

per processor, as indicated by Lemma 1, for several values of T/ (where T is the desired
sequential search time in a sorted list of x items

period and § = log x ).
T/é 2(.9010°512) T&
1 7.4 x 10138
.5 2.7 x 1089
1 7.7 x 1013
.05 8.8 x 106

.01 24
Table 2: Maximum Number of Elements Per Processor for N=512 and L=5
REFERENCES

[{AHU78] A. Aho, J.E. Hopcroft, J.D. Ullman, "The design and analysis of computer algorithms”,
Addison-Wesley, 1876.

[A88] S.G. Akl, "The design and analysis of parallel algorithms”, Prentice-Hall, 1988, in print.

[S85] M. Snir, "On parallel searching”, SIAM J. Comput. 14:3, 1985, pp. 688-708.

[DS87] F. Dehne and N. Santoro, "Optimal VLSI dictionary machines on meshes”, in Proc. Int.
Conference on Parallel Processing, St.Carles, Ill., 1987, pp. 832-840.

[Ds88] F. Dehne and N. Santoro, "An optimal VLS| dictionary machine for hypercube

architectures”, to appear in Proc. Workshop on Parallel and Distributed Computing, Bonas
(France), 1988.

[P84] A. Papoulis, "Probability theory, random variables, and stochastic processes”, McGraw-
Hill, 1984,




136

[L79]

[OB87]

[ORS82]

[SA85]

[SL87]

[8885]

(us4]

S.G. Akland F. Deline

C.E. Leiserson, "Systolic priority queues”, Report CMU-CS8-79-115, Carnagie-Mellon
University, April 1979,

A.R. Omondi, J. Dean Brock, "Implementing a dictionary on hypercube machines”, Proc.
1987 Int. Conf. on Parallel Processing, St. Charles, Hil., 1987, pp.707-709.

T.A. Ottman, A.L. Rosenberg, L.J. Stockmeyer, "A dictionary machine for VLSI", IEEE
Trans. on Computers C-31, Sept. 1982, pp.892-897.

A K. Somani, V.K. Agarwal, "An efficient unscrted VLS| dictionary machine”, /[EEE Trans.
on Computers C-34, Sept. 1985, pp.841-852.

AM. Schwartz, M.C. Loui, "Dictionary machines on cube-class networks", /EEE Trans. on
Computers C-36, Jan. 1987, pp.100-105.

H. Schmeck., H. Schréder, "Dictionary machines for different models of VLSI", /EEE Trans.
on Computers C-34, 1985, pp.472-475.

J.D. Utiman, “"Computational aspects of VLSI", Computer Science Press, Rockvilie, MD,
1984.






