
Determining Maximum k-Width-Connectivity on

Meshes �

Susanne E. Hambrusch y

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907, USA

Frank Dehne z

School of Computer Science

Carleton University

Ottawa, Canada K1S 5B6

February 16, 1996

Abstract

Let I be a n � n binary image stored in a n � n mesh of pro-

cessors with one pixel per processor. Image I is k-width-connected if,

informally, between any pair of 1-pixels there exists a path of width k

(composed of 1-pixels only). We consider the problem of determining

the largest integer k such that I is k-width-connected, and present an

optimal O(n) time algorithm for the mesh architecture.

Keywords: Parallel algorithms, meshes, binary images, connected

components, k-width-connectivity.

�A preliminary version of the paper appeared in the Proceedings of 6-th International

Parallel Processing Symposium, Beverly Hills, CA, March 1992.
yResearch supported in part by ONR under contracts N00014-84-K-0502 and N00014-

86-K-0689, and by NSF under Grant MIP-87-15652.
zResearch partially supported by the Natural Sciences and Engineering Research Coun-

cil of Canada.

1

F D
S. Hambrusch and F. Dehne, "Determining maximum k-width connectivity on meshes," in Proc. 6th International Parallel Processing Symposium, Beverly Hills, Calif., 1992, IEEE Computer Society, pp. 234-241.



1 Introduction

Detecting forms of connectivity in binary images is a fundamental problem

in image processing [12, 14]. Because of the relevance of parallel compu-

tation to image processing and computer vision, the parallel complexity of

connectivity problems has been studied extensively [2, 3, 5, 6, 7, 8, 11].

In this paper we consider k-width-connectivity which is a stronger, more

fault-tolerant form of connectivity in binary images. Informally, an image is

k-width-connected if between any pair of 1-pixels (i.e., entries of value `1')

there exists a path of width k. In [4], Dehne and Hambrusch present a paral-

lel mesh algorithm that, given an integer k and a binary image I stored in an

n�n mesh with one pixel per processor, determines the k-width-components

of I in O(n) time. The problem of determining the k-width-components has

a number of applications. One is in image segmentation where an image is

partitioned into coherent regions that satisfy certain requirements [12]. An-

other application is the detection of connectivity in VLSI masks where elec-

trical connectivity between components is maintained by a channel whose

width is never less than a value � [9]. The image might also represent the

corridors of a maze, in which case the fact that a and b are in the same

k-width-component implies that a robot occupying a k � k area is able to

move from a to b.

A natural problem that arises is that of, given a binary image I , de-

termine the largest integer k so that image I is k-width-connected (i.e., I

contains one k-width-component). For the remainder of the paper let k�

denote this largest k. Determining k� has obvious relevance to the appli-

cations stated above. For example, if the image represents the corridors of

2



a maze, then k� represents the largest side length of a square-shaped robot

that can move freely between any two points in the maze.

The value of k� can be determined in O(n logk�) time by using the

algorithm presented in [4] and performing a binary search for k�. In this

paper we present an algorithm to determine k� in O(n) time. Our algorithm

is based on a very di�erent approach from the one used in [4]. We generate

k� in two stages. The �rst stage generates a preliminary estimate for k�

by having every 1-pixel perform \local" computations. This preliminary

value represents an upper bound on the value of k�. The �nal value of k� is

obtained by generating a weighted graph that models bottlenecks in image

I . For this graph we determine the largest edge weight k0 such that removing

all edges of weight at least k0 breaks all cycles in the graph. We then show

that k0 equals k�.

The paper is organized as follows. In Section 2 we state some of the

necessary de�nitions. Section 3 contains the description of the approach

used by our algorithm and Section 4 describes its implementation on the

mesh. Section 5 concludes.

2 De�nitions and Preliminaries

Throughout, image I is of size n � n and is stored in a mesh containing

n2 processors, with every processor containing O(1) registers. We assume

that the image is stored in the obvious way; i.e., the processor in row i and

column j stores the pixel in the same row and column. In cases where it is

obvious, we refer to the processor storing pixel x as processor x.

We start by giving the formal de�nition of a k-width-connected image.

3



We assume, w.l.o.g., that image I contains no 1-pixels in the �rst and last

rows and columns. Two pixels are called hv-adjacent if they are horizontally

or vertically adjacent and they are called d-adjacent if they are diagonally ad-

jacent. A 1-block (of size k) is a subimage of I of size k�k which contains only

1-pixels. Let x and y be two 1-pixels in image I . There exists a path P (x; y)

from x to y if and only if there exist 1-pixels x = v0; v1; : : : ; vm�1; vm = y

such that vi and vi+1 are hv-adjacent, vi 6= vj for i 6= j.

A path of width k is a sequence B1; : : : ; Bl of 1-blocks, l � 1, each of size

k, such that Bi and Bi+1 share a subimage of size (k� 1)� k or k� (k� 1),

1 � i � l� 1. A path of width 3 is shown in Figure 1.

Two 1-pixels a and b are k-width-connected if and only if there exists a

path of width k containing both a and b. Image I is k-width-connected if

and only if any two 1-pixels a and b of I are k-width-connected. Figure 2

shows an image that is 3-width-connected, but not 4-width-connected. The

image consists of two 4-width-components: one is formed by the 1-pixels

\enclosed" by holes H1 and H2 and one is formed by the remaining 1-pixels

with seven 1-pixels belonging to both components. Observe that a 1-pixel

can belong up to k k-width-components.

To reduce the number of special cases that need to be considered when

determining k�, we assume I to be 2-width-connected. Using the algo-

rithm presented in [4], we can determine in O(n) time whether I is 2-width-

connected.

We characterize 1-pixels that are hv- or d-adjacent to at least one 0-pixel

into contour and corner pixels. A 1-pixel hv-adjacent to exactly one 0-pixel

is a 1-contour pixel and a 1-pixel hv-adjacent to exactly two 0-pixels is a 2-

4



contour pixel. Since I is at 2-width-connected, a 1-pixel can be hv-adjacent

to at most two 0-pixels and these two 0-pixels cannot be in the same row

or column. A 1-pixel x is a 1-corner pixel if x is d-adjacent to exactly one

0-pixel p with the following corner property: x and p are hv-adjacent to two

common 1-pixels (both of which are contour pixels). For any 1-pixel x there

can be two distinct 0-pixels making x a corner pixel. If x is d-adjacent to

two such 0-pixels, we say x is a 2-corner pixel. Note that the two 0-pixels

making x a 2-corner pixel cannot be in the same row or column. A 1-pixel

can be both a 1-contour pixel and a 1-corner pixel. However, since I is

2-width-connected, it cannot be both a 2-contour and a 1-corner pixel (the

combination 1-contour and 2-corner is also not possible). See Figure 2 for

an illustration of the di�erent types of 1-pixels.

The boundary graph Gb = (Vb; Eb) is an undirected, planar graph with

weights on both the vertices and the edges. For any vertex x, let w(x) be the

weight of vertex x and for every edge (x; y), let w(x; y) be its weight. Every

contour pixel x corresponds to one vertex in Gb, namely contour vertex x,

with w(x) = 1. Let x and y be two hv-adjacent contour pixels such the

two 0-pixels making x and y contour pixels are also hv-adjacent. Then,

Gb contains the edge (x; y) whose weight equals the size of the largest 1-

block that contains both x and y. This 1-block has x and y on its border.

A contour vertex is incident to exactly two edges. For a contour vertex

hv-adjacent to a corner vertex (and thus hv-adjacent to only one contour

vertex), the second edge is formed by the rules described below.

Every 1-corner pixel x induces one vertex x in Gb. Let y and z be the two

1-pixels hv-adjacent to pixel x and which are also hv-adjacent to the 0-pixel

5



making x a corner pixel. The weight of vertex x, w(x), equals the size of the

largest 1-block that contains pixel x in one of its four corners, but does not

contain y nor z. Graph Gb contains the edges (y; x) and (x; z). The weight of

the edge (y; x) (resp. (x; z)) equals the size of the largest 1-block containing

both y and x (resp. x and z). Intuitively, minfw(x); w(y; x); w(x; z)g is the

maximum width of a path from 1-pixel y to 1-pixel z via 1-pixel x. Clearly,

the image may contain another, wider, path from y to z. When a pixel x is

both a 1-contour and a 1-corner pixel it induces two distinct vertices in Gb.

When pixel x is a 2-corner pixel, x also induces two vertices in Gb, one for

each corner. The weights and the adjacent edges are set in a corresponding

way.

Figure 3 shows the boundary graph induced by the image of Figure 2. In

Figure 3 corner vertices are represented by solid circles and contour vertices

by empty circles. The weights are shown only for edges and vertices in the

connected components induced by holes H4 and H5 (weights of 1 are not

shown). Three pairs of vertices are enclosed by dashed lines; each such pair

is induced by a single 1-pixel.

Let B1 be the set of 1-pixels corresponding to the exterior boundary

of the component in image I and let B2; B3; : : : ; Bm be the m � 1 interior

boundaries, m � 1. The boundary graph Gb consists ofm connected compo-

nents, each having the form of a cycle. The two vertices induced by a pixel

that is a 1-contour and a 1-corner pixel (resp. a 2-corner pixel) belong to

di�erent connected components (since I is 2-width-connected, such 1-pixels

are part of two di�erent boundaries).

6



3 Overview of the Algorithm

As stated in the introduction, the value of k� is determined in two stages. In

the �rst stage we determine the boundary graph Gb and compute an upper

bound on k� by using the weights associated with the edges of the boundary

graph. Let k be the value generated by the �rst stage, k � k�. In the

second stage we use the value of k to set up a hole graph that models the

bottlenecks of size at most k� 1 induced by corner pixels. We determine k�

by applying a cycle-breaking procedure to the hole graph. Our algorithm

makes use of the following two properties.

Property 1 Let x and y be two adjacent contour vertices such that Gb

contains the edge (x; y). Then, k� � w(x; y).

Proof: By de�nition of the edges of the boundary graph, the largest 1-block

containing both pixel x and pixel y has size w(x; y). Assume image I is k�-

width-connected with k� > w(x; y). Then, there must exist two disjoint

1-blocks of size k� such that one 1-block has x in one of its corners and the

other 1-block has y in one of its corners. However, this implies that there

exists a 1-block of size k� containing both x and y. This is not possible and

thus the property follows. 2

For any vertex in Gb representing a contour or corner pixel x, we denote

the two vertices in Gb adjacent to x (as well as the respective pixels) by

a1(x) and a2(x).

Property 2 Let x be a contour vertex adjacent to a corner vertex in Gb.

Then, k� � maxfw(x; a1(x)); w(x; a2(x))g.

7



Proof: Let x be such a contour vertex. If image I is k�-width-connected,

then 1-pixel x is contained in at least one 1-block of size k�. Since k� � 2,

at least one of a1(x) and a2(x) is in this 1-block of size k�. 2

STAGE 1

The �rst stage of our algorithm generates a value k � k� for which Properties

1 and 2 are satis�ed. For the boundary graph of Figure 3, Stage 1 determines

k = 3 (which coincides with the �nal answer). Using k, the contour pixels of

image I can be partitioned into sets so that between any two contour pixels

in the same set there exists a path of width k. Assume we have generated

such a partition into the minimum number of sets. If this partition consists

of only one set, we have k = k�. Otherwise, some corner pixels induce

bottlenecks that force k� < k. Let x be a corner vertex with y = a1(x)

and z = a2(x). The path from y to z via x in image I has a width of

minfw(x); w(x; y); w(x; z)g. We next prove a lemma which implies that,

after after having computed k to satisfy Properties 1 and 2, only the value

of w(x) determines the width of the path going from y to z via x.

Lemma 1 Let x be a corner vertex and let y be a contour vertex adjacent

to x in Gb. If w(x) > w(x; y), then k � w(x; y) < w(x), where k is the

quantity determined in Stage 1.

Proof: Let t = a1(y) with t 6= x. Since y is a contour vertex in Gb,

by Property 2 we have k � maxfw(y; x); w(y; t)g. If w(y; x) � w(y; t), then

k � w(y; x) < w(x). We next show that w(y; x) < w(y; t) is not possible.

W.l.o.g let the pixels corresponding to vertices x, y, and t be in a common

row and let x be to the left of y. Since w(x) > w(x; y), there exists a 0-

8



pixel p in the column containing pixel y that is hv-adjacent to a pixel in the

1-block of size w(x). (If such a 0-pixel p would not exist, we would have

w(x; y) � w(x).) See Figure 4 for an illustration. Pixel p limits the size of a

1-block containing y and t and makes it impossible to have w(y; t) > w(y; x).

The lemma follows. 2

STAGE 2

Let k be the quantity determined in Stage 1. >From Lemma 1 it follows

that, if w(x) < k, then the widest path from a1(x) to a2(x) going via corner

pixel x has a width of w(x). We say that x induces a bottleneck of size

w(x). If the only way to go from a1(x) to a2(x) is via corner pixel x, then

this bottleneck cannot be avoided and we have k� � w(x) < k. In order to

determine which bottlenecks can and which cannot be avoided, we perform

a cycle-breaking procedure on a hole graph induced by image I and k. We

next de�ne this hole graph.

Every boundary in image I induces a hole, with the outer boundary

inducing the outer hole and every other boundary inducing an inner hole.

Assume we have labeled the holes so that H(y) is the label of the hole

containing 0-pixel y. Image I contains m boundaries and thus m holes.

The hole graph Gh = (Vh; Eh) is an undirected, planar, non-simple (i.e., it

can contain multiple edges and self-loops), m-vertex graph with costs on

the edges. Vertex vi of the hole graph corresponds to the i-th hole. We

next describe how the edges of Gh are formed. Let x be a corner vertex

with w(x) < k. The 1-block of size w(x) that has pixel x in one of its four

corners is also called the 1-block associated with pixel x.

9



Let s be the 0-pixel d-adjacent to corner pixel x. Let t be a 0-pixel hv- or

d-adjacent to the border of the 1-block associated with x and which limits

the size of this 1-block to w(x). See Figure 5(a) for an illustration. Pixel

t cannot be in the row or column containing 0-pixel s. Furthermore, the

following holds. There cannot exist two 0-pixels t1 and t2 such that t1 and

t2 are hv-adjacent to di�erent borders of the 1-block associated with x. If

this would happen, there would exist a contour pixel forcing k � w(x) in

Stage 1. At this point pixel t may not yet be uniquely de�ned. Consider the

sequence � formed by the w(x)+1 pixels adjacent to the side of the 1-block

associated with x and containing pixel t, listing as the �rst element the pixel

in either the same row or column with pixel x. For the pixel labeled x in

Figure 5(a), we have � = 10000. Should � contain more than one 0-pixel,

we choose t to correspond to the �rst 0-pixel in sequence. Observe that � is

of the form f1g�f0g+f1g�; i.e., it contains at least one 0-pixel (by de�nition)

and it cannot contain a 1-pixel that is to the left as well to the right of a

0-pixel in �. For example, for w(x) = 4, � = 01101 is impossible. 0-pixel

t is always d-adjacent to a corner pixel y so that y belongs either to the

1-block associated with x, or y is in the same row or column as 0-pixel s.

It is possible that there exist two choices for pixel y. In this case, select y

so that it is closer to the row or column containing pixel x. Observe that

we have w(x) = w(y). (w(y) > w(x) is not possible and w(y) < w(x) would

imply the existence of a contour pixel forcing k � w(x) in Stage 1.) When

corner pixel y applies the rules described above to itself, y chooses pixels s

and x (as its t and y).

10



Having chosen x; s; t, and y according to these rules, we add to Gh the

edge (H(s); H(t)) with cost w(x) = w(y). We also say that corner pixels x

and y induce the edge (H(s); H(t)) with cost w(x). Figure 5(b) shows the

edges for the portion of the image shown in Figure 5(a). In summary, the

hole graph is not necessarily connected, it can contain multiple edges (even

with identical costs) and self-loops, and the cost of every edge is less than

k. The next lemma characterizes how the edges of Gh determine k�.

Lemma 2 If the hole graph Gh contains no cycles, then k� = k. If the

hole graph Gh contains cycles, let k0 be the largest integer such that when

all edges of cost � k0 are removed from Gh, the resulting graph contains no

cycle. Then, k� = k0.

Proof: We �rst show that when Gh contains no cycles (i.e., Gh is a

forest), there exists a path of width k between any two 1-pixels. We start by

proving that between any two 1-pixels d- or hv-adjacent to 0-pixels belonging

to the same hole there exists a path of width k. The following observation

is crucial. Let x be a corner pixel with w(x) < k. Any contour pixel is

contained in a 1-block of size k, and thus a1(x) (resp. a2(x)) is in a 1-block

of size k. In addition, there exists a 1-block of size k containing either x

and a1(x) or x and a2(x). This holds, since if neither x and a1(x) nor x

and a2(x) were in a 1-block of size k, there would exist a contour pixel not

contained in a 1-block of size k. Throughout the proof we assume that x

and a1(x) are in a common 1-block of size k.

Assume the edges of every tree of Gh are rooted towards a root, where the

root is chosen arbitrarily. We prove the claim by an inductive argument. Let

11



vi be a leaf in a rooted tree and assume vi represents hole Hi. Let < vi; vj >

be the arc incident to vertex vi in the rooted tree, with vj representing hole

Hj . Let xi and xj be the two corner pixels that induce the edge (vi; vj) in

the hole graph. Since vi is a leaf node, xi is the only corner pixel d-adjacent

to a 0-pixel in Hi having w(xi) < k. A path of width k from xi to a2(xi)

containing all the 1-pixels d- or hv-adjacent to hole Hi can be constructed

as follows. Every contour pixel (resp. corner pixel di�erent from xi) that

is hv-adjacent (resp. d-adjacent) to a 0-pixel in Hi is in a 1-block of size k.

These 1-blocks, together with the 1-block containing a1(xi) and xi form a

path of width k from xi to a2(xi). The claim now follows for hole Hi.

Let vi be a non-leaf vertex in a rooted tree and assume the claim holds for

every hole corresponding to a vertex in the subtree rooted at vi, excluding

vi. Let < vk; vi > be an incoming arc for vertex vi and let xk and xi be the

two corner pixels inducing edge (vk; vi) in Gh. By induction, there exists a

path, say path P , of width k from xk to a2(xk) that contains all the 1-pixels

d- or hv-adjacent to hole Hk. Path P is now used to show the existence of a

path P 0 of width k from xi to a2(xi). Let Bi (resp. Bk) be the 1-block of size

w(xi) (resp. w(xk)) associated with xi (resp. xk). >From the construction

of the hole graph we know w(xi) = w(xk). It is possible to have Bi = Bk ,

Bi overlapping with Bk , or, Bi being disjoint, but adjacent to Bk (this case

applies to the situation shown in Figure 6). Imagine extending path P into

a path of width k so that one end of the new path contains xi and a1(xi) and

the other end contains a2(xi). Notice that no extension might be necessary

on one end, as is the case in Figure 6 and that xi could be in both extensions.

Let P 0 be the so obtained path. Path P 0 contains no 0-pixel. No pixel in

12



Bi or Bk can be a 0-pixel and the existence of a 0-pixel in P 0 not contained

in Bi or Bk would imply a contour pixel that cannot belong to a 1-block of

size k. Hence, P 0 represents a path of width k from a1(xi) to a2(xi).

Let vj be the parent of vertex vi in the rooted tree and let x0
i
and xj

be the two corner pixels inducing the edge (vi; vj) in the hole graph. The

situation when vertex vi is the root of the tree (i.e., no vj exists) is simplier

and is omitted. 1-pixel x0
i
is the only corner pixel d-adjacent to hole Hi

for which we have not shown the existence of a path of with k from a1(x0
i
)

to a2(x0
i
). Using an argument identical to the one used for the leaves, the

existence of a path of width k from x0
i
to a2(x0

i
) containing all 1-pixels d-

and hv-adjacent to hole Hi is shown. The claim then follows.

It is easy to see that the existence of a path of width k between any two

1-pixels hv- or d-adjacent to 0-pixels belonging to the same hole implies the

existence of a path of width k between any two 1-pixels in the image. From

Properties 1 and 2 it then follows that k = k�.

Assume now that the hole graph Gh contains a cycle. Let C be a cycle

of length l in Gh, l � 1. Every edge on cycle C is induced by a unique

pair of 1-pixels. Let (vi; vj) be such an edge induced by the corner pixels

xi and xj . Any path from a1(xi) to a2(xi) must go through at least one of

the bottlenecks inducing the edges of cycle C. In order to allow for such a

path and be able to reach all 1-pixels in image I , we need k� to be at least

as small as the largest cost associated with an edge on cycle C. Intuitively,

we need to \open" the cycle. This is exactly what happens in the cycle-

breaking algorithm in which the generated value k0 breaks every cycle in the

hole graph. The existence of a path of width k0 in image I follows from the

13



above discussion. The lemma follows. 2

4 The Mesh Algorithm

In this section we describe how to execute Stage 1 and Stage 2 on a mesh

of size n� n in O(n) time. Every 1-pixel of image I can determine in O(1)

time what type of 1-pixel it is and what type of vertices it induces in the

boundary graph. The weights of the vertices and the edges in the boundary

graph can be determined in O(n) time using straightforward data movement

techniques. Hence, Stage 1 can be executed in O(n) time.

In order to set up the hole graph needed in Stage 2, assume we have la-

beled the holes of image I . This can be done in O(n) time using a connected

component labeling algorithm [2, 6]. Using the weights of the boundary

graph, the hole graph is then set up in O(n) time. The remainder of this

section describes how to determine the largest value k0 that breaks all cycles

in hole graph Gh.

Hole graph Gh can contain cycles of length 1 and 2 caused by self-

loops and multiple edges. We handle such cycles �rst by performing local

computations. If vertex vi of Gh has a self-loop of cost c, we reduce k to

satisfy k � c and delete the self-loop. If there exist two edges between

vertices vi and vj , one of cost c1 and another of cost c2, with c1 � c2, we

remove the edge with cost c2 and reduce k to satisfy k � maxfc1; c2g.

Assume now that all self-loops and multiple edges have been removed

from Gh. Let k be the estimate of k� after the removal of these edges.

Assume further that the updated graph Gh contains no edges of cost � k.

Our cycle-breaking algorithm uses binary search. Assume we are testing

14



whether a given value l breaks the cycles in Gh. We remove all edges of cost

� l and check whether the resulting graph is cycle-free (i.e., whether it is

a forest). If it contains a cycle, l is an upper bound for k0. If it contains

no cycle, l is a lower bound for k0 because it could be possible to break the

cycles with a larger value. By choosing appropriate values for l each time,

we can determine the correct value of k0 in O(log jVhj) iterations. In order to

obtain an e�cient parallel algorithm for the mesh architecture, we combine

the binary search with a data reduction technique. More precisely, after one

iteration we also reduce the size of the graph by at least one half. We next

describe how to generate from Gh, after one cycle-breaking test, a graph of

at most half the size.

Let l be the median among the edge costs of graph Gh. Let Gh;l =

(Vh;l; Eh;l) be the graph obtained from Gh by deleting all edges of cost � l.

Case 1: Gh;l contains a cycle.

In this case the algorithm continues with Gh;l. Observe that jEh;lj � jEhj=2.

Case 2: Gh;l contains no cycles.

GraphGh;l consists of a collection of trees, T1; T2; : : :Tr. Let G
0
h;l

= (V 0
h;l
; E0

h;l
)

be the graph used by the next iteration. G0
h;l

is generated as follows. We

shrink every tree Ti to a single vertex ui and let V 0
h;l

= fu1; u2; : : : ; urg. For

vertex v in Gh, let t(v) be the tree containing vertex v. For every edge

(v1; v2) in Gh having edge cost c with c � l we include in G0
h;l

the edge

(ut(v1); ut(v2)) with a cost of c. After all edges have been added, graph G0
h;l

contains self-loops and multiple edges. We remove self-loops and the mul-

tiple edges according to the rules stated above (doing so also improves our

15



estimate of k0).

Graph G0
h;l

may, however, not satisfy the requirement jE 0
h;l
j � jEhj=2.

When Gh contains many edges of cost l, graph G0
h;l

may contain too many

edges. In the extreme case, we can have G0
h;l

= Gh and we need to avoid an

in�nite loop. We proceed as follows. Assume jE0
h;l
j > jEhj=2. Let l̂ be the

smallest edge cost in Gh with l̂ > l. If no such l̂ exists, we have k0 = l and

are done. Otherwise, let G
h;l̂

be the graph obtained from Gh by deleting

all edges of cost � l̂. When G
h;l̂

contains a cycle, k0 = l and we are done.

If G
h;l̂

contains no cycle, we apply the shriking process described above to

generate graph G0

h;l̂
. We now have a graph satisfying jE 0

h;l̂
j � jEhj=2 and

the next iteration uses G0

h;l̂
.

Figure 7 illustrates one iteration of the cycle-breaking algorithm. Fig-

ure 7(a) shows an initial graph Gh, (b) shows Gh;3, (c) shows G
0
h;3 and (d)

shows G0
h;3 after self-loops and multiple edges have been removed. At this

point we have 3 � k0 � 6. When continuing with G0
h;3, we do not need to

consider l = 3 again (even though 3 is the median among the edge weights

in G0
h;3). Using l = 4 does not break all cycles and thus the cycle-breaking

algorithm returns k0 = 3.

Assume every processor i of the n � n mesh contains at most one edge

(ui; uj) of an at most n2-vertex planar graph G. In order to complete the

description of our algorithm we need to show that in O(n) time we can

determine the connected components of graph G and can determine whether

any of these components contains a cycle. We brie
y sketch the main idea

for an algorithm solving both problems. The algorithmuses a data reduction

technique in which, in O(n) time, the problem is reduced from one on at

16



most n2 vertices to one on at most n2=2 vertices. We point out that the

same time bounds have been claimed for general graphs in [13]. However,

the algorithm we describe is simplier and makes use of the fact that we are

dealing with planar graphs.

To start with, every vertex ui ofG selects, among the edges adjacent to it,

the smallest-indexed vertex ui is incident to. The selected edges form a forest

and we next use the algorithm described in [1] to determine the connected

components of this forest. We then shrink each component representing a

forest to a \supernode", put back the edges of G not in the forest, and obtain

a new graph G0. Every self-loop or pair of edges between the same pair of

vertices in G0 represents a cycle in G. If we are testing for cycles in G, the

existence of a self-loop or a multiple edge in G0 indicates the termination of

the algorithm. In case we need to solve the connected component problem

on G, we remove all self-loops and multiple edges in G0. It is easy to see that

G0 contains at most n2=2 vertices. Since G is a planar graph, we have also

reduced the number of edges by a constant fraction (this statement is not

true for general graphs). We compress the remaining edges of G0 into the

top-left corner of the mesh and recursively solve the connected component or

the cycle testing problem on G0. Once the connected component numbers of

the vertices in G0 are known, we can assign the correct component numbers

to the vertices of G in O(n) time. The overall running time of the algorithm

determining the connecting components or testing for the existence of cycles

in thus O(n).

Summarizing, we obtain the following result.

Theorem 3 Given an image I stored in an n � n mesh of processors with

17



one pixel per processor, the largest k such that I is k-width-connected can be

determined in O(n) time.

5 Conclusion

In this paper we considered the problem of determining, for a binary image

I stored in a n � n mesh of processors, the largest integer k such that I

is k-width-connected. We present an optimal O(n) time solution to this

problem. By having every pixel (i.e., the respective processor) perform local

computations, our algorithm generates �rst a preliminary estimate of the

result. The �nal result is then obtained by generating a graph that models

bottlenecks in image I and applying a cycle-breaking algorithmto this graph.

6 Acknowledgements

We thank the referees for constructive comments and for identifying a 
aw

in an earlier de�nition of k-width-connectivity.

References

[1] Atallah, M.J., Hambrusch, S.E., \Solving Tree Problems on a Mesh-

connected Processor Array", Information and Control, Vol. 69, pp. 168-

187, 1986.

[2] Cypher, R., Sanz, J., Snyder, L., \Algorithms for Image Component

Labeling on SIMDMesh Connected Computers", IEEE Trans. on Com-

puters, 1990, Vol. 39, pp. 276-281.

[3] Cypher, R., Sanz, J., Snyder, L., \Hypercube and shu�e- exchange

algorithms for image component labeling", Journal of Algorithms, 1989,

Vol. 10, pp. 140-150.

18



[4] Dehne, F., Hambrusch, S.E., \Parallel Algorithms for Determining k-

Width-Connectivity in Binary Images", JPDC, 1990, Vol. 12, Nr. 1, pp.

12-23.

[5] Dyer, C., Rosenfeld, A., \Parallel Image Processing by Memory- Aug-

mented Celluar Automata", IEEE Pami, 1981, Vol. 3, pp 29- 41.

[6] Hambrusch, S.E., TeWinkel, L., \A Study of Connected Component

Algorithms on the MPP", Proc. of 3rd Internat. Conf. on Supercom-

puting, pp 477-483, 1988.

[7] Lim, W., Agrawal, A., Nekludova, L., \A fast parallel algorithm for

labeling connected components in image arrays", Parallel Processing

for Computer and Vision Display, Ed. P. Dew, R. Earnshaw, and T.

Heywood, Addison-Wesley, pp 169-179, 1989.

[8] Levialdi, S., \On Shrinking Binary Picture Patterns", CACM, 1972,

Vol. 15, pp. 7-10.

[9] Mead, C.A., Conway, L.A., Introduction to VLSI Systems, Addison

Wesley, 1980.

[10] Miller, R., Stout, Q., Parallel Algorithms for Regular Architectures,

manuscript, to be published by MIT press.

[11] Nassimi, D., Sahni, S., \Finding Connected Components and Con-

nected Ones on a Mesh-Connected Parallel Computer", SIAM J. on

Comp., 1980, pp. 744-757.

[12] Pavlidis, T., Algorithms for Graphics and Image Processing, CSP, 1982.

[13] Reif, J., Stout,Q., \Optimal Component Labeling Algorithms for Mesh

Computers and VLSI", manuscript.

[14] Rosenfeld, A., \Connectivity in Digital Pictures", JACM, 1970, Vol.

17, pp. 146-160.

19



Figure 1: A path of width 3 between 1-pixels a and b

Figure 2: An image that is 3-width, but not 4-width connected

20



Figure 3: The boundary graph of the image shown in Figure 2

Figure 4: Illustrating Lemma 1 with w(x) = 5, w(x; y) = 3, 0-pixel p makes

w(y; t) > w(y; x) impossible

21



(a) assume k = 5 from Stage 1

(b) edges between H1 and H2 induced by x, x0, and x00

Figure 5: Creating edges of the hole graph

22



k = 6, w(xi) = w(xk) = 4, dashed lines show extension of P into P 0

Figure 6: Extending path P into path P 0

23



(a) Graph Gh; edges included in Gh;3 are in bold

(b) G0
h;3 with self-loops and multiple edges

(c) G0
h;3 without self-loops and multiple edges; at this point we have k0 � 6

Figure 7: Breaking cycles

24




