A Massively Parallel Knowledge-Base Server Using a

Hypercube Multiprocessor

Frank Dehne

Center for Parallel and Distributed
Computing, School of Computer Science
Carleton University
Ottawa, Canada K18 5B6

Abstract

In this paper we study the parallel implementation of a
traditional frame based knowledge represeptation system for a
gencral purpose massively parallel hypercube architecture (such
as the Connection Machine). We show that, using a widely
available parallel system (instead of a special purpose
architecture), it is possible to provide multiple users with
efficient shared access to a large scale knowledge-base.
Parallel algorithms are presented for answering multiple
inference, assert and retract queries on both, single and
multiple inheritance hierarchies. In addition to theoretical time
complexity analysis, empirical results obtained from extensive
testing of a prototype implementation are presented.

1 Introduction

As outlined in [9, 27, 28], massively parallel architectures are
essential for computationaly intensive Al applications. Since
knowledge representation is an essential part of Al [22, 29],
several rescarchers have studied parallel architectures for
impiementing knowledge bases {1, 9, 11, 12, 16, 18, 20, 23,
24, 27, 28], The parallel knowledge representation systems
presented in the literature have, however, either been based on
special purpose parallel architectures or support only the
paratlelisation of one query at a time. The latter implies the
(economically infeasible) dedication of a massively parallel
computer to one single user (e.g. {11, 18]).

This paper is concerned with the design and implementation
of a traditional frame based knowledge representation system
{2, 3, 13, 17, 19] on a general purpose massively parallel
architecture. The considered architecture is a fine grained
hypercube multiprocessor like the 64K processor Connection
Machine [15, 27]. We show that, using such a widely available
parailel system, it is possible to provide efficient shared access
of muitiple users to a large scale knowledge base server; see
Figure 1.

We consider a parallel implementation of a standard frame
based knowledge representation system which answers
elementary queries such as top-dewn and bottom-up inference
queries and assert/retract queries [11] . Such a system could be
utilized as the foundational layers of a truly parallel reasoning

The first author's research is partially supported by the Natural
Sciences and Engineering Rescarch Council of Canada (Grant A9173).
The sccond author is currently on leave from the University of Sao
Paulo (Brazil), project BID/USP, and pariially supported by
CAPES/COFECUB (Grant 503/86-9). The third author's rescarch is
partially supported by the Bell-Northern Rescarch Graduate Award
Program. Hardware support from the Northeast Parallel Architecture
Center (Syracuse, NY) is greatfully acknowledged.

CH2915-7/90/0000/0660$01.00 © 1990 IEEE

Afonso G. Ferreira

Laboratoire de I'Informatique du
Paratlelisme - IMAG, Ecole Normale
Superieure de Lyon
69364 Lyon cedex (7, France

%

Andrew Kau-Chaplin

Center for Parallel and Distributed
Computing, School of Computer Science
Carleton University
Ottawa, Canada K15 5B6

system, see Figure 2. That is, it could be used as a parallel
implementation of Layers 1 and 2 in Figure 2. Parallelization of
the high~r levet layers has already been extensively studied [10,
14, 231, This could lead to an archiiecture where Layers 3 and
4 reside on multiple workstations being connected to a central
SIMD hypercube multiprocessor which supports layers 1 and
2.

Mores specifically, we show in this paper how to execute in
parallel a set of inference and assert/retract queries on a
knowledge base (with n frames) stored on a fine grained SIMD
hypercube multiprocessor (with N=n processors).

In Section 3 we study single inheritance hierarchies with
implicit storage [26]. We consider, in Section 3.2, multiple
bottom-up inference queries on single inheritance hierarchies.
We show that m<N bottom-up inference queries |11} can be
answered, in parallel, in time O(log n loglog?n + h log myi {or
O(h logn loglog?n) if frames can have an unbounded number
of children], where h is the height of the inheritance hierarchy.
In Section 3.3, we present a heuristic algorithm for answering
multiple top-down inference queries [11]. Our experimental
results, obtained from extensive testing of a prototype
implementation, show that a nearly optimal (100%) processor
utilization is obtained for a 70% load factor (number of
processors divided by number of queries). In our experiments,
the utilization never dropped below 75%, regardless of the load
factor and other parameters. Cur system adapts flexibly and
automatically to varying work loads in a close to optimal way
(providing a nearly constant product of response time and
number of queries). In Section 3.5 we study assert and rotract
queries, and show that they can be executed in essentially the
same time complexity as top-down inference queries. Note
that, ouar system can process all four kinds of queries
simultaneously, and that only direct communication between
adjacent processors 1s used in our algorithms.

In Section 4 we generalize our results to multiple inheritance
hicrarchies with explicit storage [26]. We outline how multiple
top-down inference queries, bottom-up inference queries, as
well as assert and retract queries can be answered in parallel for
a multiple inheritance hierarchy stored on a hypercube
multiprocessor. The time complexities for these operations are
atmost a O(loglog?n) factor larger than the complexities of the
respective operations on our parallel single inheritance system.

2 Preliminaries
2.1 Frame-Based Knowledge Representation

Semantic nets alternatively known as frame-based systems
have been widely studied [1, 2, 3, 9, 11, 13, 17, 19, 24, 25,

T Note that, in contrast to [11}, our timc complexity results also account
for the inter processor communication time.

F. Dehne, A. Ferreira, and A. Rau-Chaplin, "A massively parallel knowledge-base server using a hypercube
multiprocessor," in Proc. IEEE International Conference on Tools for Artificial Intelligence, Washington, D.C.,

1990, pp. 660-666.

F D
F. Dehne, A. Ferreira, and A. Rau-Chaplin, "A massively parallel knowledge-base server using a hypercube multiprocessor," in Proc. IEEE International Conference on Tools for Artificial Intelligence, Washington, D.C., 1990, pp. 660-666.

26], and several general purpose knowledge representation
tools have been designed based on them [2, 3, 11, 13, 17, 25].
There are many advantages to a frame based approach for
knowledge representation as detailed in [13, 19].

A frame language provides the designer of knowledge based
systems with an easy way to describe the domain objects to be
modeled and their relationships. In a frame-based system each
frame is used to describe an individual object or a class of
objects. For example in Figure 3, the class Ocean-Liner is
used as a prototype to describe all of the properties that are
common to all Ocean liners, such as the fact that they carry
paying passengers. The instance QE2, on the other hand, is a
trame that represents an individual instance of the class ocean-
liner. It specifies knowledge about a particular ocean liner, the
QE2, such knowledge might include the number of passengers
that the liner caries, or the QE2’s transatlantic crossing time.

Both classes and instances are represented by frames. Each
frame consists of a series of slots, where each slot is used to
represent a single fact about a particular class or instance.
Some slots many be explicit while others may inherit their
values from their predecessors in the hierarghy (implicit).

Ini this paper we will first focus on parallel single inheritance
frame based systems. In such systems the inheritance
hierarchy can be represented by a k-nary tree. Later, in Section
4, we will sketch how our approach can be extended to handle
mudtiple inheritance; i.e., the inheritance hierarchy has a more
general lattice structure.

2.1 Hypercube Multiprocessor

A hypercube multiprocessor is a set Py, ..., P, of p processors
connected in a hypercube topology; i.e., Pi and Pj arc
connected by a communication link if and only if the binary
representations of 1 and j differ in exactly one bit. In a
hypercube, there is no shared memory. The entire storage
capability consists of constant size local memories, one
attached to each processor.

2.3. Multi-Way Search On Trees And General
Graphs

Before presenting our parallel inference algorithms, we
introduce some notations and previous results on hypercube
algorithms which will be used in the remainder. In particular,
we use a procedure called multi-way search: Given a tree stored
on a hypercube multiprocessor, m search queries on that tree
are to be executed independently and in parallel. At each time
step, each query currently visiting a node of the tree decides
which adjacent node to visit next, and is then moved to that
node. Note that, each node can be concurrently visited by an
arbitrary number of queries.

More formally, let T = {V, E) be a tree of size k, height h,
and out-degree O(1), and let U be a universe of possible search
queries on T. A search path for a query ¢ € U is a sequence
path(q)=(vi, ..., vp) of h vertices of T defined by a successor
function f: (V U {start}) x U = V (i.e., a function with the
property that f(start,q) € V and for every vertex ve V,
(v.fiv,q)) € E). A search process for a query q with search
path (v, ..., vp) is a process divided into h time steps
ty<ty<...<ty such that at time t;, 1<j<h, query g is matched
with node vi. A march of a query q and a node vj at time tj is
defined as a situation where there exists a processor which
contains a description of both, the query q and the node v;.
Note, however, that we do not assume that the search path is
given in advance; we assume that it is constructed during the
search by successive applications of the functions f. Given a
set Q = {qi,..qm} ¢ U of m queries, m=0(k), then the multi-
way search problem consists of executing (in parallel) all m
search processes induced by the m queries. In {7, 8] it was
shown that the multi-way scarch problem can be solved on a

hypercube multiprocessor of size max{k,m} in time O(logk
loglog?k + h log k). It follows from [4, 7, 8] that for rees with
unbounded out-degree, as well as arbitrary graphs, the ume
complexity increases to Oth log k loglogZk).

Consider the problem of changing the tree T during the
execution of a multi-way search. That is, during the search
leaves may be added to and subtrees may be deleted from T,
and queries may duplicate or delete themselves when reaching a
node of T. This problem is referred to as the dynamic multi-
way search problem. In [5] it has been shown that this problem
can be solved on a hypercube multiprocessor of size max {k.m}
in the same time O(log k loglogZk + h logk). It follows from
[4, 7, 8] that for trees with unbounded out-degree as well, as
arbi.rary graphs, the time complexity increases to Oth logk
loglogZk).

3 A Paraliel Frame Based Knowledge
Server Supporting Single Inheritance
Hicrarchies With Implicit Storage

In this section, we will study the efficient hypercube
implementation of a knowledge base server supporting a single
inheritance hierarchy. We first describe, in Section 3.1, how to
store a frame based system on a hypercube multiprocessor, and
then, how this representation can be effectively used for
inference. We will be interested in answering two basic types
of elementary queries: bottom-up and top-down inference
queries [11]. These query are elementary and intended to serve
as a base upon which more complex query types can be defined
by higher level inference mechanisms (as depicted in Figure 2).

In the following Sections 3.2 and 3.3, we show how
multiple bottom-up and top-down inference querics can be
processed efficiently in parallel. To simplify exposition, we
will describe our inference methods for both query types
separately; it is however casy to see that both type of querics
can be processed simultancously.

3.1 Storing An Inheritance Hierarchy On A
Hypercube Multiprocessor

We require a scheme for distributing an inheritance hierarchy
over the local memories of a hypercube. Consider the leve!
numbering of the frames of an inheritance hierarchy as
indicated in Figure 4. For the remainder we will assume that
each frame with level number 1, together with its links and data,
is stored at processor Pj.

In many systems (e.g. [17, 25]), inheritance is
“precompiled” such that little or no searching is required to find
the value of a slot, even if the value derived from some
superclass via inheritance. While we will adapt such an
approach for our parallel multi inheritance knowledge base
server (Section 5), we will use an implicit representation for the
single inheritance system to be discussed in this section. That
is, in order to store a frame at a processor, we store only the
explicitly valued slots. For implicitly valued slots, there is no
reference necessary, since these values will be determined by
the inference mechanism.

3.2 Apswering Multiple Bottom-Up Infcrence
Queries

We first consider the parallel implementation of muliiple
bottom-up queries. Each bottom-up query, q(X), is of the
form “Does frame X meet conditions a through 2” or “What are
the values of slots a through z of frame X?”. “Is the Exxon-
Valdez an vehicle with color black and current-location
Alaska?” or “What is the weight the QE27™ are examples of
bottom-up queries based on Figure 3. Bottom-up queries are
always about a particular instance or class frame but, since we

are using an implicit representation, may require the
examination of all superclasses of that frame.

Querics will be represented by records of the form depicted
in Figure 6. Each "Current Value" field of a query's slot is
uscd to store the value of the respective slot at the frame the
query 1s currently examining.

Consider an inference hierarchy with n frames, stored on a
hypercube multiprocessor with N processors as described in
Section 3.1 (w.lo.g.,, n = N), and a set of msN bottom-up
inference queries where each query is stored at one arbitrary
processor. For the remainder, frames(i) and query(i) refer to
the query and frame (currently) stored at processor PE().

Figure 7 outlines a hypercube algorithm for answering, in
parallel, m bottom-up inference queries. It works essentially by
first matching the queries to the frames they refer to and then
shifting them through the tree towards the root until all slots
referred to in the query have been instanciated. As indicated in
Section 2.3, the problem of advancing all m queries one step
along their path (in the inheritance hierarchy) towards root
[Step 2¢} can be solved on a hypercube multiprocessor of size
n in time O(log n) if the number of children of each frame is
bounded by a small constant. For unbounded number of
children, each advancement all m queries takes time O(logn
loglog?n) {4, 7, 8].

The remainder of Step 2 consists of simple local, O(1) time,
operations. From [7, 8] and [4] it also follows that the initial
match in Step 1 can be executed in time O(log n loglog?n).

Summarizing, we obtain that all m<N bottom-up inference
queries can be answered, in parallel, in time O(log n loglog2n +
h lfogn) [or O(h logn loglog2n) if frames can have an
unbounded number of children], where h is the height of the
inheritance hierarchy.

3.3 Answering Multiple Top-Down Inference
Queries

Top-down inference queries, q(X), are of the general form
“Identify all frames in the subtree (of the inheritance hierarchy)
rooted at X such that conditions @ through z are true”. For
example, “Identify all instances of Sea-Vehicles with weight >
1000 tons and paying passengers = 07, or “Identify all classes
who are subclasses of Vehicle and have less-than 10 paying
passengers” are top-down inference queries based on the
hierarchy in Figure 3.

Again, queries are represented by records of the form
depicted in Figure 6. Each "Current Value” field of a query's
slot is used to store the (implicit) value of the respective slot at
the frame the query s currently examining,

Figures 8 and 9 outline our hypercube algorithm for
answering multiple top-down inference queries. Again, we
assume an inheritance hierarchy of n frames, stored on a
hypercube multiprocessor with N processors as described in
Section 3.1, and a set of m<N top-down inference queries
where each query is initially stored at one arbitrary processor.
Figure 8 shows the general structure of the algorithm. Steps 1-
3 are similar to our bottom-up inference algorithm. The result
of these steps is that each query, q(X), has for all the slots
which are specified in it, explicitly stored the implicit values at
frame X. What is left to do in the remaining steps is to scarch,
for every q(X), the subtree rooted at X. To this end, a search
token and control token are created for every query. Each
search token, for a query q(X), traverses (independently and in
parallel) in preorder the subtree rooted at frame X and
determines the answers to be reported; the details are described
in Steps 5d and 5e, together with Figure 9. Each control tokens
remains at the root of the respective subtree to be traversed,
indicates to the respective search token the end of its traversal,
and creates new assistant processes in the same way as search
tokens do. (Note that, the number of control tokens never

exceeds the number of search tokens.) The main idea leading to
a near optimal speedup (as will be shown in Section 3.4) is to
re-use processors released by queries which need to traverse
smaller subtrees to improve the performance of the search
processes for the larger subirees. This rescheduling mechapism
is described in Steps 5a-5c. After cach "round”, i.e. parailel
advancement of all search tokens by one edge in the preorder of
their subtree, processors from finished traversal processes are
given to unfinished traversal processes. Every token
determines, from the outdegree of the frame it is currently
visiting, how many "assistants” it could currently utilize, i.c.
ask them to search those subtrees independently and in parallel,
For the distribution of available processors, the following
heuristic is used: higher priority is given to those search tokens
with smaller level number, i.e. tokens that have (in the
expected case) the largest subtrees still to be searched.

For observing the correctness of the algorithm note that, the
above algorithm searches for every query q(X) the entire
subtree rooted at frame X, and that at every time a frame is
examined, all inherited values are present. Due to the
rescheduling procedure, the performance analysis for this
algorithm is more complicated than in Section 3.2 and will be
discussed separately in the next section.

3.4 Analysis And Experimental Results

In the previous sections we introduced two inference
algorithms. In the case of the bottem-up inference algorithm it
was possible to get a worst case bound on the algorithin's time
complexity. In the case of the top-down inference algorithm,
worst case analysis is more difficult. As in Section 3.2,
advancing all m tokens one step along their path can be
executed on a hypercube multiprocessor of size n i time O(log
n) (if the number of children of each frame is bounded by a
small constant) or in time O(log n loglog?n) (for unbounded
number of children); see Scction 2.3. The problem lies in
determining the number of such parallel steps required by our
algorithm, since at the heart of the method is a heuristic
rescheduling scheme that reallocates processors to queries. The
chellenge is to quantify how effective this reallocation
technique is.

[n order to test our mechanism, we have implemented a
prototype system and have performed extensive tests using
randomly generated hierarchies and sets of top-down inference
queries. We considered the following input parameters:

n = number of frames = number of processors,
m = number of queries,
k = max. number of children of a frame.

Figure 10 shows the result of our experiments for 16,000 node
hierarchies (n=16,000). The graph on the left depicts results
for hierarchies with unbounded k, while the graph on the right
shows results for hierarchies with a small value of k (k=K).
The x-axis in each diagram represents m, the nuinber of
queries, ranging from 1 to 16,000 in 1% increments. For each
value of m, 1000 experiments where performed, each with a
new randomly generated hierarchy and set of queries. The two
curves show the average number of parallel steps as well as the
average speed up. The speed up was measured by comparing
the number of parailel steps with the total number of steps
necessary for sequentially processing the same query set on the
same hierarchy. It measures the utilization of the massive
parallel architecture and, as our results show, a nearly optimal
utilization is obtained for a 75% load factor (number of
processors, n, divided by number of queries, m). The
utilization never dropped below 75%, regardless of the load
factor and other parameters.

The shape of the curves in Figure 10 can be explained by
two opposing effects. If there are only a few queries to be
processed (small load factor), these can not immediately

request enough assistants (due to the constraints of the
hierarchy) to utilize all processors. On the other hand, it is
important for large subtrees to receive assistants carly in the
traversal process. Hence, if the number of queries is close to
the number of processors, there are no (or only very few)
assistants available until the smaller trees have been traversed.
Therefore, it becomes likely for the larger trees, that late
arriving assistants can not be efficiently applied to the traversal.

3.5 Dynamic Knowledge Representation: Assert And
Retract Queries

We have described how m inference queries can be answered
etficiently on a static frame based inheritance hierarchy of n
nodes. We will now sketch how assert and retract queries can
casily be added to the system, thereby producing a truly
dynamic knowledge representation scheme.

Assert queries are queries that add knowledge to our
representation. There are three basic types of assertions:
assertion of a new slot value, assertion of a new slot (with
initial value), or lastly, assertion of a new class or instance
frame (complete with slots and values). Retract queries fall into
three analogous types: retraction of a slot value, retraction of a
siot, and retraction of a class or instance frame.

Assert and retract queries are executed simultaneously to our
search queries. From the semantic viewpoint, however, all
insert and retract submitted in one round (set of
inference/assertion/retraction queries to be processed in
paraliel) will be performed only after all inference queries in
that round have been answered. In addition, assertion and
retraction queries processed in parallel must be prioritized.
(For example, it is possible that several assert queries may
attempt to change the value stored in a particular slot and frame
in the same round. Which if any of these changes should have
a lasting effect?) We assume query priorities based on their
position in the set of submitted queries, i.e. queries submitted
towards the end of the list of queries (to be processed in
parallel) are considered to be executed (Iogically) after those
submiited earlier in the list.

Assert and retract queries can then be easily processed as
follows: Match the queries with the respective frames, using
the sorting algorithm in [4]; use the concentrate/distribute
operations in [21] to remove redundant assert and retract
queries; apply the dynamic multi-way search algorithm referred
to in Section 2.3 to insert/delete the required frames. All of
these operations can be computed, for all assert and retract
queries in parallel, in time O(log n loglog2n).

4 Multiple Inheritance Knowledge Bases
With Explicit Storage

In this section we sketch how the above single inheritance
System can be modified to obtain a multiple inheritance
knowledge base. While we used an implicit storage scheme for
the single inheritance system described above, we will apply an
explicit storage mechanism for obtaining a hypercube
implementation of a parallel multiple inheritance knowledge
base server. That is, we assume that in every frame, each slot
which is not explicitly valued contains pointers to all possible
slots from whom it can inherit its value, together with a
function computing from these values the actual inherited
contents. {13, 17, 25]

With such an explicit storage system, bottom-up inference
querics can be easily answered by matching the queries with
the respective frames, and then matching them with the frames
referred to by the pointers in the respective slots. Hence, all
bottom-up inference queries can be answered in time Odlogn
loglog®n); see Section 2.3.

For each top-down inference queries q(X), the problem
reduces to matching the query with the respective frames X,
and then traversing the subtree of all frames who have X as
their super class. Despite the fact that this subtree is not any
more in level ordering, as for top-down inference queries in
Section 3, the traversal algorithm presented in Section 3 can
essentially applied to this problem as well. The only difference
is that for advancing all search tokens by one step in their
preorder traversal, the sorting algorithm in [4] needs to be
applied; this results in a time complexity of Gllog n loglog?n}
per parallel advancement instead of O(log n); see Section 2.3,
Otherwise, the same analysis and experimental results as
shown in Section 3.4 apply.

The execution of assert and retract queries becomes
obviously more involved than in the implicit storage scheme. Tn
additon to the update/insertion/deletion of frames described in
Section 3.5, all possible pointers to those slots need also to be
updated. We observe, though, that for each update/insertion/
deletion of frame X it suffices to traverse the subtree either of
all ancestors or of all descendents of X, and update the pointers
in those frames' slots. Hence, we obtain a parallel (multiple
inheritance) assert/retract algorithm by adding to the assert/
retract algorithm in Section 3.5 the same multiple subtree
traversals as described in the previous paragraph. That is, again
the same analysis and experimental results as shown in Section
3.4 apply.

5 Conclusion

In this paper we showed how 1o execute in parallel a set of
inference and assert/retract queries on a shared knowledge base
(with n frames) stored on a fine grained SIMD hypercube
multiprocessor (with N=n processors). We studicd single
inheritance hicrarchies and showed that m<N bottom-up
inference queries can be answered, in parallel, in time O(logn
loglog?n + h log i) [or Ofh log n loglog?n) if frames can have
an unbounded nurmber of children], where h is the height of the
inheritance hierarchy. We presented a heuristic algorithm for
answering multiple top-down inference queries; our
experimental results showed that a nearly optimal (100%
processor utilization is obtained for a 70% load factor (rumber
of processors divided by number of queries). We also outlined
how assert and retract queries can be executed with essentially
the same time complexity as top-down inference querics. We
finally sketched how our system can be modified 1o manage
multiple inheritance hierarchies with explicit storage.

Acknowledgements
We acknowledge the assistance of Alain Bonopera, Kevin

Bourgault, Vincent Ho, Joel Lucuik, and Desmond Weong i
implementing the prototype and multi-way scarch.

References
[1] L.. Bic, "Processing of semantic nets on dataflow
systems,” Artificial Intelligence, Vol. 27, 1985, pp.
219-227.
12} D. G. Bobrow and T. Winograd, "An overview of

KRL, a knowledge representation language,”
Cognitive Science, Vol. 1, 1977, pp. 3-46.

13} R.J. Brachman and J. G. Schmolze, "An overview of
the KL-One Knowledge Representation system,”
Cognitive Science, Vol. 9, No. 2, 1985.

(4] R. Cypher and C. G. Plaxton, "Deterministic sorting
in nearly logarithmic time on a hypercube and related
computers,” to appear in Proc. ACM Symposium on
Theory of Computing, 1990.

{81

(9]

(11]

171
f18]

[19]

[20]

[21]

{22

F. Dehne, A. Ferreira, and A. Rau-Chaplin, "Parallel
branch und bound on fine grained hypercube
multiprocessors,” to appear in Parallel Computing.

F. Dehne, A. Ferreira, and A. Rau-Chaplin, "Parallel
branch and bound on a hypercube multiprocessor," in
Proc. IEEE Int. Workshop on Tools for Artificial
Intelligence, Herndon, VA, 1989, pp. 616-622.

F. Dehne, A, Ferreira, and A. Rau-Chaplin, "Parallel
fractional cascading on a hypercube multiprocessor,”
to appear in Proc. Allerton Conf. on Communication,
Control and Computing, Monticello, 111., 1989.

F. Dehne and A. Rau-Chaplin, "Implementing data
structures on a hypercube multiprocessor and
applications in parallel computational geometry,” to
appear in Journal of Parallel and Distributed
Computing.

J. G. Delgado-Frias and W. R. Moore, "Parallel
architectures for Al semantic network processing,”
Knowledge-Based Systems, Vol 1, No. 5, 1988, pp.
259-265.

M. Dixon and J. d. Kleer, "Massively parallel
asumption-based truth maintenance,” in Proc.
Proceedings of the Seventh National Conference on
Artificial Intelligence, 1988, American Association for
Artificial Intelligence, pp. 199-204.

M. Evett and J. Hendler, "Parallel knowledge
rgprcwnmtion on the Connection Machine," in Proc.
Parallel Computing 1989, Leiden, The Netherlands,
1989.

S. E. Fahlman, G. E. Hinton, and T. J. Sejnowski,
"Massively parallel architectures for Al: NETL, Thistle
and Boltzman machines," in Proc. AAA! Annual
Canference on Artificial Intelligence, 1983, pp. 109-
113,

R. Fikes and T. Kehler, "The role of frame-based
representation in reasoning,” Communications of the
ACM, Vol. 28, No. 9, 1985, pp. 904-920.

A. Gupta, "Parallelism in production systems,”
Camegie-Mellon, 1936.

W. D. Hillis, The Connection Machine(Ed.), MIT
Press, USA, 1985,

K. Hwang, J. Gosh, and R. Chowkwanyun,
"Computer architectures for artificial intelligence,”
Computer, Vol. 20, No. 1, 1987, pp. 19-27.
IntelliCorp, "KEE: Core Reference Manual," 1986.

B. Israel and J. Hendler, "A highly parallel
implementation od a marker passing passing
algorithm,” Tech. Report No. CS-TR-2089, Dept. of
Computer Science, University of Maryland, College
Park, 1988.

M. Minsky, "A framework for representing
knowledge," in P. Winston (Ed.), In The Psychology
of Computer Vision, McGraw-Hill, New York, 1975,
pp. 211-277.

D. I. Moldovan and Y.-W. Tung, "SNAP: a VLSI
architecture for artificial intelligence,” Journal of

Parallel and Distributed Computing, Vol. 2, No. 2,
1985, pp. 109-131.

D. Nassimi and S. Sahni, "Data broadcasting in SIMD
computers,” IEEE Transactions on Computers, Vol.
30, No. 2, 1981, pp. 101-106.

A. Newell, "The knowledge level," Artificial
Intelligence Magazine, Vol. 2, No. 2, 1981, pp. 1-20.

[23] J. Rice, "The advanced architectures project,”
Artificial Intelligence Magazine, Vol. Fall, 1989, pp.
27-39.

[24] P. S. Sapaty, "A wave language for parallel
processing of semantic networks," Comput. Artificial
Intelligence, Vol. 5, No. 4, 1986, pp. 289-314.

125] M. J. Stefik, M. Bobrow, D. G. Mittal, and L.
Conway, "Knowledge programming in LOOPS:
Report on an experimental course,” Arzificial
Intellegence, Vol. 4, No. 3, 1983, pp. 3-14,

126] D. S. Touretzky, The Mathemaiics of Inherizance
Systems(Ed.), Morgan Kaufmann Publishers, Inc,
Los Altos, CA, 1986.

1271 L. Uhr, Multi-Computer Architectures for Artificial
Intelligence(Ed.), John Wiley & Sons, 1987.

(28]} B. W. Wah and G.-J. Li, "A survey on special
purpose computer architectures for AL" SIGART
News, Vol. 4, No. 96, 1986, pp. 28-46.

[29] W. A, Woods, "What's important about knowledge
representation?,” Computer, Vol. 15, No. 10, 1983,
pp. 22-29.

%%
N

Large
Shared
Knowledge
_Base

-
-
j? -
-
- P
‘ _/'
-
- ’
v

t’ ’
- s
’

(XY} .

Figure 1. Many Users Sharing a Single Large Knowledge- Base
Server.

(Knowledge Based Application

Forward Backward Truth
.) (X ¥
Chaining Chainin: Maintanance,

{nference and Retraval Mechanism

Knowledge Representation Scheme 1

Figure 2. A Layered View of & Knowledge-Base Application.

Key.) . _
SubClass-Of link: e) Vehicle ("uré C al
Instance-Of link: = - - /’/l Jehicle

Air-Vehicle
M
-
.

-

Spirt-of-St-Loius Cgygo-Ship Ocean-Liner Pleasure
/7(RADLE Craft

Qil-Tanker Container-Ship QE2 Titantic Q@m

Exxon-Valdez

Figure 3. An Example of an Inheritance Hierarchy

Figure 4. Level Numbering of the Nodes of a Single Inheritance
Hierarchy

(Frame Name: Oil-Tanker Frame Index: 9 Frame Type: Class

Slots
Name: Cargo Explicel Value:Oil Inherited Value: Unknown
Name: Max-8peed Explicet Value:Unknown Inherited Value: Unknown

Lirks
SuperClass-Index: 5 SubClass-in dices: None Instances-indices: 15

Figure 5. A Frame record representing the class Oil-Tankers

Query Type: Bottom-Up Root Name:Sea-Vehicles Root Index: 2

Slot1 Name: weight Current Value: 2089
Slot2: Name: paying-Passages Current Value: Unknown
Condition: (weight » 1000) and {pa ying-passagors = 0)

Completed: False

_ Figure 6. A query record representing the bottom-up query
“Identify all instances of Sea-Vehicles with weight > 1000 tons
and paying passengers =

Algorithm 2: Answering Multiple Top-Down Inference Queries

1
2

3

4

3

) Match each query g(X) with the frame X it refers to.
) As long as there is still a processor PE(i) storing a query
with Completed = False, repeat the fcliowing:
2a) Every PE(): If any slot in frame(i) is explicitly valued,
and query(i) refers 1o the same siot but is currently
unvalued, set the value of that slot of query{i} tc the
value given in the frame.
2b) Every PE(i): If all necessary slots referred to in
query(l) have been instantiated, check the condition,
and set Completed to True,
2c) Use multiway search to advance all guery(i) with
Completed = Faise one step along their paih (in the
inheritance hierarchy) towards root; ie., match them
with the ancestor of the frame currently examined.
) Match each query g(X) with the frame X it refers to.
) Split each query q(X) into two tokens, a search token search
token and a control token control-token. Each token contains
a copy of the original query. Each search token at frame X is
responsible for searching the subtree rooted at the first child
of frame X; each contiol token at frame X is responsible for
searching (or having searched) the subtrees rooted at the
other children of frame X.
) As long as there is still a processer PE() storirg an
unanswered query q(X), repeat the foliowing:
5a) Count the number F of free processors. A free
processor is a processor that is currently not
supporting any search token.
5b) Each token t calculates the number a(t) of assistants it
could currently use. A control token can always use as
many assistants as it has remaining subtrees tc search.
A Search token can always use as many assistants as
there are unsearched subtrees at the frame it is
current currently visiting. F new search tokens
(assistants) are created and matched with the existing
(search and control) tokens in order of the level
numbering of their frames, each receiving a(t)
assistants until all new tokens are distributed.
5c) For each token that has been allocated assistants in
Step 4, assign a child whose subtree has not been
searched yet to sach assistant, maich the assistants
with those children, create for each a corresponding
controi token, and have them search the rsspective

subtrees.
5d) Execute "Process-Search-Tokens" as shown in Figure
9.

5e) Use multi-way search to advance all search tokens.

Algorithm 1: Answering Multiple Bottom-Up Inference Queries

1) Maitch each query q(X) with the frame X it refers to.
2) As long as there is still a processor PE(i) storing an
unanswered query(i), repeat the following:
2a) Every PE(i): If any slot in frame(i) is explicitly valued,
and query(i) refers to the same slot but is currently
unvalued, set the value of that slot of query(i) to the
value given in the frame.
2b) Every PE(): If all necessary slots referred to in
query(i) have been instantiated, check the condition,
report the result, and delete the query.
2c) Use muiti-way search to advance all query(i) with
Completed = False one step along their path (in the
inheritance hierarchy) towards root; i.e., match them

L with the parent of the frame currently examined.
Figure 7. Hypercube Algorithm for Answering Multipie Bottomn-
Up Inference Queries

Figure 8. Hypercube Algorithm for Answering Multiple Top-
Down Inference Queries

Procedure "Process-All-Search-Tokens”

5d) Every PE(i} storing a search token:
) For every slot | in frame(i) which is explicitly valued,
if query(i) refers to the same slot then

if

then

else

3) If the search token has not yet arrived at its
controt token
then select, as frame to be visited next, the next
nede in the preorder traversal

else if

the last node visited by the search token
was the parent of frame(i)

the inherited value for slot j of frameli) is
the current value of slot | of the search
token; the explicit value of siot j (if any)
of frame(i) becomes the current value of
slot | of the search token; check the query
condition and report the result (if
condition =true).

the explicit value of slot j (if any) of
frame(i) becomes the current value of slot
j of the search token.

the search token's’ corresponding control
token has additional subtrees to be
searched

start traversing one of those subtrees
delete both, the search token and the
corresponding control token, and release
the processor.

Figure 9. Processing of Search Tokens

Phases

Paratlel

Rel. St. Dev < 12%

0 T T
0 4K 8K

Rel. St. Dev < 14%

Speedup

T
(=]
o

%o

r 80%

o
=]
o 0
[:}] @
[7]
o (23
() £~
o
F100%
]
[
I 80% &
T T 70% o+t T
12K 16K Q 4K

——— Parallel Phases

—e— Speedup

T
8K

I
12K

T
16K

70%

—— Parallel Phases (k Unbounded)
—— Speedup (k Unhounded)

Figure 10. Experimental results for Top-Down inference

