Parallel Algorithms for Determining k-Width- Connectivity in Binary
Images

Frank Dehne *
School of Computer Science
Carleton University
Ottawa, Canada K1S 586

Abstract

In this paper we consider a new form of connectivity
in binary images, called k-width-connectivity. Two
pixels a and b of value ‘1’ are in the same k-width-
component if and only if there exists a path of width
k such that a is one of the k start pixels and b is one
of the k end pixels of this path. We present charac-
terizations of the k-width-components and show how
to determine the k-width-components of an n x n im-
age in O(n) and O(log®n) time on a mesh of pro-
cessors and hypercube, respectively, when the image
is stored with one pixel per processor. Our methods
use a reduction of the k-width-connectivity problem
to the l-width-connectivity problem. A distributed,
space-efficient encoding of the k-width-components of
small size allows us represent the solution using O(1)
registers per processor. Our hypercube algorithm also
implies an algorithm for the shuffle-exchange network.

1 introduction

The connected components of a binary image I par-
tition the entries of value ‘1’ (called the 1-pixels) into
sets so that two 1-pixels are in the same set if and only
if there exists a path of 1-pixels between them. Two
consecutive pixels on the path are either vertically
or horizontally adjacent. Determining the connected
components in images is a fundamental problem in im-
age processing [3, 8, 10, 11, 15, 16, 17]. Parallel algo-
rithms for various architectures have been developed.
When image [is of size n X n and is stored in an nxn
mesh of processors with one pixel per processor, the
components can be found in O(n) time [1, 5, 10]. On
a hypercube or shuffle-exchange network with n* pro-
cessors, the connected components can be determined
in O(log®n) time [2, 7]. In this paper, we formu-
late a stronger more fault-tolerant form of connectiv-

* Research partially supported by the Natural Sciences and
Engineering Research Council of Canada.

TResearch supported in part by ONR under ccntracts
N00014-84-K-0502 and N00014-86-K-0639, and by NSF under
Grant MIP-87-15652.

F. Dehne and S. E. Hambrusch, "Parallel algorithms for determining k-width-connectivity in binary images," in

Susanne E. Hambrusch
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907, USA

ity in images, which we call k-width-connectivity, and
present parallel algerithms for finding the k-width-
components.

K-width-connectivity in images captures forms of
connectivity analogous to k-vertex-connectivity in undi-
rected graphs. A graph is k- vertex-connected if the
removal of any k — 1 vertices leaves the graph con-
nected [4]. Every image corresponds to a planar graph
G in which the 1-pixels are the vertices and adjacency
between two vertices corresponds to two horizontally
or vertically adjacent 1-pixels. Since every such graph
G contains a vertex of degree 2, G can be at most 2-
vertex-connected. In order to capture stronger forms
of connectivity in images, we define two 1-pixels a
and b to belong to the same k-width-componentif and
only if there exists a path of width k such that a is
one of the k start pixels and b is one of the &k end
pixels of this path. Precise definitions will be given in
Section 2. Figure 1 shows a path of width 3 between
two pixels a and b. The image shown is not 3- width-
connected since there exists, for example, no path of
width 3 between pixels ¢ and c.

The problem of determining the k-width-compo-
nents has a number of applications. One is in image
segmentation where an image is partitioned into co-
herent regions that satisfy certain requirements and
relate the pixels in each region in some way [13]. An-
other application is the detection of connectivity in
VLSI masks where electrical connectivity between com-
ponents can be maintained only by a channel whose
width is never less than a value A [9]. The image might
also represent the corridors of a maze, in which case
the fact that a and b are in the same k-width-compo-
nent implies that a robot occupying a k x % area is
able move from a to b.

In this paper we present characterizations of the
k-width-components and show how to determine the
k-width-components on a mesh of processors and a
hypercube. Throughout we assume that the paral-
le]l architectures contain n° processors, with each pro-
cessor containing O(1) registers, and the image being
stored with one pixel per processor. We develop O(n)
and O(log? r) time parallel algorithms for computing
the k-width-components of an image I of size n x n
on a mesh and hypercube, respectively. Our methods
use a reduction of the k-width-connectivity problem
to the standard 1-connectivity problem. This reduc-
tion requires O(k) and O(log k) time on a mesh and

Proc. Second IEEE Symposium on Parallel and Distributed Processing, Dallas, Texas, 1990, pp. 488-496.

F D
F. Dehne and S. E. Hambrusch, "Parallel algorithms for determining k-width-connectivity in binary images," in Proc. Second IEEE Symposium on Parallel and Distributed Processing, Dallas, Texas, 1990, pp. 488-496.

hypercube, respectively, which is asymptotically op-
timal. In order to represent the solution using O(1)
registers per processor, we use a distributed space-
efficient representation of the k-width-components of
small size. Our hypercube algorithm also implies an
O(log? n) time algorithm for the shuffle-exchange net-
work (with the same time and number of processors).

The remainder of this paper is organized as follows.
After presenting some basic defiritions and properties
in Section 2, Sections 3 and 4 give characterizations
of the k-width-components and general strategies for
determining them. The correctness of our strategies
is shown in Section 5. The mesh and hypercube algo-
rithms are presented in Section 6. Section 7 concludes
our paper.

2 Definitions and Preliminaries

Consider an n x n binary image stored in a mesh or
hypercube containing n? processors. For the mesh, we
assume that the image is stored in the obvious way;
i.e., the processor in row i and column j stores the
pixel in the same row and column. For the hyper-
cube, the pixels are stored with respect to the two-
dimensional gray code mapping. The sequence Sy, of
n binary gray code numbers grey(0), ...,grey(n—1) is
defined as follows: S; = (0,1) and Sp = 0% Spy, 1 %
(SE_;). Here, 0+ S denotes the sequence of binary
numbers in S each prefixed with a 0, and ST denotes
sequence S in reverse order. The two-dimensional
grey code mapping is defined as grey(i, j) = grey(1)®
grey(j), where @ denotes the concatenation of binary
numbers. The pixel in row 7 and column j is stored at
processor grey(i, j) of the hypercube. For the remain-
der of this paper we will, in cases where it is obvious,
refer to the processor storing pixel = as processor z.

We now give the formal definition of k-width-con-
nectivity in images. Let z and y be two 1-pixels in
image /. We assume, w.l.o.g., that no 1-pixels are lo-
cated adjacent to the boarder of I. Let P(z,y) be
a path from z to y; i.e., there exist 1-pixels z =
Vo, V1, ..., Um—1,Um = ¥ such that v; and viy; are
horizontally or vertically adjacent. Unless stated oth-
erwise, two pixels are called adjacentif they are hor-
izontally or vertically adjacent. Consider two paths
P(z,y) = vo,v1,...,9m and P(z',y') = wo, w1,..., w,
and let A denote the set of all pixels in minus the
pixels contained in P(z,y) or P(z’,y’). The paths
P(z,y) and P(z',y’) are shadow paths if and only if
no pixel is contained in both paths, A (viewed as a
set of 1-pixels) is one connected component, and z
and z’ as well as y and ' are adjacent. For exam-
ple, P(z1,¥1) and P(z2,y2) from Figure 1 are shadow
paths.

Two pixels a and b are in the same k-width-com-
ponent if and only if there exist k¥ mutually disjoint
paths Pi(z,9i), 1 <i <k, so that

e path P;(z;,y:) has length at least £,

o paths Pi(zi,y.) and Pip1(zi41,¥i41) are shadow
paths,

® r1,Z2,...,%k (T€SP. Y1,¥2,...,Y&) are on a com-
mon row or column, and

o u:= sy, and b =y, for some p and r.

Figures 2 (a) and (b) show the k-width-components
for a given image I when k = 2 and k = 5, respec-
tively.

A I-block is a subimage of I of size k x k which
contains only 1-pixels. Let r be a 1-pixel of I and let
View, be the 2k — 1 x 2k — 1 subimage of I that has
pixel z in its center. Pixel £ can belong to at most k*
1-blocks and every possible 1-block containing z lies
in View;. The blockmatrir B, is a boolean matrix of
size kx k which records the 1-blocks pixel z belongs to.
We set B.(1,7) = 1 if and only if there exists a i-block
that has pixel z in row k—¢+1 and column k—j7+1
(positions are relative to the upper left corner of the
1-block). This indexing scheme ensures that the top-
left 1-block in View, corresponds to the top-left entry
in the blockmatrix (the top-left 1-block has pixel r at
position (k, k)). Figures 2(c) and (d) show View; and
the blockmatrix B, of a pixel z, respectively, when
k = 5. For example, the ‘1’ in the first row and fifth
column of B, indicates that there exists a 1-block in
image I that has pixel z in its bottom-left corner. This
1-block is shown in Figure 2(c) enclosed by dashed
lines. No other 1-block contains pixel z in the bottom
row and thus the first row of B, contains no further
‘1’s.

Property 1 Every row (resp. column) of the block-
matriz B, contains at most one contiguous sequence
of 1-pizels.

Proof: Follows from the definition of a blockmatrix.
0

A 1-pixel z in image I belonging to no 1-block
(i.e., every entry of B; is ‘0’) can obviously belong
to no k-width-component. Such 1-pixels are called
noise pircls. We partition the k-width-components
into two types, local and global k-width-components.
A local k-width-component is one whose 1-pixels can
be enclosed by a rectangular region of size 2k — 1 x
2k — 1. A k-width-component that is not local, is
called global. Property 2 limits the number of global
k-width-components a pixel £ can belong to.

Property 2 Pizel z belongs to at most two global k-
width-components.

Proof: Assume z belongs to three global k-width-
components. A global k-width-component contain-
ing r must contain at least one 1-block corresponding
to a l-pixel on the border of B, otherwise it would
be contained in View,. Hence, B, contains three 1-
pixels a, 8, and v belonging to different 1-width-com-
ponents, and each on a different side on the border of
B,. W.lo.g., let a be in row 1, 8 be in column 1, and
v be in row k of B;. (The other three possibilities
are handled in an analogous way.) Assume further
that the column containing a is to the left of the one
containing v. Let the three 1-blocks associated with
these pixels be W,, W3, and W,. Pixel z is contained
in all three 1-blocks. For any pixel 1, let row(s) (resp.
col(1)) be the row (resp. column) containing pixel 1.
For the particular case considered, the bottom- right
corners of Wy and W, are contained in W,. This im-
plies that the entries in B; in row(f) from column 1 to

col(a) and in col{a) from row 1 to row(J) are 1-pixels.
Hence, a and A belong to the same 1-width-compo-
nent of B, (when B; is considered to be an image of
size k x k). Thus, the 1-blocks in I corresponding to
o and A2 are in the same k-width-component and the
property follows. O

The next property relates the 1-width-components
in blockmatrix B, to the k-width-components 1-pixel
r can belong to in image J.

Property 3 Let n, be the number of 1-width-compo-
nents in blockmatriz B.. Then, ny < k. Furthermore,
either every k-width-component of image I containing
pirel x corresponds to ezactly one 1-width-component
of B, (and vice versa), or one global k-width-compo-
nent of image I containing pizel corresponds to two
1-width-component of B, and each remaining k-width-
component containing pizel z is a local component and
corresponds to eractly one 1-width-component of Bz.

Proof: That n, < k follows immediately from the
structure of the blockmatrix stated in Property 1. Ev-
ery k-width-component of image I containing pixel =
induces at least one 1-width-component in blockma-
trix B,. A local k-width-component can correspond
to only one l-width-component in B,. A global k-
width-component corresponds to either one or two
1-width-components in B;. From the proof of Prop-
erty 3 it follows that B, can not contain more than two
1-width-components corresponding to global k-width-
components of image [(containing pixel z). Hence,
if By contains two 1-width-components corresponding
to the same global k-width-components of image I, all
other 1-width-components of B; must correspond to
local k-width-components. On the other hand, con-
sider the 1-pixels in image I contained in the 1-blocks
associated with a 1-width-component in B;. Between
any two such 1-pixels there exists a path of width &
and hence they are in the same k-width-component.
0

In the following two sections we outline our general
strategy for determining the local and global k-width-
components. We will, for these two sections, assume
that every pixel z has the matrices B; and View,
available. The algorithms described in Section 6 use
a considerably more space-efficient representation of
the information contained in the blockmatrices.

3 Detecting the Loca!l K-width-Components

From Property 3 it follows that every l-width-com-
ponent in B; represents a portion of either a local or
a global k-width-component. In this section we show
how to detect among the 1-width-components in B
those representing local k-width-components and to
avoid that a local k-width-component is detected by
more than one processor.

We make the following convention about which
processor detects which local k-width-component. Pro-
cessor z is in charge of detecting local k-width-com-
ponent C if every 1-pixel of component C is in View,
and row 1 and column 1 of View, both contain one
of its 1-pixels. Translated to the blockmatrix B, this
means that there is a 1-width-component of B; with

a 1-pixel in both row 1 and column 1 of the blockma-
trix. A processor r with such a l-width-component
in its blockmatrix needs to determine whether the
corresponding k-width-component C is indeed a lo-
cal k-width-component (i.e., whether the respective k-
width-component is contained in View;). Let View}
be the 2k + 1 x 2k + 1 subimage of I that has pixel
z in its center. C represents a local k-width-compo-
nent if no pixel adjacent to the border of View] is
in a common k-width-component with z. Efficient
methods for determining this property are described
in Section 6. If processor z is responsible for a local
k-width-component, the index of processor r is made
the component number, also called label, of the local
k-width-component.

4 Detecting the Global K-width-components

In this section we outline our general strategy for de-
termining the global k-width-components. We again
assume that for every pixel z the matrices B; and
View, are available. In the first step we create from
image I a new image I'. We then perform a 1-width-
component computation on image I', followed by a
final propagation of labels to all 1-pixels in I belong-
ing to global k-width-components.

Image I’ is obtained from I by changing a 1-pixel
r into a O-pixel if one of the following four conditions
is satisfied:

(i) z is a noise pixel (i.e., B; contains no i-width-
component)

(ii) z belongs to a local k-width-component
(iii) B contains two 1-width-components

{iv) = is adjacent to a 1-pixel and no 1-block con-
tains both z and y.

Sections 6 describes how to test for these conditions ef-
ficiently. Image I' contains no noise pixel, no pixel be-
longing to a local k-width-component, no pixel belong-
ing to two global k-width-components and no pixel of
a k-width-component adjacent to a pixel of another
k-width-component.

The following discussion (up to Lemma 4) shows
that there is a one-to-one correspondence between the
1-width-components of I’ and the global k-width-com-
ponents of I; i.e., the removal of the 1-pixels from T
does not eliminate a global k-width-component nor
does it cause one global k-width-component to induce
two 1-width components in I’. In order to make the
necessary claims about image I’, we first define the
notion of s-induced and a-induced regions in a global
k-width-component.

Let C; be a global k-width-component and z be
one if its I-pixels. Suppose z belongs also to another
k-width-component, say Cr. Cr can be a local or a
global component. Let R be the largest 1-connected
region shared by Ci and Cr which includes 1-pixel x.
Rr is a rectangular region whose sides are of length
at most k — 1. (Note that every border pixel of Rr
is adjacent to 1-pixels in either Ci or Cr.) We say
that Cr s-tnduces region Rr in C; (‘s’ indicates that
Cr and C share pixels). In order to define a-induced

regions, suppose that pixel z is adjacent to a pixel
y belonging to another k-width-component, say Cr.
Then, let Ri be the largest 1-connected region in C,
containing z so that every pixel in Rr is adjacent to
a 1-pixel in Cr. Rr is a rectangle with width 1 and
length at most k — 1. We say that Cr a-inducesregion
Rr in C; (‘a’ indicates that Cr and C, have adjacent
pixels).

The 1-pixels in Rr are O-pixels in image I’ since
they satisfy either condition (ii) or (iii) for s-induced
and condition {iv) for a-induced regions. However,
conditions (iii} and (iv) may remove additional pixels
from image /. When B, contains two 1-width-compo-
nents and r belongs to no local k-width-component,
1-pixel z may or may not belong to two global k-
width-components. From z’s point of view, 1-pixel z
does belong to two global k-width-components since
there exists no path of width k going through region
Rr. If Ci = Cr, such a path exists by going ‘around’
Rr. For the rest of this section, when we say that
Cr induces a region in C; we mean that Cr and C;
are two different k-width-components from z’s point
of view.

We now state two properties that are used in the
characterization of the interaction between induced
regions. A pixel z belonging to k-width-component
C; is a corner pizel if z is adjacent to exactly two
pixels not in C;. Note that when k > 1, no 1-pixel of
C; can be adjacent to three pixels not in C;. Every
s- or a-induced region Rr contains exactly one corner
pixel of C; and let ar be this corner pixel.

Assume tegion Rr is s-induced by Cr in C;. Let
p’ and p” be the corner pixels of Rr, each different
from ar, and in the same column and row as ar,
respectively. The position of these pixels is shown in
Figure 3(a).

Property 4 The pizel diagonally adjacent to p' (resp.
p"), but not horizontally or vertically adjacent to a
pizvel in Rr cannot belong to C; or Cr.

Would either of these pixels belong to one of the
components, Rr would not be the largest connected
region. However, these pixels do not need to be 0-
pixels. They can be noise pixels or belong to another
k-width-component.

A similar property holds when region Rr is a-
induced. We give the statement for the case when
Br occupies a single row (the property for a column
is similar and omitted). Let p’ be the second pixel in
Rr adjacent to only one pixel in Rr (with ar being
the first). See Figure 3(b) for an illustration.

Property 5 The pirel horizontally adjacent to ar and
not in Rr cannot belong to C; or Cr. The pizel di-
agonally adjacent to p' and horizontally adjacent to a
pirel in Cr, but not vertically adjacent to a pizel in
Rr, cannot belong to C; or Cr.

Let Rr and Ea be s-induced or a-induced rectan-
gular regions in C;. There are four possible relation-
ships between Rr and Ra. One rectangle can contain
the other one. By containment we mean that every
1-pixel of one rectangle is also in the other one and
the borders of the rectangles are on different rows and

columns. Obviously, no e-induced rectangle can con-
tain another rectangle and an a-induced rectangle can
only be contained in an s-induced rectangle. When
Rp and Rp share pixels, but there is no containment,
we say that the two rectangles overlap. See Figure 4a
for an example of overlapping regions. For the case
when there is no 1-pixel that is both in Rr and Ra,
we distinguish between disjoint and adjacent rectan-
gles. If no 1-pixel around region Rr belongs to Ra,
the two rectangles are disjoint, otherwise they are ad-
jacent. See Tigures 4b and 5¢ for examples of adjacent
rectangles.

Let R; be the smallest rectangular region enclos-
ing Rr and Ra. R is of size at most 2k — 2 x 2k — 2.
Let ar (resp. aa) be the corner pixel of C; that is
in Rr (resp. Ra). Pixels or and o are either in
the same row or column, or they are located on diag-
onally opposite corners of R;. The next three lemmas
characterize which relationships are not possible be-
tween two rectangles. We show that, if C; is a global
k-width-component, then Rr and Ra cannot overlap.
Rr and Ra can be adjacent only if at least one of
them is a-induced and or and aa are in the same row
or column.

Lemma 1 Let Cr and Cpa be two k-width-components
that tnduce regions Rr and Ra in global k-width-com-
ponent C;, respectively. If ar and aa are not in the
same row or column, then Rr and Ra cannot be over-
lapping or adjacent.

Proof: Assume Rr and Ra are overlapping or adja-
cent with or and aa on diagonally opposite corners
of R;. Then, because of properties 4 and 5, there ex-
ist two pixels qr and gr corresponding to pixels on
the border around R; such that neither pixel belongs
to C;. See also Figure 4. Furthermore, the position
of ¢t and ¢f is such that one of them is horizontally
adjacent to a pixel of R; in col(ar) and the other is
vertically adjacent to a pixel of R; in row(ar). For
Ca there exist two pixels ¢4 and g with the corre-
sponding properties. Hence, every side of the border
of R; contains a pixel adjacent to a pixel that can-
not belong to C;. Let the clockwise order of these
pixels be gf, gff ga, ga. There are at most k — 2
columns (resp. rows) between gf and ¢ (since each
side length of Ra and Rr is of length at most k —1).
The same statement holds for ¢f and ¢/ . This implies
that the rectangular region induced by these four pix-
els must contain all the pixels in k-width-component
Ci. Thus C; cannot be a global k-width-component
and the lemma follows. O

Lemma 2 Let Cr and Ca be two k-width-components
that induce regions Rr and Ra in global k-width-com-
ponent C;, respectively. If ar and aa are in the same
row or column, then Rr and Ra cannot be overlap-

ping.

Proof: Observe that ar = aa is possible. However,
it is easy to see that in this case the pixels in Cr and
Ca belong to the same k-width-component.

Hence assume that ar and oa are not identical
and are, w.l.o.g., in the same row. Let Rra be the
largest connected region of intersection between Cr

and Ca that contains no pixels in R; and contains a
pixel adjacent to a pixel in R;; see Figure 5a. Note
that Rra cannot be empty, since each side of Rp (resp.
Ra) has length at most £ — 1. Assume w.lo.g. that
all the pixels in Rra lie below the row containing arp
and aa. Let g be the bottom leftmost pixel in Rra.
Then one of Cr and Ca, say Ca, contains a pixel at
position (row(g)+ 1, col(g)). If such a pixel would not
exist, Cy, Cr, and Ca would belong to the same k-
width-component. The rectangle induced by aa and
g contains all 1-pixels and thus there exists a path
of width k from pixels in C; — R;' to the pixels in
Cr — R;. This implies that C; and Cr belong to the
same k-width-component and the lemma follows. O

The final lemma addresses the possibility of adja-
cency when or and aa are in the same row or col-
umn. An argument similar to the one used in Lemma
2 shows that, if such an adjacency would occur be-
tween two s-induced rectangles then C; and at least
one of Cr and Ca would belong to the same k-width-
component. Figure 5b shows an example of such a
situation.

Lemma 3 Let Cr be a k-width-component that s-in-
duces region Rr and let Ca be a k-width-component
that s-induces region Ra in global k-component C;. If
ar and aa are in the same row or column, then Rr
and Ra cannot be adjacent.

Proof: Similar to the proof of Lemma 2. DO

Summarizing, we conclude that two rectangular
regions Rr and Ra induced within the same global
k-width-component C; cannot overlap. They can be
adjacent only if both corner pixels, ar and aa, are in
the same row or column and at least one of the regions
is a-induced. Figure 5(c) shows a possible example of
two adjacent a-induced rectangles.

We can now prove the main lemma of this section:
there is a one-to-one correspondence between the 1-
width-components of I' and the global k-width-com-
ponents of I.

Lemma 4 Let Cy,Cy,...,Cx be the global k-width-
components of image I and let Cy,C},...,C| be the
1-width-components of image I'. Then, | = k and the
components can be ordered so that every 1-pizel in C|
is also a I-pizel in C;, 1 <1 < k.

Proof: Let Ri1,Ri2,..., Ri~, be the s- or a-induced
rectangles in the global k-width-component C;. As-
sume rectangles that are contained in other rectan-
gles have been removed from this sequence. From the
previous lemmas we know that no two rectangles can
overlap. If R; ;/ is adjacent to another rectangle R, ;u,
then one of them is an a-induced rectangle and both
corner pixels must be in the same row or column. Fur-
thermore, R, ;s can be adjacent to at most one rect-
angle. This is shown by using an argument similar
to the one used in the proof of Lemma 1. More pre-
cisely, if R, ,» would be adjacent to two rectangles,
there would exist four pixels not in C; (see Property
4 and 5) that would enclose ' and thus violate the
assumption that C, is a global k-width-component.

I For two sets S1 and Sy, S3 ~ S2 denotes the set containing
the elements in Sy, but not in S§3.

Hence, we remove from C either a rectangular re-
gion R, where all the pixels around R;; and in
Ci do not get deleted or we remove a region formed
by two adjacent rectangles R, ;s and R, ;. The pix-
els around the region formed by R, ; and R;;» that
are in C; do not get deleted. Clearly, if regions of
this structure are removed from C, a nonempty set of
pixels remains and the pixels that remain (and which
form) are 1-width-connected. Obviously, no two
different sets, C{ and C;, of remaining pixels are 1-
width-connected. O

After I’ has been determined, we use an existing
1-width-component labeling algorithm to determine
the 1-width-components of I’. As a result, for each 1-
width-component C} in I’ every pixel in C{ is labeled
with the same index of one arbitrary pixel z of Cj.
Note that, no processor z that gave its index to a
local k-width-component can give its index to a global
k-width-component (since z is not in I’). Finally, for
each component C/ in I’ its label has to be propagated
to those 1-pixels of the corresponding k-width-compo-
nent C; in I that are not in C/. Section 6 describes
how this step is performed efficiently.

5 Correctness of the Algorithm

We now show that the algorithm described in the pre-
vious two sections correctly determines the k-width-
components of I. Let a and b be two 1-pixels of I
that were assigned, by our algorithm, to the same
k-width-component C. I C is a local k-width-com-
ponent detected and recorded by processor z, then a
path of width k between a and & can be obtained from
B. as follows. Let o and 8 be two 1-pixels in B; such
that @ is in the 1-block corresponding to a and b is
in the 1- block corresponding to 3, respectively. The
path from « to 8 in B; corresponds to a sequence of
1-blocks such that two consecutive 1-blocks share a
subblock of size k x k — 1. This sequence of 1-blocks
represents a path of width k from a to b.

Assume now that a and b are assigned to the same
global k-width-component C. Let C' be the 1-width-
component corresponding to C in image I’. We obtain
such a sequence of 1-blocks corresponding to a path
of width k from a path in C’ and by using proper-
ties of 1-pixels in image I'. Assume first that both
a and b are also 1-pixels in C’ (i.e., conditions (ii)-
(iv) of Section 4 did not apply to them). Let a =
Vo, V1, ..., Vm—1,Vm = b be a shortest path from a to
bin C’. We will now generate a sequence of 1-blocks
that implies a path of width k from a to b.

Assume we have generated 1-blocks Wa, ..., W;_1
which represent a path of width k from vo to v;—y that
also contains v1, ..., vi~2. If v; is a pixel in W;_;, then
we continue with v;4+1 without adding another 1-block.
Hence assume that »; is not in 1-block W;_;. W.l.og
let vi—; and v; be horizontally adjacent and »;_; be
to the left of v;. Let (7, ¢) be the position of the top-
left pixel of 1-block W;_;. Recall that there exists a
1-block, W', containing v:~1 and v {Condition (iv) in
Section 4). If there exists a 1-block containing vi—;
and v; whose top-left pixel is in row r, then W, is the
1-block that has its top-left pixel at position (r,c+1).
and we continue with vig1. I such a 1-block does not

exist, there exists at least one O-pixel in column ¢+ k
that is adjacent to the border of W,_;. W.lo.g assume
there exists such a 0-pixel above the row containing
v;. (If there would be 0-pixels above and below, then
v; conld not belong to a 1-block.) Let po be this 0-
pixel and let r 4 8 be its tow, 0 < &§ < k — 2 (if there
exists more than one, choose the one closest to vi).
The 1-pixel p1 of W,_; in row r + 6 + 1 and column
c+k—1 must be the top-right corner of a 1-block W".
Otherwise, the 1-blocks W' and ,_; correspond to
1-pixels in the blockmatrix of vi—; that are in different
1-width-components (in the blockmatrix). That is,
v;~1 would not be a 1-pixel of I’ due to Condition (iri)
of Section 4. Hence, we set W; = W' and W,;; = W"
and continue with vi41.

If a and/or b are 0-pixels in image I', we obtain a
path of width k as follows. If @ and & belong to the
same rectangular region R removed from C, such a
path exists in the 1-block containing the corner pixel
of Cin R. If a and b belong to different rectangular
regions, let a’ (resp. b') be the closest pixel in c’
in the same row or column as a (resp. b). Since any
region deleted from C is adjacent to at most one other
region, such pixels a’ and b’ always exist. A path of
width k between a’ and b’ can easily be extended or
modified to one between a and b.

To complete the proof of correctness, assume that
a and b are not assigned to the same k-width-compo-
nent. They cannot belong to the same local k-width-
component, since the processor detecting and record-
ing this local k-width-component would detect any
path of width k between them. They can also not be-
long to the same global k-width-component since any
path of width k between them would have resulted
in a 1-width-component participating in the labeling
process of the respective global k-width-components.

Hence, two 1-pixels a and b are assigned to the
same k-width-component if and only if there exists a
path of width k between them.

6 Parallel Algorithm for Meshes and Hypercubes

We now describe how to determine the k-width-com-
ponents of image I on a mesh and a hypercube ar-
chitecture, respectively. Let us recall the steps of the
strategy presented in the previous sections.

(1) For every pixel z determine the blockmatrix B,
and its 1-width-components.

(2) Determine the local k-width-components.

(3) Determine the global k-width-components.

The remainder of this section is organized as fol-
lows. We first describe a technique referred to as k-
search which will then, in Section 6.2, be used for
determining and recording the information contained
in the blockmatrix. In Sections 6.3 and 6.5 we show
how to determine and record the local and global k-
width-components.

6.1 K-Search on Meshes and Hypercubes

Consider a row of pixels in image I. Let z(1),...,z{(n)
be these pixels and assume that each z(7) has a binary

value t{j) associated with it. The k-search procedure
consists of determining for each row of pixels, for each
pixel z(j) the value

te(j) = { min{rjt(j +r)=1 0<r<k}

* otherwise

On a mesh, the k-search procedure can easily be exe-
cuted in O(k) time.

We now describe an O(log k) time implementation
of k-search on the hypercube. Recall, from Section 2,
that for row i, the pixel z(j) is stored in proces-
sor grey(i, j) = grey(i) @ grey(y) (where @ denotes
the concatenation of binary numbers). Let k' be the
smallest power of 2 larger or equal k. We split each
row of pixels z(1),...,z(n) into consecutive regions
of length k' which will be referred to as k’-regions. It
is easy to see from the definition of grey codes, that
the processors storing the pixels of one k’-region form
a sub-hypercube of size k’. Hence, inverse grey code
conversion (cf. [6]) can be applied to each k’-region in-
dependently, in parallel. The conversion permutes the
pixels in time O(log k) such that the concentrate and
distribute operations of [12] can be applied. We can
thus obtain, in time O(log k), for each pixel the index
of the next pixel (within its k’-region) with t(.) = 1
and the index of the leftmost pixel (withing the k’-
region) with ¢(.) = 1. We then apply grey code conver-
sion to each k’-region to obtain the original mapping
of pixels to processors. Finally, the leftmost processor
within each region communicates the index of the left-
most pixel (withing the k’-region) with t(.) =1 to its
immediate left neighbor, and each processor receiving
such a value broadcasts it to all others within its k’-
region. The final result is that (after O(log k) steps)
each pixel has the index of the next pixel {(within its
k’-region) with ¢(.) = 1 and the index of the leftmost
pixel, withing the next k’-region, with t(.) = 1. This
allows for each pixel z(j) to compute its value ¢x(J).

6.2 Recording the Information of the Blockmatrices

In our algorithms processor z does not have the block-
matrix B; available, but a k-vertex graph, called the
blockgraph. The blockgraph G, contains the same in-
formation as the blockmatrix and it will be stored in
a distributed fashion so that the algorithm uses only
O(1) registers per processor.

Recall that the 1-pixels in a row (resp. column) of
the blockmatrix form a contiguous sequence { Property
1). Hence, the i-th column of B, can be represented
by the triple (i, fz(3),1:()), where f:(i) is the first
row in column 1 containing a 1-pixels and I; (%) is the
last row containing a I-pixel, 1 <1 < k. If column
i contains no 1-pixel, we set fz(i) = Iz(¢) = 0. The
blockgraph G. = (V;, E;) for a pixel z consists of k
vertices and at most k — 1 cdges with

and
Er = {((5 fo(), 1:(8)), (1 + L £+ 1), L (6 + 1))
3 z with f:(5) < 2 < 1.(4) and fz(i+1) < z < L(i+1)}.

Figure 6 shows the blockgraph corresponding to the
blockmatrix shown in Figure 2. In order to store all
blockgraphs for all pixels, it suffices to have each pixel
z store only the first node (1, fz(1),1:(1)) of its block-
graph G,. The remaining k—1 nodes (2, f=(2), 1.(21))
yoovy (ky fz(k),lz(k))} are then stored in the k—1 neigh-
bors of z, immediate to its right. To put it another
way, every processor z only stores the entries fz(1)
and I,(1). The i-th vertex of G; corresponds to the
entries stored in processor y, where y is 1 — 1 columns
to the right of processor z (and in the same row).

We now describe how to compute the f- and I-
entries in time O(k) and O(log k) on a mesh and hy-
percube, respectively. The first step is to have ev-
ery 1-pixel z compute a boolean quantity brr which
is set to ‘1’ iff = is the bottom-right corner of a 1-
block (i.e., a k X k subimage of I consisting only of
1-pixels). Assume processor z is in row r and col-
umn c¢ in image I. In order to compute the br, val-
ues, every processor z computes a boolean entry 7,
with 7, = 1 iff each one of the processors at posi-
tion (r,¢),(r,c —1),...,(r,c — k + 1) contains a 1-
pixel (if one of these processors contains a 0-pixel,
rz = 0). After the r;’s have been determined, pro-
cessor z sets bry = 1 iff each processor y at position
(r,¢),(r - 1,¢),...,(r —k+1,c) has 7y = 1. Clearly,
bry = 1if and only if z is the bottom-right corner of a
1-block. Note that the above computation reduces to
two applications of the k- search procedure presented
in Section 6.1.

Next, the br, entries are used to determine fz(1)
and {;(1). For each pixel z this problem reduces to
searching the k pixels below z in the same column
and determining the closest as well as the furthest
of these with a br-value equal to 1. This computation
can be performed by invoking two calls to the k-search
procedure.

Summarizing, we obtain that the blockgraph G:
can be created on a mesh and hypercube in time O(k)
and O(log k), respectively, with O(1) memory space
per processor. It is easy to see that, using k-search,
each pixel z can determine the following properties
within the same time bounds:

o Whether z is a noise pixel.

o Whether B, contains more than one l-width-
component.

o Whether the leftmost column of B, contains a
1-pixel. Let C be the 1-width-component of B,
containing this 1-pixel.

o Whether 1-width-component C contains a 1-pix-
el belonging to row 1 of B;.

We conclude this section by sketching a simple al-
gorithm for counting the number of k-width-compo-
nents of image /. Assume we create from image I a
new image I* such that a pixel z in I is a 1-pixel if
and only if br; = 1 in image I. Then, it is easy to see
that the number of 1-width-components in image I*
is the number of local and global k-width-components
in image I. This simple method does, however, not
help to decide which components are local and global,

obtain a description of the shape of the local com-
ponents, or label the global components in image [.
Solving these problems using I* involves essentially
the same operations which we apply, in this paper,
directly to I.

6.3 Determining the Local K-width Components

We next discuss how to detect the local k-width-com-
ponents. In order for a 1-pixel z, located in row r and
column ¢, to detect and record a local k-width-compo-
nent, two properties need to be satisfied. First, block-
matrix B; needs to contain a 1-width-component that
has a 1-pixel in column 1 and in row 1 of B;. How
to determine this property within the claimed time
bounds follows immediately from the discussion of the
preceding section. Let C be this component. Second,
component C must not be k-width-connected to any
pixel outside View,. Component C is not k-width-
connected to any pixel adjacent to the right border
of View; if the following holds: Let y and gy’ be any
two pixels in row r and column ¢+ k — 1 and column
¢+ k, respectively. Then, if pixel y belongs to compo-
nent C, the intervals (f,(1),1,(1)) and (f,+(1), 1, (I
have an empty intersection. The conditions for not
being k-width-connected to a pixel to the left of the
border are similar. The conditions for a component C
not being k-width-connected to a pixel adjacent to the
upper border of View, are as follows. Let y be a pixel
in row r and column ¢+ j, 0 < j < k—1 belonging to
component C and with f,(1) = 1. Let 3 be the pixel
in row r — 1 and column ¢+ j. Then, f,/(1) # 1. The
conditions for not being k-width-connected to a pixel
adjacent to the lower border of View, are similar. The
above conditions can be checked in O(k) and O(log k)
time, on the mesh and hypercube, respectively, by ap-
plying the k-search procedure and, for the hypercube,
the concentrate and distribute operations described in
[12].

Hence, we can determine which pixels are responsi-
ble for a detecting a local k-width-component in O(k)
and O(log k) time on a mesh and hypercube, respec-
tively. As already stated, we do not explicitly label
the local components (since doing so would require
O(k) registers per processor). If processor r detected
a local k-width-components, it gets marked and a con-
venient description of the shape of the component is
obtained from the f- and l-entries. This description
uses O(k) registers and is stored in processor z, the
k —1 processors in row r immediately to the right of z,
and the & — 1 processors in row r immediately to the
left of z. Let z = xo, 71,...,Zk~1 be the k — 1 pro-
cessors to the right, and z_(x_y),..., -1 be the k—1
processors to the left of z. For every processor z,; we
determine two entries, t; and b;, which represent the
vertical distances from row r to the top and bottom
boundary pixel of component C, respectively. Any
two processors in the same row such that each one of
the two detected a local component are at least dis-
tance k apart. Thus, a processor can contain at most
two pairs of ¢- and b-entries and our shape description
of the local k-width-components reguires only O(1)
registers per processor. We show how to compute, for
all local components, the t-values; the computation of
the b-values follows from symmetry.

The f- and I-values at each processor z,, t > 0,
represent a rectangle of height I; — fi + &k and width
k (except for those processors with f, =l = 0 which
represent no rectangle). The shape of a local k-width-
component is the union of these rectangles. For the
mesh, the t-values can be computed in time O(k) sim-
ply by shifting the f- and l-values k positions to the
left. In the remainder of this section we describe an
O(log k) time solution for the hypercube. We start
by defining the partial prefix operation which will, to-
gether with simple routing operations, be the main
ingredient for determining the t-values.

Assume every processor p; in a k’-dimensional hy-
percube contains a value a; and two processors, ps
and p. with s < t, are marked. In the left partial
prefiz every processor p; with s < j < t determines
maz{as,ds41,...,a;}. In the right partial prefir ev-
ery processor p; determines the entry maz{a;,a;41,
...,ar}. Straightforward changes to known parallel
prefix algorithms allow us to determine the left and
right partial prefix in O(log k') time on a hypercube
of dimension k’.

For every processor zi, 1 > 0, with f; > 0, let
ti = k — fi, and 0 otherwise. For —(k —1} <5 <0,
we have t; = maz{ty, t],.. ., thiy;—1}. For1 <j <
k — 1, we have t; = max {#},tj41,..., 2,1 }. In order
to compute the t-values for —(k — 1) < 5 £ 0, we
first compute a left partial prefix on the '-values with
processors 7o and zx—1 being marked, and send the
entry computed by processor r; to processor Ti—k+1.
We then compute the t-values for 1 < 7 < k—1. This
is done by simply performing a right partial prefix
on the t'-values with processors zo and zx_) being
marked.

We conclude the computation of the shape descrip-
tion by sketching how to perform the partial prefix
computations in O(log k) time. Let &' denote, again,
the smallest power of two larger or equal k, and view
each row of processors to be split into a sequence of
blocks of length k’. A region on which we need to per-
form a partial prefix operation can lie entirely within
a block or it can be split over two blocks. Three par-
tial prefix operations on subhypercubes of dimension
k' can easily produce the necessary values. In the first
one we perform a partial prefix on all regions that lie
entirely within a block. The next two handle the re-
gions that are split: the second parallel prefix works
with the beginning segments of the region and the
third one with the ending segments of the regions. It
is straightforward to combine the result of the second
and third partial prefix computation. Hence, the de-
scription of the shape in terms of the ¢- and b-entries
can be generated in O(log k) time.

6.4 Determining the Auxiliary Image I’

As stated earlier, the global k-width-components are
determined by computing the 1-width-components of
an auxiliary image I’ obtained from / by changing
a 1-pixel z into a 0-pixel if one of four conditions is
satisfied. In this section, we describe how to obtain
image I’ in time O(k) and O(log k) on the mesh and
hypercube, respectively.

First, we need to change all noise pixels to 0-pixels.
Following Section 6.2, this is immediate.

Second, we require that all pixels belonging to
any local components be marked (and subsequently
changed to 0-pixels). H processor r detected a lo-
cal k-width-components, then processor ¢, the k — 1
processors to the right of z and the k — 1 processors
to the left of = each contain a t-value and a b-value
describing the shape of this component (see Section
6.3). The marking can be done by having each proces-
sor z; that stores values t; and b; broadcast a marker
to the t; and b, pixels above and below z; (and in
the same column), respectively. Each such broadcast
is restricted to a neighborhood of k pixels and can
therefore be executed on a mesh in time O(k). On
a hypercube, each such broadcast can be executed in
time Oflog k) using techniques already described.

Next, we need to delete all pixels whose blockma-
trix contains two or more l-width-components. Fol-
lowing Section 6.2, this is immediate.

Finally, we need to determine those pixels z that
are adjacent to a 1-pixel y but no 1-block contains
both z and y. We now describe how to use the block-
graphs to determine whether two adjacent 1-pixels z
and y are not contained in a common 1-block. As-
sume that ¢ is to the left of y. When no 1-block
contains both z and y , G, consists of one connected
component formed by vertex (1, fz(1),1:(1)) and G,
consists of one connected component formed by ver-
tex (k, fy(k),ly(k)) (all other values in G and G, are
zeros). Assume z is above y. Pixels z and y are in no
common 1-block if Gz and Gy contain one connected
component each, the vertices of G, have the values
fz(3) = 1:(j) = 1, and the vertices of Gy have the
values fy(7) = Iy(j) = k. I z is to the right of or
below y, similar arguments hold. All of these tests
can be implemented by a k-search procedure.

Summarizing, we obtain that the auxiliary image
I' can be computed in O(k) and O(log k) time on a
mesh and hypercube, respectively.

6.5 Determining the Global K-width Components

Once the auxiliary image I' has been determined, an
algorithms for determining the 1-width-components of
I’ is applied [1, 5, 18, 2, 7]. This requires time O(n)
and O(log®n) on the mesh and hypercube, respec-
tively. Asshown in Section 4, the 1-width-components
of I’ correspond exactly to the global k-width-compo-
nents of /. The final step consists of propagating the
labels to the 1-pixels of global k-width-components
which are not in I’. Note that each such pixel be-
longs to at most two global k-width-components (see
Section 2) while the pixels in I’ belong to exactly one
global k-width-component. Furthermore, each global
k-width-component is the union of the 1-blocks indi-
cated in the blockmatrices of the pixels belonging to
the respective 1-width-component in I'. The propa-
gation of the labels can therefore be accomplished in
essentially the same way as the computation of the
shape of the local components and the marking of the
pixels that belong to any local component, described
in the previous two sections {requiring time O(k) and
O(log k) time on a mesh and hypercube, respectively).

7 Conclusion

In this paper we have presented O{n}) and Oflog® n)
time parallel algorithms for computing the local and
global k-width-components of an image [of size n xn
on a mesh and hypercube, respectively, requiring nxn
processors and O(1) memory space per processor. The
hypercube algorithmn immediately implies a shuffle-
exchange network algorithm with the same time com-
plexity.

The presented mesh algorithm is asymptotically
optimal. It is worthwhile to note that, besides the
time for determining the i-width-components of the
auxiliary image I', our methods requires only time
O(k) and Of(log k) time on a mesh and hypercube, re-
spectively. Hence, our algorithms can also be viewed
as a O(k) and O(log k) time, respectively, reduction of
k-width-connectivity to 1-width-connectivity. In that
sense, our reduction algorithm is asymptotically opti-
mal for both, the mesh and hypercube architecture.

8 Acknowledgements

We thank Greg Frederickson and Mike Atallah for
helpful comments and suggestions.

References

[1] Cypher, R., Sanz, J., Snyder, L., “Algorithms for
Image Component Labeling on SIMD Mesh Con-
nected Computers”, IEEE Trans. on Computers,
1990, Vol. 39, pp. 276-281.

[2] Cypher, R., Sanz, 1., Snyder, L., “Hypercube and
shuffle- exchange algorithms for image compo-
nent labeling”,Journal of Algorithms, 1989, Vol.
10, pp. 140-150.

[3] Dyer, C., Rosenfeld, A., “Parallel Image Process-
ing by Memory- Augmented Celluar Automata”,
IEEE Pami, 1981, Vol. 3, pp 29- 41.

[4] Harary, F., Graph Theory, Addison-Wesley, 1972.

I5] Hambrusch, S.E., TeWinkel, L., “A Study of
Connected Component Algorithms on the MPP”,
Proc. of 8rd Internat. Conf. on Supercomputing,
1988, pp 477-483.

[8] Johnsson, S. L., “Communication efficient ba-
sic linear algebra computations on hypercube ar-
chitectures”, Journal of Parallel and Distributed
Computing, 1987, Vol. 5, pp. 133-172.

[7] Lim, W., Agrawal, A., Nekludova, L., “A fast
parallel algorithm for labeling connected compo-
nents in image arrays”, Techn. Report NA86-2,
Thinking Machines Corp., 1986.

[8] Levialdi, S., “On Shrinking Binary Picture Pat-
terns”, CACM, 1972, Vol. 15, pp. 7-10.

[9] Mead, C.A., Conway, L.A., Introduction to VLSI
systems, Addison Wesley, 1980.

Miller, R., Stout, Q., Parallel Algorithms for Reg-
wlar Architectures, manuscript, to be published
by MIT press.

(11

Nassimi, D., Sahni, S., “Finding Connected
Components and Connected Ones on a Mesh-
Connected Parallel Computer”, SIAM J. on
Comp., 1980, pp. 744-757.

Nassimi, D., Sahni, S., “Data broadcasting in
SIMD computers”, IEEE Transactions on Corn-
puters, 1981, Vol. 30, pp. 101-106.

Pavlidis, T., Algorithms for Graphics and Image
Processing, CSP, 1982.

Preparata F., Shamos M., Computational Geom-
etry - An Introduction, Springer Verlag, 1985.

Rosenfeld, A., “Connectivity in Digital Pic-
tures”, JACM, 1970, Vol. 17, pp. 146-160.

Rosenfeld, A., Kak, A., Digital Picture Process-
ing, Academic Press, 1982.

Veillon, F., “One Pass Computation of Morpho-
logical and Geometrical Properties of Objects in
Digital Pictures”, Signal Processing, 1979, Vol. 1,
pp 175-189.

XXX XX

Figure 1: A Path of Width 3 Between 1-Pixels ¢ ard b

XAUYXXXKXX 7?§
X X
% X oS
bad X
XXXK§
XXX
XX
HKXHHKHKAKX X AKX AXKX
XXX KX XXHEXX XXX
XXX XXX XX KX XXX
XX XXX XXX XX
KEXXXXHKXKX
XX AKX XXX AKX
S
XX X XXX
X X
—
(a) the 2-width-components
HKUXKXHKKXXX XXX
XX X XXX
X X XX
X X X XX
XXX KR X KAE KK XX K XX
XX XK XX X XXX
XXX XX§XXXXXXX
KX HXPEAXXK XXX KX XX
XXX PXK XXX KK RK XX
KKK XXX XX KX K
XX XXX XXX
XX XKXXXXX
KX XX AKX
XXAKXXKXX
KXXXXKXXX XXXXX
XXXXXX XX XXX
X X
(c) View(z)

XXX XX XX XX XX
X X X X X
X X
X
X XXX
XX XX
XX X
RKAXXK
B XX X
X KX X
MO XX
PXXX X
XXX X X
XXX X
XXX X XXX XX
29 0:9.0.9. XX XXX
X X

(b} the 5-width-components

|

00001
000601
00100
110600
11000

(d} Blockmatrix - for pixet z

Figure 2. Illustration of Definitions

XXX
XXX
HAX
XXX
XXX
KAX
XAX
R

XX KX X ¥,
xxx>xxxxxy 2

Axx/xxxxxxxx
xxxxxx%xxyxx

,Yxxxxx
KK KX KX
PN XX
3N XX
B X XK

5

(b}

in cither k-width-component

la)

Circled positions cannot be

Figure 3: Induced Kegions

cxxxxxxx
XX XX KX S

XX XXX X \\

XX AKX XX
. XXOQXY

e :
ORXXK XXX
XXX XXX XG
XX XX XX
xxxxxxAi\

[
o

(aj

els Not in the

Figure 4: Overlapping and Adjacent Regions with Corner Pix

Same Row or Uolumun

xxxx%xxxw
SORXXEBE X KB

XXX XXX X X

the Same

ijarent Regions with Corner Pivels i

1
u

Figure 5: Overlapping and X,

Rew or Column

OO O o o
1.2

(1.45) (2.45) (3,33) (4,00) (5)

Fignre 6: Blockgraph G for tne Blockmatrix of Figure 2

