AN IMPROVED NEW EMBEDDING FOR VLS! DICTIONARY MACHINES ON MESHES’

FRANK DEHNE and NICOLA SANTORO

Center for Parallel and Distributed Computing
Schoo! of Computer Science, Carleton University, Ottawa, K1S 5B6, Canada

Abstract

In [DS87] we have studied how to implement dictionaries on a systolic
mesh. The VLSI dictionary machines proposed in {DS87] consist of two
structures, a snake and a broadcast net , which are both embedded in
and operate simuitaneously on the same mesh. Insert, Delete, Search,
Extract Min, and Find Min can be performed with O(1) period, and the
response time for Search and Find Min operations is O(¥n) and O(1),
respectively. Furthermore, the proposed solutions are capable of
handling duplicate insertions and redundant deletions. The difference
in performance between the proposed machines rests solely in the size
of the constant, which depend on the simultaneous embedding of the
two structures in the mesh. The best performance could be achieved
by using a disjoint embedding. This embedding, however, had a major
drawback: it made a special additional type of processors called
‘relayers’ necessary. These processors are wasted in that they can not
store data. Furthermore, they make the implementation rather
complicated.

In this paper we present a new disjoint embedding which yields
optimal performance while avoiding any additional type of (wasted)
processors. The new structure is much more regular and much easier
to implement.

1. INTRODUCTION

A dictionary is a basic data type which allows for update and
retrieval operations. Because of its general and fundamental
capabilities, several researchers have studied the problem of
designing special-purpose VLS| chips implementing dictionaries.
Almost all proposed implementations are based on the complete
binary tree structure [AK85], [CCIR86], [L.79], [ORS82], [SA85].
From a theoretical viewpoint, the time to perform most of the
dictionary operations when using such a structure is O(log n).
Unfortunately, the practical layout of a binary tree leads to the
presence of "long" wires [PRS81); depending on conditions, models
ranging from O(1) to O(lenght2) may be appropiate for the delay to
traverse such a wire [MC80)], [CM81a). Furthermore, if the tree is
embedded in a systolic mesh [BC86], [GKS82), [BPP82], [G87],

Research supported by the Natural Sciences and
Engineering Research Council of Canada.

[YS87] or in a programmable grid [S82] of size ¥n x vn, the
maximum delay is at least Q(Vn).

Unlike trees, theoretical bounds on systolic meshes always
correspond directly to the actual performance of the VLSI
implementation. In [DS87] it is shown that the systolic mesh is an
efficient architecture for implementing dictionaries (even with added
priority queue operations) which can handle the problem of duplicate
insertions and redundant deletions. Insert, Delete, Search, Extract
Min, Find Min instructions can be sent to the dictionay in a pipelined
fashion and the answers (if necessary) are reported in the same order
in which the respective queries arrive.

The proposed VLS dictionary machines consist of two structures, a
snake and a broadcast net, which are both embedded in the same mesh
and operate on it simultaneously. Several implementations where
described, all having the following (asymptotically optimatl)
performance: operations Insert, Delete, Search, Extract Min, Find
Min can be performed with O(1) period, and the response time tor
Search and Find Min is O(¥n) and O(1), respectively. The difference
between the introduced implementation lies in the constant factors, in
aparticular a trade-off between performance (i.e., respénse time and
period) and link complexity (i.e., linear, quadrilateral, hexagonal,
octagonal).

The major problem encountered in designing an architecture with
optimal performance, i.e. maximum thoughput, (which needs an
octagonal mesh) is that a disjoint embedding of a snake and a broadcast
net in a mesh has to be found which also satisfies several additional
restrictions.

in [DS87] such an embedding was introduced. However, this
embedding included wasted processing elements which considerably
reduced hardware efficiency and , furthermore, made implementation
of the algorithm very complicated.

In this paper we present a new disjoint embedding which yields
optimal performance while avoiding any additional type of (wasted)
processors. The new structure is much more regular and much easier
io implement.

In the following section 2 we will describe the topologies of the
snake and broadcast net introduced in [DS87] and outline the
additional restrictions on the disjoint ombedding of both structures

F. Dehne and N. Santoro, "An improved new embedding for VLSI dictionary machines on
meshes," in Proc. International Symposium on Computer Applications in Design,
Simulation and Analysis, Reno, NA, 1989, pp. 113-116.

(in the mesh) which have imposed when both are simultaneously
operated.

In section 3 we will then introduce a new improved disjoint
embedding which yields a dictionary machine with optimal throughput
while avoiding the drawbacks encountered by the embedding described
in [DS87].

2. OVERVIEW OF THE DICTIONARY MACHINE PROPOSED IN
[DS87]

The VLSI dictionary machine described in [DS87] consists of two
known logical structures, a snake and a broadcast net, which are both
embedded in the same physical mesh and operate on it simultaneously.
All incoming search instructions are handed over to the broadcast net,
whereas all other instructions are executed by the snake. We will
now breifly outline these two structures and how they are
simultaneously executed on the same mesh (for more details consult
[DS87]).

2.1. The Snake

The snake is basically the well known linear array implementation
of a systolic priority queue (e.g., [L79], [KL84]). The records are
stored in increasing sorted order and without gaps, starting from the
/O port. The embedding of the snake in the mesh is such that (i)
every processor is contained in the snake exactly once, and (ii} the
leftmost 1/0O processor (which contains the minimum element) is
coincident with the upper left /O processor of the mesh; a possible
embedding is shown in figure 1.

Figure 1: A Snake Embedding in the Mesh

If only the snake is operated on the mesh, the latency for FindMin
queries is one time unit and two time units for ExtractMin and Delete

operations.

2.2. The Broadcast Net

The broadcast net is a systolic structure whose function will be the
handling of Search instructions. Its topology consists of two acyclic
directed graphs, G1 and G2, where:
- Gl is a spanning graph of the mesh with only one source.

- G2 is a subgraph of the mesh with only one sink, and whose sources
coincide with the sinks of G1.

- The /O processor of the mesh is the source of G1 and the sink of
G2.

A Search(k) instruction is "broadcasted" through G1; the respective

message contains a Boolean value denoting whether the record has been
found, and a field containing the record if found. The sinks of G1 will
then start a "reverse broadcast” process which has the final effect ot
collecting at the I/O port (the sole sink of G2} either the record (if it
is in the dictionary) or a negative acknowledgment.
The only additional constraint on the structure of the broadcast net is
that, if more than one message is received on the same graph by the
same processor at the same time, they must all contain the same
search key k.

A special class of broadcast nets is the one of broadcast trees :in a
broadcast tree, G1 is a directed binary tree rooted at the I/O port
where ali leaves have the same height, and G2 is coincident with G1
except for the direction of the edges which is reversed. In a broadcast
tree, each query is broadcasted down the tree (broadcast) and then,
starting from the leaves, the partial results move upwards towards
the 1/O port where the final result is computed (reverse broadcast).
For broadcast trees, the above additional constraint is equivalent to
the requirement that all leaves of G1 have the same height.

Figure 2: A Broadcast Tree

2.3. Interference between Snake and Broadcast Net

When embedding and operating both structures on the mesh, several
factors must be taken into consideration; in fact, most embeddings
would not archieve the desired performance and, even worse, would
not correctly perform the desired operations. In [DS87], these
factors have been identified and conditions established for a correct
operation of the machine; these conditions will in turn express
requirements for the embedding.

The problems encountered, when the snake and broadcast net are
executed simultaneously are the following:
- Snake and broadcast net may both need the same processor at the

same time.

- Snake and broadcast net may both need the commincation line
processor at the same time.

- Insert or delete operations handled by the snake may take several
steps until the data is actually inserted or deleted, respectively.
Meanwhile, a subsequent search operation handled by the broadcast
net may report an incorrect result.

- Delete operations cause the snake to shift all subsequent data to fill
the gap. This shifting process may result in broadcast messages not
finding the required data.

The first two problems can be easily solved by either splitting each
time step on the mesh into two phases, one for the snake and the
broadcast net, each. This solution, however, slows down the
throughput and response time of the dictionary by a factor of two. A
better solution is to find a disjoint embedding of the snake and
broadcast net in the mesh (this solves actually both problems as
desribed in [DS87]). Given such a disjoint embedding, the snake and
broadcast net can be run in parallel yielding maximum throughput and

response time.

The latter two problems can be solved by storing additional
information at each processing element P and slightly modfying the
snake and proadcats process. The amount of information has been
identified 1o be proportional do A(P) where A(P) is defined as follows:

For each processing element P let DIST(P) denote the number time
steps necessary for a search message to to travel from the /O port
to P, then

4A(P):= max{ |t(P)-t(P)} : P and P' are directly connected by an

edge in the snake}.

Furthermore, let 4 be the maximum A(P) for all PEs P in the

mesh.

The values A(P) as well as A are strictly dependent on the
interconnection between snake and broadcast net when embedded in the
mesh. In fact, given an embedding , these values and whether the
embedding is edge disjoint or shared completely characterize the
interference between snake and broadcast net.

Note that the constraint on PE's having a constant number of
registers implies that the only feasible embeddings (for our
technique) are the ones with Ae O(1); see [DS87] for more details.

3. THE L-EMBEDDING: A NEW IMPROVED DISJOINT
EMBEDDING

Since non-disjoint embeddings slow down the time performance of
the dictionary machine by a factor of two it is highly desirable to find
disjcint embeddings of the broadcast net and snake. Let us summarize,
which requirements such an embedding must meet :

The embedding consist of two structures

- a snake, i.e. a linear ordering of PEs connected by edges of the
mesh which contains each processor exactly once, and

- a broadcast tree, i.e. a spanning tree of the mesh rooted at the
1/0 port such that all leaves have the same hight

with the additional properties that

- the snake and the broadcast net are edge disjoint, and

- for each pair P, P* of PEs connected by an edge in the snake
|Dist(P) - Dist(P')] < D for some constant D.

Disjoint embeddings are not as simple to derive and do not exhibit a
regular pattern easily scaled to meshes of arbitrary size (see
{DS87]). In [DS87] such an embedding was introduced. However, this
embedding included wasted processing elements which considerably
reduced hardware efficiency and , furthermore, made implementation

of the algorithm very complicated.

We now present a new disjoint embedding, refereed to as I-
embedding, which yields optimal performance while avoiding any
additional type of (wasted) processors. The new structure is much
more regular and much easier to implement.

The broadcast net of the l-embedding is shown in figure 3; figure 4
shows the snake embedding (and broadcast superimposed). As it can be
easily see from both figures, the snake and broadcast are edge disjoint.
Furthermore, it follows that for each pair P, P' of PEs connected by

an edge in the snake |Dist(P) - Dist(P’}| < 3, i.e., A=3; see figure 5.

The l-embedding described here is also much simpler and much
more regular that the one described in [DS87].

Hence, it follows that the l-embedding yields a dictionary machine
with optimal throughput while avoiding the drawbacks encountered by
the embedding described in [DS87]. Figure 6 summarizes our results.

/XK
Ko DY
§ & D

X

Figure 3: Broadcast Tree of the L-Embedding (on a Mesh of Size 9x9)

(» > <

REFERENCES

[AK85] M.J. Atallah and S.R. Kosaraju, "A generalized dictionary
machine for VLSI", IEEE Trans. on Computers C-34, 2 (Feb.
1985), 151-155.

{BC86] D.A. Bailey and J.A. Cuny, "An sfficient embedding of large trees
in processor grids", Proc. 1986 Int. Conf. on Parallel
Processing, St. Charles, Aug. 1986, 819-822.

[BPP82] G. Bilardi, M. Pracchi, F.P. Preparata, "A Critique Of Network
Speed in VLS! Models of Computation”", IEEE J. Solid-State
Circuits, Vol. CS-17, Aug. 1982, pp. 696-702

[CCIR86] J.H. Chang, M.J. Chung, O.H. Ibarra, K.K. Rao, "Systolic tree
implementation of data structures”, Proc. 1986 Int. Conf. on
Parallel Processing, St. Charles, Aug. 1986, 669-671.

[CM81a} B.M. Chazelle, L.M. Monier, "A modal of computation for VLSI
with related complexity results” Proc. 13th ACM Conf. on
Theory of Computing, May 1981,

[DS87] F. Dehne, N. Santoro, "Optimal VLSI dictionary machines on

Figure 4: Broadcast Tree and Snake of the L-Embeddlng (On a Mesh of meshes”, Proceedings of the 1987 Conference on Paraliel
Size 9x9)

Processing, St.Carles, IL, August 17-21, 1987, pp. 832-840

[G87] D. Gordon, "Efficient Embeddings of Binary Trees in VLS|
Arrays", |[EEE Transactions gn Computers, Vol. C-36, No. 9,
Sept. 1987, pp.1009-1018

[GKS82] D. Gordon, I. Koren, G. Silberman, "Embedding tree structures in
VLS8! hexagonal arrays”, IEEE Trans. on Computers C-31, 9
(sept. 1982), 892,897.

[KL84] M.R.Kramer, J. v.Lesuwen, "Systolische Berechnungen und
VLS!", Informatik Spektrum 7, 1984, pp.154-165

[L79] C.E. Leiserson, "Systolic priority queues”, Report CMU-CS-79-
115, Carnagie-Mellon University, April 1979,

[MC80] C.A. Mead and L.A. Conway, Introduction to VLSI Systems,
Addison-Wesley, 1980

[ORS82] T.A. Ottman, A.L. Rosenberg, and L.J. Stockmeyer, "A
dictionary machine for VLSI", IEEE Trans. on Computers C-31, 9
(Sept. 1982), 892-897.

[PRS81] M.S. Paterson, W.L. Ruzzo, and L. Snyder, "Bounds on minimax
edge lenght for complete binary trees”, Proc. 13th ACM Symp.
on Theory of Computing, May 1981, 293-299.

[882] L. Snyder, "introduction to the Configurable Highly Parallel
Computer®, Computer Journal, Jan. 1982.

Figure 5: Distances of all Processing Elements from the /0 Port in an [SA85] A.K. Somani, and V.K. Agarwal, "An efficient unsorted VLS!
L-Embedding

layout

dictionary machine”, IEEE Trans. on Computers C-34, 10 (Sept.
1985), 841-852.

[YS87] H.Y. Youn, A.D. Singh, "On Area Efficient and Fault Tolerant
Tree Embedding in VLSI", Proc. 1987 Int. Conf. on Parallel
Processing, St.Charles, Ill., Aug. 1987, pp. 170-177

performance non-disjoint disjoint
(time units)
(maximum) period 4 4 2 2
find min 2 2 1 1
latency search 8Vn 4Jn 2Vn 2vn
hardware c-linear quadrilateral octagonat mesh octagonal mesh
mesh mesh

with (Vn-1)/2 without relayers
wasted relayers

[DS87] new

Figure 5: Summary of Results: Hardware vs. Performance

