OPTIMAL VISIBILITY ALGORITHMS FOR BINARY IMAGES ON THE HYPERCUBE
-preliminary version-
FRANK DEHNE . .
Center for Parallel and Distributed Computing, School of Computer Science, Carleton University,
Ottawa, Canada K1S 5B6. Research partially supported by the Natural Sciences and Engineering
Research Council of Canada under Grant A9173.

QUOCT. PHAM
Dept. 7H65, Bell-Northern Research, P.O. Box 3511, Ottawa, Canada K1Y 4H7.

IVAN STOJMENOVIC

Department of Computer Science, University of Ottawa, Ottawa, Canada K1N 9B4.

1. INTRODUCTION _ .

Consider a n x n binary image = with pixels (i), 1<i<n2, numbered in row-major
ordering. Given a direction D, the parallel visibility problem consists of determining for
each pixel of the image the portion that is visible (i.e., not obstructed by any other black
pixel of the image) in direction D from infinity. A related problem, referred to as point
visibility, is to compute for each pixel the portion that is visible from a given point p.

In this paper, we improve the results in [2] and derive O(log n) time SIMD algorithms
for thsse two problems on the hypercube, where processor P(i) is assigned to pixel =(i),
1<i<n?. Since the worst case communication distance of two processors in a n2 -processor
hypercube is 2 log n, it follows that both algorithms are asymptotically optimal.

2. PARALLEL VISIBILITY

The basic geometric idea for the algorithm for parallel visibility is to divide the image =
into strips parallel to direction D, where each strip is the portion of light goin%through the
top edge of a Pixel in the top row of the image (as if were unobstructed){\jany black
pixel). We shall assume without loss of generality that the angle B between the North-South
direction and the direction D (in counter-clockwise direction) is between 0 and 459;
otherwise, the algorithm can be obtained similarly by symmetry. Let wg and w = cos(gl)wo
denote the width of a (square shaped) pixel and the width of a strip, respectively. Since
0<B<459, (V2/2)wpswsw(; this yields Property 1 ([1]): No pixel =(i) is properly
contained In a strip (i.e., every n(}s intersects either the left or the right border of its
striW and every pixel intersects at most two strips.)

e further divide each striF into segments, where a segment is the portion of a strip
contained in one row of pixels. Since 0sB<459, each segment intersects at most two
neighboring pixels in the respective row; the leftmost of these will be referred to as the
representative pixel of the segment. For each segment, we define the black interval to be the
projection of the black portion of the segment on the cross-section of the strip; the white
interval is the complement of the black interval (with respect to the cross-section of the
stripe). The projection of the visible portion of the segment on the cross-section of the strip
will be referred to as visible interval of the segment. Note that, from Property 1 it follows
that each white as well as visible interval consists of at most one connected component.

In the remainder of this section, we will first show how to compute for each segment its
white interval and, then, how to compute all visible intervals in time O(log n). We employ
two O(log n) time data movement operations on a hypercube defined in [3]: distribute and
concentrate. A special case of the distribute operation, which can be executed in the same
time, is the shift operation where every processor P(i) sends a record to the processor
P(i+k) in the same row. With this, all white intervals can be computed as follows: every
processor determines in O(1) time the segment it represents and the corresponding strip
number; then, using the shift operation, every processor examines its local neighborhood
and computes the white interval for the segment it represents in O(log n) time. The
geometric idea for computing all vigible intervals is the following: Consider, within each
strip, the sorted orderinlgI of the segments with respect to direction D such that the topmost
segment is the first in this ordering. The visible interval of each segment is the intersection
of the white intervals of its predecessors (the visible interval of the topmost segment is the
entire cross-section of the strip). Therefore, for each strip, the problem of computing all
visible intervals is a particular instance of the partial sum (or parallel prefix) problem
which can be solved on the hyPercube in time O(log n).

To solve the parallel visibility problem, for each strip in parallel a partial sum problem
has to be solved where the operands for the partial sum operation are the white intervals of
the segments and the associative binaéy operator is set intersection. However, the partial
sum algorithm assumes that the operands for each partial sum problem are stored in exactly
one sub-hypercube which, in general, is not the case for the white intervals of a strip. We
observe that the processors which store a row or column of pixels form a sub-hypercube.
Therefore, our strategy is to move (using the shift operation) each of the strips into a
column-subcube of the hypercube so that the partial sums, for all strips, can be computed
independently in O(log n) time. Finally the obtained visibility information is returned to the
original segment locations and propagated to the neighboring pixel in the segment.

Theorem 1: The parallel visibility problem for a digitized image of size nxn can be
solved on a d-dimensional hypercube, 29 = n x n, in time O(d)=O(log n).

. 3. POINT VISIBILITY
In order to determine the visibility from a point p, we will assume without loss of

F. Dehne, Q. T. Pham, and I. Stojmenovic, "Optimal visibility algorithms for binary
images on the hypercube - preliminary version," in Proc. Allerton Conference on
Communication, Control and Computing, Monticello, I11., 1988, pp. 1035-1036.

generality that the point p is located at the upper left corner of the image; otherwise, the

image can be split by the horizontal and the vertical lines through p into (at most) four

uadrants and the Froblem can be solved for each quadrant separately. In the remainder of

this section we will show how to compute for all pixels in the area below the 450 ray
emanating from p (again, all angles are defined with respect to the north-south axis and in
counter-clockwise direction) the portion that is visible from p. For_all pixels above the
ray, the visibility problem can be solved in a second analogous step. Consider the 22.59 ray
emanating from p. It splits the image (below the 45° ray) into two strips whose widths
(i.e., the horizontal distance between left and right border) increase with the distance from
p and will, eventually, exceed width wg which ensured that no pixel is properly contained in
a strip (cf. Property 1). At the level where the width of the rightmost strip reaches wo,
each strip is split again (by rays emanating from p) into two strips such that the angles
between the borders of the four strips are equal. When the width of the rightmost of these
four strips reaches wq, they are bisected again. This process is repeated until the entire
image below the 459 ray is covered. We define a sector to be the section of a strip between
two consecutive splittings. For every horizontal cut through the image, the width W_’ of the
leftmost sector intersected by the cut has the property wrswi=(1+tana/2)wr>(1/2)wy,
where wr is the width of the rightmost sector gi)ntersected by the cut) and o the angle
between the left and right border of the sector (0°9<0<22.59). Since (1/2)wgswrswg, and
the width of all other sectors on the cut is between wj and wy, we obtain for the horizontal
width w of any sector (along any horizontal cut) (1/4)wo<w<wg. This yields

Property 2: No pixel is properly contained in a sector (i.e., every pixel intersects
either the left or right border of its sector) and every pixel intersects at most four sectors.

Furthermore, we divide each sector into segments. A segment of a sector S is the portion
of S contained in one row of pixels. For each segment, the representative pixel and the white
interval are defined analogously to the parallel visibility problem. The sectors, together
with the relation "<" defined by "Sy1 < S2 if and only if the top horizontal border of Sp is
contained in the bottom horizontal border of S¢", form a binary tree which we will refer to
as sector tree. The point visibility problem can l)e solved by executing for every path from
the root to a leaf of the sector tree, for the white intervals of the segments of these sectors,
the partial sum operation. Compared to Section 2, the problem arising here is not only that
segments involved in a partial sum operation are (in general) not stored in a sub-
hypercube but also that segmfor the solution of this problem is to copy, for every path from
the root to a leaf of the sector tree, the segments of these sectors into a column sub-
hypercube. In order to do this efficiently, we utilize the q_enera/ize operation of [3]. The
point visibility problem can now be solved as follows (To simplify exposition, we shall
assume that every processor representing a pixel simulates four 'virtual' processors, one
for each of the at most four segments intersected by the pixel.):

(1)Every processor P(i) determines in constant time which segment, Seg(i), in which
sector, Sect(i), it represents (if any). (2) Since the sector tree is a complete binary tree,
every P(i) can also determine in constant time the column number, c(i), of the
representative pixel of the bottommost segment in the rightmost leaf-sector of the sub
sector tree rooted at Sect(i). If Sect(i) is a leaf-sector then c(i) is the column number of
the representative pixel of the bottommost segment of Sect(i). (3) Every P(i) determines
in time O(log n) the white interval, w(i), of Seg(i); see Section 2. (4) A generalize
operation is f.)erformed where, for every P(i) representing a segment Seg(i), the record to
be sent is w(i) and the destination address is the row major index, i*, of the pixel with the
same row number as n(i) and column number c(i). (It is easy to see that the requirement
i<j => dest(i)<dest(j) for generalize operations holds; see [3].) (5) After Step 4, for each
path from the root to a leaf of the sector tree, the white intervalls of the segments of all
sectors on the path are stored in a column subcube in sorted order. Therefore, for all paths
in parallel, the partial sum operation with respect to their white intervals can be computed
in time Oflog n). (6) The visible intervals obtained in Step 5 are returned from each P(i*)
to P(i), the processor storing the representative pixel of the segment. (This can be
implemented with time complexity O(log n) by using the concentrate operation.) Note that,
in Step 5, for all copies of the white interval of a segment the result of the partial sum
operation is the same. Finally (by using the shift operation), for each segment the visible
interval is sent in time O(log ngl from the representative pixel to the other pixel in its
segment (if exists).

heorem 2: The point visibility problem for a digitized image of size n x n can be solved
on a d-dimensional hypercube, =n x n, in time O(d)=0(logn).
REFERENCES

[1] F.Dehne, A. Hassenclover, J.-R. Sack, N. Santoro, Parallel Visibility on a Mesh-
Connected Computer, in: Proc. Int. Conference on Parallel Processing and Applications,
L'Aquila, 1987, pp. 173-180.

[2] F.Dehne, Q.T.Pham, Visibility Algorithms for Binary Images on the Hypercube and the
Perfect-Shuffle Computer, in: Proc. of the International Federation for Information
Processing WG 10.3 Working Conference on Parallel Processing, Pisa, 1988.

[3] D. Nassimi, S. Sahni, Data Broadcasting in SIMD Computers, /EEE Transactions on
Computers, Vol. C-30, No. 2, 1981, pp.101-106.

