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Abstract. A systolic screen of size M is a M x VM mesh-of-processors where each processing
element Pjj represents the pixel (i,j) of a digitized plane I of VM x VM pixels. In this paper we
study the computation of the Voronoi diagram of a set of n planar objects represented by disjoint
images contained in J1. We present oNﬁ) time algorithms to compute the Voronoi diagram for a large
class of object types (e.g., points, line segments, circles, ellipses, and polygons of constant size) and
distance functions (e.g., all L, metrices).

Since the Voronoi diagram is used in many geometric applications, the above result has numerous
consequences for the design of efficient image processing algorithms on a systolic screen. We obtain,
e.g., an O(W) time systolic screen algorithm for "optical clustering”; i.e., identifying those groups
of objects in a digitized picture that are "close" in the sense of human perception.

1 INTRODUCTION

Consider a digitized plane I of size M, i.e. a rectangular array of M lattice points, or pixels, with
integer coordinates (i,j)e {1,..., N}Z, and a set Iy, ..., I of n disjoint images in I1 where an image
(or digitized picture) |, is defined as an arbitrary subset I; € IT.

In this paper we study efficient parallel algorithms for processing such images. We consider the
mesh-of-processors architecture; i.e., a set of m processors Pij (Lje {1,..., N}) arranged on a M
x VM grid where each processor is connected to its four direct neighbors, if exist. This architecture

is particularly useful for image processing, since n disjoint images |1, ..., I, in TI can be naturally
represented on a mesh-of-processors of size M: Every processor Pij has a color-register C-Reg(i,j)
with value
k if (i,j) € Ik (1<k<n)
C-Reg (i) =
0 otherwise
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For the remainder we will refer to a mesh-of-processors that represents a set of images as
described above as a systolic screen (see Figure 1).
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Figure 1: (a) Two Images in I1. (b) Systolic Screen Representation of these Two Images.

Systolic screen architectures have already been extensively used to manipulate images. A well
known existing system is the MPP designed by NASA for analysing LANDSAT satellite data [Re&4]. The
MPP consists of 16,384 processing units organized in a 128x128 matrix where each processing
unit, which has a local memory between 1K and 16K bits, represents a subsquare of pixels.

While most of the early applications of systolic screens considered "low level" image processing
operations such as contour extraction or connected component labeling, recent research has also
focussed on computing "high level" geometric operations on images. Miller and Stout [SM84], [MS85]
have proposed O(\/ﬁ) time algorithms for computing, e.g., the distance between two images, the
convex hull, diameter, and smallest enclosing circle of an image. Dehne, Sack, and Santoro [DSS87]
and Dehne, Hasenklover, Sack, and Sanotoro [DHSS87] have introduced O(ﬂ/l—) time algorithms for
computing all nested rectilinear convex hulls of an image and for solving visibility problems on a
systolic screen, respectively.

In this paper, we continue the study of algorithm design on a systolic screen, and consider the
problem of computing the digitized Voronoi Diagram. We present an 0(N> time solution for
computing the (digitized) Voronoi diagram of a set of n disjoint objects for a large class of object types
(e.g., points, line segments, circles, ellipses, and polygons of constant size). The algorithm can




compute the (digitized) Voronoi diagram for a number of distance functions which include, e.g., all Ly
metrices. !

Since the Voronoi diagram is used in many geometric applications, the above result has numerous
consequences for the design of efficient image processing algorithms on a systolic screen. In this paper
we will present an O(m) time systolic screen algorithm for "optical clustering”; i.e., identifying
those groups of objects in a digitized picture that are “close” in the sense of human perception.

2 DIGITIZED VORONO! DIAGRAMS

Consider a set S={s1,. . ..sn} of n geometric objects in R2 (e.g., points, line segments, polygons,
cicles, ellipses) and let d : R2 x R2- R+ be a distance function.
The well knownVoronoi diagram V(S) (see, e.g., [SH75]) partitions RZ2 into n Voronoi regions

V(si)= {xe R2 | d(x,si) s d(x,sj) for all jzi}.
Every Voronoi region V(s;j) consists of two disjoint parts, the interior

IV(si) = {xe R2 | d(x,si) < d(x,sj) for all j=i},
and the border

BV(sj) :=V(sj) - IV(si}.

BV(S) = 15% 0 BV(sj), the union of all borders, is usually referred to as the set ofVoronoi points of

V(S).

1 The problem of computing the digitized Voronoi diagram for point sets (for Euclidean and L metric) on a
mesh-of-trees architecture has recently been studied by Schwarzkopf [S88].
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Figure 2: Voronoi Diagram for a Set of Line Segments.

In the remainder of this section, we will present how to translate the Voronoi diagram definiton to the
digitized environment (see also [S88]).

We first introduce some definitions (cf., e.g., [Ro79] and [Ki82)):

. The direct neighbors of a pixel (x,y)e Il are the eight pixels (x+1, y), (x, y+1),
(x+1,y+1), and (x-1,y+1). The border I° of an image | is the set of all pixel of | which have
a direct neighbor in [1-. The interior of I, | - 19, is denoted by I°.




. A path from pe I] to qe I1 is a sequence of points p=po,...,pr=q such that pj is a neighbor of p;.
1, 1sisr. An image | is connected if for every p,qe | there exists a path from p to g consisting
entirely of pixels of I. An image | which is connected is referred to as an object.

. With each pixel p=(i,j) €Il we associate its cell <p>:= [i-0.5, i+0.5] x [-0.5, j+0.5] C
R2 and with each image | ¢ I1 its region

<I>= U <p>.

pel
. Conversely, we define for a set R ¢ R2 its image Im (R) := { pell|<p> n R # @}.

The digitized Voronoi diagram V4(S) can now be defined as follows:

Consider a set S={s1,...,sn} of n geometric objects sje <[I> such that <sj> n <sp = @ forizj;
that is, consider a set S of n objects from "real geometry” such that their image representations in []
do not intersect. Letd : R2 x R2- R+ be a distance function.

As described above, the standard Voronoi diagram V(S) induces a Voronoi region V(s;j) for each
object which consists of an interior 1V(sj) and a border BV(s;).

The digitized Voronoi diagram V4(S) again consists of n digitized Voronoi regions V4(si), one for
each object s;j. Each digitized Voronoi region consists of an interior IV4(si) and a border BV4(si)
defined as follows:

. BVd(si) = Im(BV(sj))

. IVa(si) = Im(V(sij)) - BVd(si).

That is, the border of a digitized Voronoi region is the image of the border of the respective standard
Voronoi region; the interior of a digitized Voronoi region consists of the remaining pixels in the image
of the respective standard Voronoi region.

Consequently, the set BV4(S) of all Voronoi pixels of the digitized Voronoi diagram is defined as

follows:

BV4(S) = 1<ki)<n Ba(si) ;

i.e., the Voronoi pixels of V4(S) are obtained by computing the image of the Voronoi points of V(S).




Figure 3: Digitized Voronoi Diagram for the Set of Line Segments of Figure 2.
(The Black Pixels Represent the Voronoi Pixels.)

Note, that Voronoi points which do not intersect <[> are not represented in the digitized Voronoi
diagram V(S) and that all Voronoi points which are contained in a cell <p>, pe [1, are represented by
one Voronoi pixel only.

In the following Sections 3 and 4 we will describe how to compute digitized Voronoi diagrams on a
systolic screen. To simplify exposition, we will first consider the basic case of a set of points and
Euclidean metric, and will then generalize our result to more general sets of objedts and distance
functions.

3 COMPUTING DIGITIZED VORONOI DIAGRAMS FOR POINT SETS AND EUCLIDEAN METRIC

Let S={s1,. . .,.sn} be a set of n points in <[>, and consider the Euclidean metric. (We assume that
Im(sj) N Im(sj)= @ for i#.)




We will now present an O(W) time algorithm for computing the digitized Voronoi diagram Vy(S)
on a systolic screen of size M. The algorithm assumes as input that Im(s¢),. . .,Im(sp) are
represented on a systolic screen of size M as described in Section 1. The digitized Voronoi diagram of S
will be reported by the systolic screen as follows:

Every processing element Pij has a Voronoi register, V-Reg(i,j), and upon termination of the
algorithm their values are

k if (i,j) € 1Vg(sk) (1<k<n)

V-Reg (i,j) =
{* if (i,j) € BV4(S)

Figure 4: Digitized Voronoi Diagram for a Set of Points.

Before describing the algorithm, we need to introduce the following notations:

. Given a point se R2 and radius re R, then B(s,r) := {xe R2/ d(s,x) < r} denotes the ball
with center s and radius r.

. The processor distance between two processors Pj; and Py is their manhatten distance [i-i'|
+ -7l




Algorithm DIG-VOR:
(1) Al Pij initialize their V-Register: V-Reg(i,j) « C-Reg(i,j)
(2) Fort:=1to VM do
(a) All Pj with V-Reg(i,j) = k > 0 send a message "k" to all Pyj within processor distance
Are 0(1) with V-Reg(i',j')=0 and <(i"j')> M B(sk,t) # &.
(b) All Pjjwith V-Reg(i,j) = 0 which receive only messages "k" set V-Reg(ij)« k.
All Pjj with V-Reg(i,j) = 0 which receive at least two different messages "k1" and "kp"
set V-Reg(i,j) « .
(d) All Pjjwith V-Reg(i,j) = k¢ which receive a message "kp" such that B(skq,t) M
<(i,j)> » @ and B(skp,t) N <(ij)> » & set V-Reg(i,j)<".

Theorem 1. Algorithm DIG-VOR computes, on a systolic screen of size M, the digitized Voronoi
diagram of a set S of n points in <[>, for Euclidean metric, in time ON M).

Proof. The minimum distance of a pixel (i',j')e B(sk,t+1) from some (i,j)e B(sk,t) is at most
Ae 0(1). Thus, in oder to send a message "k" from all pixels in B(sk,t) to the pixels in B(sk,t+1)-
B(sk.t), it suffices that each Pjj with <(i,j)>nB(sk,t)»@ sends a message "k" to all processors within
distance A. Hence, at time t, a processor Pj with <(i.,j)>nB(sk,1)#@ has either already received some
message or does now receive a message "k".

Consider a processor Pjj with all points in <(i,j)> closer to s than to any other si'. There exists some
minimum te {1, ..., m} such that <(i,j)> € B{(sk,t) but <(i,j)>nB(sk',1')=2 for all k'zk. Hence,
before time t, processors Pjj has not received any message yet and, at time t, gets only "k" messages.
Thus, at time t, Pjj sets its Voronoi register V-Reg(i,j) to k (Step 2b).

On the other hand, consider a processor Pjj with points xe <(i,j)> that have the same distance to two
objects sk and si'. For such a Pj, there exists some time te {1, ..., \/ﬁ} such that at that time it
receives a message "kq" and either at the same time or later receives a message "ko". In both cases,
Pjj sets its Voronoi register V-Reg(i,j) to * (Step 2c and 2d, respectively).

Thus, the correctness of algorithm DIG-VOR follows.

Since the execution of Step 1 and Parts a, b, ¢ and d of Step 2 take time O(1), each, the running time
of algorithm DIG-VOR is O(VM). ¢

4 COMPUTING DIGITIZED VORONOI DIAGRAMS FOR SETS OF OBJECTS AND CONVEX DISTANCE
FUNCTIONS

After having solved the basic case of point sets and Euclidean metric, we will now generalize our
result to other classes of objects and convex distance functions. It turns out that algorithm DIG-VOR
does not need many modifications to handle more general cases, too.




Theorem 2. The digitized Voronoi diagram of a set S={wq,. . .,wn} of n objects wj¢c <[I> for any
convex distance function can be computed on a systolic screen of size M in time O(\/—M) provided that
the following conditions hold:
(i) For any two objects w,w'eS, Im(w) n Im (W) = &.
(ii) For any object we S there exists an O(1) space description such the from this deecription it
can be decided for every pel] and te {1,.. .,\/ﬁ)} in O(1) time whether <p> n~ B(w,l) = @.
(iii)  There exists a constant Ae 0(1) such that for every we S, te{1,. . .,W}, and pell with <p>
N Bwt)=3:
min { d1(p,p")l pell, <p'>NB (W,t-1)2D } < A,
where dq refers to the Li-metric (processor distance).

Proof: Algorithm DIG-VOR needs only two minor modifications to handie the generalized case: B(s,r)
needs to be generalized to the given type of objects and the given distance function, and the value of A
needs to be adjusted to the particular case. While Condition i ensures that, again, the images of two
objects do not intersect, we need however two more conditions to show that algorithm DIG-VOR
performs corretcly and terminates after O(\fl\7l) steps.

In Steps 2a and 2d of the algorithm, intersection tests between a ball B(s,r) and a rectangle <p> are
performed. While such a test can clearly be executed in O(1) time for point objects and Euclidean
metric, this may no longer be the case for arbitrary objects and distance functions. In fact, the
processor performing this test does not only need the number of the oject but also the necessary
information about the object to compute the intersection test. Therefore, an O(1) space decription of
this information must be available, and the test must be executable in O(1) time; i.e., Condition ii
must hold.

For Step 2a of algorithm DIG-VOR, the processor distance A within that each Pjj has to scan all
neighbors and send a message k to all Pyj with V-Reg(i',j)=0 and <(i',j')> M B(sk.t) # & has to be
modified according to the type of objects and the given metric. Condition iii ensures that A is still
O(1), which may not be the case in general.

However, with the above conditions, the correctness of this modified algorithm DIG-VOR follows in the
same way as in the proof of Theorem 1, and its asymptotic running time does not change. Thus,
Theorem 2 follows. ¢

The number of classes and object types for which the conditions in Theorem 2 apply is faily large.
It contains all "simple” geometric objects that have an O(1) description and most of the standard
distance function; in particular, all L, metrices.




Corollary 3. On a systolic screen of size M, the digitized Voronoi diagram of a set of points, line
segments, circles, ellipses, and polygons of constant size can be computed, for any Lp-metric, in time
0(\/74) provided that their images do not intersect.

5 OPTICAL CLUSTERING ON A SYSTOLIC SCREEN

In [De86] we have presented a sequential technique for "optical clustering”, i.e., identifying those
groups of objects in a digitized picture that are "close” in the sense of human perception. Given a set of
n line segments in the Euclidean plane and a separation parameter re R, two line segments s and s' are
called r-connected if and only if there exists a ball with radius less than or equal to r intersecting s
and s'. The optical clustering with respect to separation parameter r is then defined as the partitioning
of the set of lines segment into equivalence classes with respect to the relation r-connected . In
[De86] it is shown that the transitive closure of the relation r-connected is equivalent to the
transitive closure of the relation Delaunay connected with respect to r obtained as follows:

Compute the Voronoi diagram of the set of line segments. Two line segments s and s' are Delaunay

connected if the Voronoi polygons of s and s' share a point that has distance of at most r from either

line segment.

Therefore, Theorem 2 provides a way of computing, on a systolic screen, the optical clustering
with respect to separation parameter r for any set of objects and distance function that have the
properties listed in Theorem 2. We compute the digitized Voronoi diagram as described in Sections 3
and 4 with the following minor modification:

For every message originating at an object and travelling through the systolic screen, as described

in algorithm DIG-VOR, its current distance from the object (i.e., minimum distance, with respect

o the given distance funtion, of the current processor to the object) is constantly updated. When a

message changes the register V-Reg(i,j) of a processor Pjj, the message's current distance from its

object is also stored in an additional register D-Reg(i,j). Every processor Pjj with C-Reg(i,j)=0
sets D-Reg(i,j)=0.
Consider for a given separation parameter re R the image [(r) consisting of all those pixels (i,j)
with D-Reg(i,j)<r, then the optical clustering of the object set with respect to separation parameter
r corresponds exactly to the set of connected components of the image I(r) (see [NS80] for a
definition of connected components of an image). In [NS80] it is shown that on a systolic screen of size
M, the connected components of an image can be computed in time O(W); hence, we obtain

Corollary 4. For any set S={wjy,. . .,wp} of n objects wj¢ <[I> and any convex distance function that
have the properties listed in Theorem 2, the optical clustering with respect to separation parameter r
can be computed on a systolic screen of size M in time 0(\[7\71 ).
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