
Scalable Parallel Geometric Algorithms for

Coarse Grained Multicomputers *

Frank Dehne~ “fAndreas Fabrl

tINRIA

BP 93

06902 Sophia Antipolis Cedex,

France

1 Introduction

Parallel Computational Geometry is concerned with

solving some given geometric problem of size n on a par-

allel computer with p processors (e.g., a PRAM, mesh,

or hypercube multiprocessor) in time TPa~~l/~l. We call
T

the parallel solution optimal, if T“aralle~ = 0(‘e~~ntz”~),

where T~e~Uential is the sequential time complexity of the

problem. Theoretical work for Parallel Computational

Geometry has so far focussed on the case ~ = O(l),

also referred to as the fine grained case. However, for

parallel geometric algorithms to be relevant in practice,

such algorithms must be scalable, that is, they must be

applicable and efficient for a wide range of ratios ~.

The design of such scalable algorithms is also listed as a

major goal in the recent “Grand Challenges” report [6].

Yet, only little theoretical work has been done for de-

signing scalable parallel algorithms for Computational

Geometry. The first and, to our knowledge, only pre-

vious theoretical paper to address this problem was [1].

The model considered there was a host machine with

O(n) memory attached to a systolic array of size p with

0(1) memory per processors. This model suffers how-

* This work was partially supported by the Natural Sciences

and Engineering Research Council of Canada and the ESPRIT

Basic ReseaTch Actions Nr. 90’?5 (A LCOM) and NT. 7141 (AL-

COM II).

Permission to oopy without fee ell or pert of thie material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requiree a fee

and/or specific permission.

9th Annual Computational Geometry,5/93/CA, USA
e 1993 ACM 0.8979 J.~83.6/93/OQO~ /0298 . ..$j .5(J

Andrew Rau-Chaplin$

$School of Computer Science

Carleton University,

Ottawa, Canada KIS 5B6

ever from fact that data has to be frequently swapped

between the host and the systolic array, and this “1/0

bottleneck” is the main factor determining the computa-

tion time. The architectures of most existing multicoln-

puters (e.g. the Intel Paragon, Intel iPSC/860, and CM-

5) are quite different. They consist of a set of p state-of-

the- art processors (e.g. SPARC processors), each with

considerable local memory, connected by some intercon-

nection network (e.g. mesh, hypercube, fat tree). These

machines are usually coarse grained, i.e. the size of each

local memory is considerably larger than 0(1). In or-

der to minimize the 1/0 bottleneck, the entire data set

for a given problem is immediately loaded into the local

memories and remains there until the problem is solved.

The Coarse Grained Multicornputer model, or

CGM(n, p) for short, is a set of p processors with O(;)

local memory each, connected by some arbitrary inter-

connection network. Our model is coarse grained, as the

size 0(~) of each local memory is defined to be consid-

erably larger than O(l), e.g., # > p or ~ > p2. Note

that, for determining time complexities, we will con-

sider both, local computation time and inter processor

communication time, in the standard way.

The problem studied in this paper is the design of

scalable parallel geometric algorithms for such architec-

tures, which are optimal or at least efficient for a wide

range of ratios ~. We present new techniques for de-

signing efficient scalable parallel geometric algorithms,

which are independent of the communication network.

A particular strength of our approach, which is very dif-

ferent from the one presented in [1], is that all inter pro-

cessor communication ia restricted to a constant number

of two types of global routing operations: global sort and

segment ed broadcast (to be explained in Section 2).

298

In a nutshell, the basic idea for our methods is as fol-

lows: We try to combine optimal sequential algorithms

for a given problem with an efficient global routing and

partitioning mechanism. We devise a constant num-

ber of partitioning schemes of the global problem (on

the entire data set of n data items) into p subproblems

of size O(:). Each processor will solve (sequentially)

a constant number of such subproblems, and we us,: a

constant number of global routing operations to per-

mute the subproblems between the processors. Eventu-

ally, by combining the 0(1) solutions of it’s 0(~) size

subproblems, each processor determines it’s 0(~) size

portion of the global solution.

The above is necessarily an oversimplification. ‘l’he

actual algorithms will do more than just those pernlu-

tations. The main challenge lies in devising the above

mentioned partitioning schemes. Note that, each pro-

cessor will solve only a. constant number of 0(~) size

subproblems, but eventually will have to determme \t’s

part of the entire O(n) size problem.

In particular, we present, algorithms for the following

geometric problems:

1.

2.

3.

4.

5.

6.

lower envelope of non-intersecting line segments in

the plane (and, with a. slight modification of the

model, for possibly intersecting line segments),

2D-nearest neighbors of a point set,

3D-maxima,

2D-weighted dominance counting,

area of the union of rectangles,

2D-convex hull of a point set.

Our scalable parallel algorithms for Problems 1-6 have

a running time of

0(T“’;”””’+T. (n, p))

on a p-processor Coarse Grained Multicomputer

CGM(n, p) with ~ z p~ for Problem 5, ~ ~ p for

Problems 1-4, and ~ z p log p for Problem 6 and where

T. (n, p) refers to the time of a global sort operation on

a CGM(n, p). As T~.qU.nt;U1 = @(n log n) for Problems

1-6, our algorithms either run in optimal time @(~~)

or in sort time T~ (n, p) for the respective architecture.

We will show that the first term dominates the sort time

for n > 2~s@J’1. For example, for hypercube networks,

we obtain optimal algorithms for 71 > $“gp.

Experiments have shown that, in addition to being

scalable, our methods do quickly reach the point of op-

timal speed-up for reasonable data sizes. ‘l?he fact, that

our algorithms use only very few well known and ex-

tensively studied global routing operations is also very

positive in practice. These communication operations

are usually available as system calls or as highly opti-

mized public domain software. All other programming

is within the sequential domain. Thus, even with mod-

est programming efforts, the actual timings obtained are

quite impressive.

The remainder of this paper is organized as follows:

In the next section, we describe the above mentioned

global routing operations. In the following sections we

present our algorithms, one per section, in the above

order. We discuss experimental results and give a con-

clusion in the last two sections.

2 Communication Model

The processors communicate via au interconnection net-

work in which each processor may exchange messages of

size O(log n) with any one of its immediate neighbors

in constant time. Commonly used interconnection net-

works for CC,M include 2D-nlesh (e.g. Intel Paragon),

hypercube (e.g. Intel iPSC/860) and the fat-tree (e.g.

Thinking Machines Chl-5). We refer the reader to

[2, 4, 7, 12] for a more detailed discussion of the dif-

ferent architectures and algorithms.

We will now outline the four operations involving in-

terprocessor communication which we will use in this

paper and give the time complexity of the operations

for the above three architectures. The first two opera-

tions concern all n data. Assume that the p processors

of the C’GM(n, p) are numbered from O to ;p – 1.

1) global sorl.: T. (n, p) refers to the time to sort O(n)

data items stored on a CGM(n, p), 0(~) data items

per processor, with respect to the above mentioned pro-

cessor numbering. The time complexity T$ (n, p) of the

global sort is O(~(log n + ~)) for a 2D-mesh, it is

O(; (log n + logz p)) for a. hypercubel and 0($ log n)

for a fat-tree.

1The time complexities for the hypercube and the 2D-mesh are

based on Batcher’s bitonic sort[2]. Note that better deterministic

[5] and randomized [15] sorting algorithms exist, which, however,
are not of practical use.

299

It is interesting to study, for which ratio of n

and p the global sort becomes optimal, that is

T, (n, p) = 0(-). The time complexity of the coarse

grained version of Batcher’s bitonic sort is T, (n, p) =

O(~(logn + T~(P, P))). Hence, logn > T,(p, p) @ n z

2T$@J’J. We thus obtain optimal global sort algorithms

for n ~ P’”SP on a hypercube and for n ~ 2@ on a

2D-rnesh. The fat-tree sorting algorithm is optimal for

n>p.

2) segmented broadcast: In a segmented broadcast oper-

ation, q < p processors with numbers jl < jz < . ..< jg

are selected. Each such processor p~: broadcasts O(:)
data from its local memory to the processors p~,~l to

pj,+l _ 1. The time complexity T~b(n, p) of the segmented

broadcast is 6)(8@ for a. 2d-mesh and @(~ log p) for

a hypercube an~ a fat-tree.

The next two operations concern p or p2 data and their

time complexity is thus independent of the problem size

n.

3) multinode broadcast: In a multinode broadcast op-

eration, every processor (in parallel) sends one message

to all other processors. The time complexity Tb (p) for

any interconnection network is Tb(p) = Cl(p).

4) total ezchange: In a total exchange operation, every

processor (in parallel) sends a different message to each

other processors. The time complexity Tc (p) of the total

exchange is T.(p) = @(p:) for a 2D-mesh, and Tr (p) =

O(p log p) for a hypercube and a fat-tree.

3 Lower Envelope of Line Seg-

ments in the Plane

Given a set S of n opaque line segments in the Euclidean

plane, the Lower Envelope Problem, LE(S), consists of

computing the segment portions visible from the point

(O, –co). We use the following fact.

Lemma 1 The lower envelope of n line segments is x-

monotonic. If the line segments do not intersect it has

a size of O(n). If the line segments may intersect the

size of ihe lower envelope is 0(9z&(n)), where CY() is the

extremely slow growing inverse Ackermann junction.

Prooj The i-c-monotonicity is a trivial fact. The same

holds for the size of the lower envelope in the case of non-

intersecting line segments. For the general case see [10].

I

We will restrict ourselves first on the case of non-

intersecting line segments. Running the lower enve-

lope algorithm sequentially on the ~ segments in the

local memory of each processor reduces the problem to

solve in parallel to computing the lower envelope of p

x-monotonic chains, each of size 0(~). We then subdi-

vide the Euclidean plane in p vertical slabs. The details

of the algorithm are as follows.

1.

2.

3.

4.

5.

Let S’i C S denote the set of ~ segments in the local

memory of processor pi. Locally compute LE(S~) in

processor pi, which results in ~-monotonic chains C;.

Globally sort the segments in lJ~=l Ci by the x-

coordinate of their right endpoints, which yields in

sets Vi on processor pi.

Perform a multinode broadcast with processor pi

sending li, the vertical line passing through the end-

point of a segment in ~ with largest z-coordinate as

message. Now, each processor stores the set of lines

defining the p vertical slabs.

Perform a total exchange, with processor pi sending

segment s e C~ as message to processor p~, iff s

intersects the vertical line /j.

Each processor pi receives the set Ri of segments

intersecting /z. The ca.rdinality of Ri is p. Locally

compute L.ll(w U Ri).

I’he correctness of the algorithm follows from the
monotonicity of the chains C’~ G C’. The local lower en-

velope computations take time O(: log n). The commu-

nication time is T~(p) + To(p) + T.(n, p) = O(T, (n, p)),

for ~ ~ p. We thus obtain the following result.

Theorem 2 Given a set S of n non-intersecting line

segments in the Euclidean plane, then the Lower En-

velope Problem can be solved on. a p-processor Coarse

Grained J4ulticonzputer CGM(n, p), ~ ~ p, in tinte

O(* + T,(n,p)).

With the same subdivision and communication

scheme we can solve the problem for possibly intersect-

ing line segments. We only have to replace the above

used sequential algorithm, by the algorithm for comput-

ing the lower envelope due to [11]. As the size of the out-

put is not linear in n, we need some extra memory. More

300

exactly, after the first local computation of the lower en-

velope each processor stores a chain of size 0(~ a(rz)).

After the second computation of the lower envelope each

processor stores a chain of size 0(~az(n)). Note that

the total size of the lower envelope is only O(na(n)),

but it can be unevenly distributed over the memory,

such that we need 0(na2 (n)) memory. We thus can

state the following corollary.

Corollary 1 Given a set S of n possibly iwtersecttng

line segments in the Euclidean plane, then the Lower

Envelope Problem can be solved on a p-processor Coarse

Grained Muliicompuier CGM(nCY2(n), p), ~>p, in

time 0(- + T$(n~2(n),p)).

4 2D-Nearest Neighbors of a

Point Set

Given a set P of n points in the Euclidean plane, the

Nearest Neighbor Problem, NN(P), is to determine for

each point v e P a point w = IVNp(W), where w c P\{v}

and dist(v, w)< disi(v, u) for all u c P \ {rJ}. The follc)w-

ing is an outline of our scalable algorithm for solving

the Nearest Neighbor Problem on a p-processor Coarse

Grained Multicomputer CGM(n, p). We use the follcm~-

ing lemma from [1].

Lemma 3 (See Figure 1.) Let V and H be two point

sets in a vertical and a horizontal stab. Let I be the

set of four intersection points defined by the iimiting

lines of the two slabs and let CVH be the set {w E

V \ H; minP~I(dist(w, p)) <dist(w, NNv(w))}. Then,

I C’VH [< 8, and for all w E ~H whose nearest neighbor

v is in H\V holds: w G CVH.

Proof: The ideas of the proofs are as follows. A point

in a plane can be nearest neighbor to at most 6 points,

as the angle between those must be at least ~. A na-

Ioguously a point p c 1 can be nearest neighbor to at

most 2 points in V \ H and the size of set 1 is 4, thus

[Gv~ 1<8.

Let v c H \ V be the nearest neighbour to a pc)int

w c V \ H. Assume w.1.o.g. that v is to the left of

V and w below H, and let pi_ ~,j _ ~ be the lower left

intersection point of the limiting lines of V and H.

Then dist(w, NNv(w)) >dist(w, V) >disi(tv,pi-l, j-1) ~

minp~~ dist(w, P), that is w E CVH. t

v
11-I (i

●

0
0

hj 0

.
●

H .
.

...................
,“; Pi-, j-[‘“..

hj-l
...

0

~w

:0

. ..
..,.

,.. ””. .
.

.

●

.

Figure 1: The points o belong to the set CvH, the points

x denote the set 1.

We subdivide the plane in p vertical and horizontal

slabs, each containing point sets Vi and Hj, 1 < i, j <

p, of size 0(~), respectively. According to the above

lemma a point v E U n Hj is the nearest neighbor of

either a point in It or in Hj or in Cj := Ui=l C~j, where

C’kj denotes CV,ffj. Note that the size of Cj k < 8P,

i.e. independent of the problem size n.

Our algorithm maps the subproblem NN(It), the

computation of the sets Cik, 1 < k < p, and the SUb-

problem NN(Hi U C’i), onto processor I)i, and solves them

sequentially. The details of the algorithm are as follows

1.

2.

3.

4.

5.

6.

Globally sort the points by their x-coordinates,

which yielcls sets It on processors Pi.

Each processor pi solves NN(Vi) independently.

Globally sort the points by their y-coordinates which

yields sets Hi on processors pi.

In order to compute the sets L’j, we perform a

multinocle broadcast with processor PZ sending hi,

the element of Hi with largest g-coordinate, as its

message.

Each processor pi computes all sets Ci~, 1 S k S P,

sorting Vi locally by the u-coordinates of the points

and performing a scan over this sorted sequence,

Perform a total exchange, where each processor pi

sends the set C~~ as message to processors p~, for

l<k <p.

301

7.

8.

9.

10.

Each processor pi computes NN(Hi U C’i)) indepen-

dently.

As a point v in a slab U can have up to p copies

in the sets Ck, 1 ~ k < p, we have to route them

back to pi, in order to determine the nearest neighbor

of v among its copies. To do so perform a total

exchange, where each processor pi sends the set cki

(with the nearest neighbor information) as message

to processors p~, 1< k < p.

Locally sort the points and scan over this sorted se-

quence of size p to determine the copy with the near-

est neighbor.

Perform a total exchange operation to send these

copies to the processor holding the appropriate hor-

izontal slice.

The correctness of the algorithm follows immediately

from Lemma 3 and the running time can be analyzed

as follows. The local nearest neighbor computations

take time O(; log n) [14]. The computation of the

sets Cij, 1 ~ i, j s P, is dominated by the local sort

and takes time O(: log n). The communication time is

Tb (p) + 3Tm (p) + 2T, (n, p), which is dominated by the

global sorting steps to compute the horizontal and ver-

tical slabs.

Theorem 4 Given a set P of n points an the Euclidean

plane, the Nearest Neighbor Problem can he solved 071.a

p-processor Coarse Grained Multicomput er CGM(n, p),

> p, in time 0(% + T$(n) p)).

5 3D-Maxima

Given P a set of n points in the Eucliclea.u space, the

3D-Maxima Problem, 3Dmar(P), is to determine the

set of points v E P, such that there is no point w E P

with Z(W) > .z(v) and y(w) > y(v) and z(w) > z(v). We

say point v is not dominated by any other point of P.

Lemma 5 (See jigure 2) Let V be a set of points in !he

vertical slab delimited by the two planes V and V’j with

x(V) < ~(V’) and which are parallel to the gz-plat~.e.

Let further H be a set of points in the horizontal slab

delimited by tlie planes % and W, with z(Z) < z(’H’)

and which are parallel to the zy-plane. Then a point

v E V \ H which is dominated by a point w E H \ V

iff it is also dominated by the intersection point q of V’

with .2Dmaz of the projection of H on the plane ‘H.

Proofi Let v c V \ H, w E H \ V. As v is dominated

by w the following holds z(v) < .z(?f) = z(q) < z(w).

Further Z(V) < z(V’) = x(y) ~ x(w). For all points

r on the 2D maximum of the projection of H on the

plane H, with x(r) ~ x(w) holds y(w) ~ y(r), and thus

y(v) ~ y(w) ~ g(q). That is v is dominated by q. I

I I IT I

Figure ‘2: The point, v ● 1’\H is dominated by w E H\\’

and thus dominated by the intersection point q.

We subdivide the Euclidean space in p vertical and

horizontal slabs containing 0(~) points each. Accord-

ing to the above lemma a point v c Vi (1 Hj is either

dominated by a point in IZ or Hj, or by one of the p

intersection points in li which are induced by the other

horizontal slabs.

Our algorithm maps the subproblems 9Dmax(H;),

~~$ll,a,t(proj(Hi)) and 3Dmax(I,; U Ii) onto processor P;

and solves them sequentially. The details of the algo-

rithm are as follows.

1.

2.

3!.

4.

5.

Globally sort P by u-coordinate, which yields the

horizontal slabs Hi on processor pi. Let ‘Hj be the

plane parallel to the xy-plane passing through the

point in Hi with the smallest z-coordinate.

Locally compute 5’Dn/ a~;(Hi) and remove all donli-

na.ted points from Hi. Compute locally the 2Dmc/I

of the projection of Hi to the plane ‘Hi. These form

x-monotonic chains C(P~).

Globally sort the point set U~~=lHi by z-coordinate

which yields a. partition of the space in vertical slabs

v.

Perfomm a multinocle broaclcaat, where procemor p,

sends vi, the element of It with largest z-coordinate

as message.

The broadcasted points define planes Vj , 1 ~ j ~ P,

parallel to the yz-plane. Locally determine the ill-

302

6

7.

tersectious of the segments of the chain C(P~) with

the p planes. As C(Pi) is ~-monotonic each proces-

sor holds at most p intersection points.

Perform a total exchange operation, where processor

pi sends the intersection point of chain G’(Pi) with

plane Vj as message to processor pj. Let Ii denote

the set of points processor pi receives. As there are

p monotonic chains, \ Ii I< p.

Locally colmpute ?D?77az(~ U Ii).

The correctness of the above algorithm follows imme-

diately from Lemma. 5 and we can analyze the runs ing

time as follows. The local :3D-Maxima computation in

steps 2 and 7 as well as the local 2D-Maxinla compu-

tation in step 2 can be performed in time 0(~ log n)

using the algorithm from [14]. The intersection points

in step 5 can be computed in time 0(~), as we have to

merge the chains with the planes ‘h!j, 1 < j’ S p. The

communication time is 2T~ (n, p) + Tb (p) + T~ (p) and

dominated by the global sorting steps. We thus obttain

the following result.

Theorem 6 Given a set P of n. poinis in the Eu-

clidean space, the 3D-Ma~ima Problem, can be solved

on a p-processor CGM(n, p), ~ > p, in time O(*E +

T,(n, p)).

6 2D-Weighted Dominance

Counting

Given a set P of n weighted points in the Euclidean

plane, the 2D- Weighted Dominance Problem, wdom(P),

is to determine for all points v E P, the sum of all points

dominated by v. Let wsu m(-1-) for some set X of points

denote the sum of the weights of all points T E .Y.

Lemma 7 Let V and H be a uertical and a 11.orizo7~tal

slab, delimited from lefl and from below by the lines 1

and h respectively. For a point v E V n H, wdom(vl P)

– wdom(v, V) + wdom(V, H)– wdom(v, 1’ n H) +

~surJL({w c P; z(w) < .z(l) and Y(W) < y(h)})

Proof: Let v E I-I n 1’. Points u) ~ H rl V which

are dominated by u are counted in wdom(u, V) and in

wdorn(v, H). All points w E P to the left of 1 and be-

low h are dominated by L as x(u)) < x(l) < Z(V) and

y(w) < y(i) < y(u). I

We subdivide the Euclidean plane in p vertical and

horizontal slabs cent aiuing 0(~) points each. The last

fterm of the formula of the a. ove lemma for a point

v ~ vi n Hj, with hi _l as delimiting line of Hj, becomes

then Sij := ~~~~ WS7J77t{t0 E Vk ; Y(W) < !l(hj--l)})

Our algorithm maps the subproblems wdom(u, Hi),

tudom(v, vi), Wdom(v, V; n Hj), 1 ~ j ~ p, and the

computation of .$i~, 1 ~ j < p, onto processor Pi and

solves them sequentially. The details of the algorithm

are as follows.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Globally sort the poink by their y-coorclinates which

yields sets Hi on processors pi.

Locally compute wdom(Hi).

Perform a multinode broadcast, where processor pi

sencls hi, the horizontal line passing through the

point with the largest ycoordinate in ~Yi.

Globally sort the points by their $-coordinat,es which

yields sets Vi on processors pi.

Locally sort the by their y-coordinates and merge

this sorted sequence with the lines hl, hl, which

yields the sets w n Hj, 1 ~ j s p, on each processor

pi.

Locally compute wdom(l;) and wdom(It n H3), 1<

j < p.

Locally compute Sij = u’su???({U E l{; v(~) < Y(l~j)})

l<j<~).

Perform a total exchange, with processor pi sending

Sij as message to processor pj+l, 1 < j < p

Locally compute wdo17](v, P), using the formula. from

the above lemma.

The correctness of the above algorithm follows in~-

media.tely from Lemma 7 and we can analyze the run-

ning time as follows. The local weighted dominance

computation in steps 2 and 6 can be performed ill

time 0(~ log n). The local sort and merge in step 5

takes time 0(~ log n + I)). The communication time is

2T, (n, p) + Tb(p) + TI(p) and dominated by the global

sort ing steps. We thus obtain the following theorem.

Theorem 8 The 2D- M’c aght ed Dom anailtce Count ing

Problem can be solved on a p-processor Coarse Gmined

Muliico77~puter CGM(n, p), ~ > p. in time 0(- +

T$(71,p)).

303

7 Area of the Union of Isothetic

Rectangles

Given a set R of n isot.hetic rectangles the “Measure

Problem” is to compute the area M covered by the

union of R.

Let V and H be a vertical and a horizontal slab, let

box b be their intersection, and assume that b is sub-

divided into disjoint horizontal stripes not containing

any corner of a rectangle of R. Let zcover(s) be the

horizontal length covered byrectaugles intersecting the

stripes withat least onevertica.l edge, and let ycove~s)

be the vertical length covered by rectangles intersecting

the box b with at least one horizonta.l edge and having

no corner in b (see Figure 3). Note that ~couefls) and

~cover(s) are not symmetric.

Lemma9 With V, H, 6 and s dejined as above, the

following holds: either box b is covered b:y a rectangle

r G R with I1O corner in VUH and each stripe s E b co7l,-

tributes its whole surface to A[, or stripe s contributes

m(s) area to M, with

m(s) :=xcover(s) xheight(s)+ycover(s)xleugl.h(s)-

fxover(s) x ycouer(s).

Proof: As stripes do not contain corners of rectangles,

their coverage can be expressed as the product of hori-

zontal and vertical coverage ancl the area covered twice

must be subtracted. I

We subdivide the plane into p vertical and horizon-

tal slabs, each containing 0(~) corners of rectangles of

R. This subdivision yields P2 boxes. Lemma. 9 suggests

the following procedure of the algorithm. To detect the

coverage of boxes by rectangles, each processor checks

~ rectangles against all p? boxes, The computation of

~coverof the stripes in a vertical slab and the compu-

tation of ycoverof the stripes in a horizontal slab are

assigned to a single processor. The details of the algo-

rithm are as follows.

1. Globally sort the vertical edges of the rectangles

by their z-coordinate and compute the set L =

{/0,1,,..., lP} of vertical lines passing through ev-

ery ~-th vertical edge. Analogously compute ‘H =

{ho, h,, hl, } the set. of horizontal lines passing

through every ~-th horizontal edge. Perform a.

multinode broadcast with the lines as message, such

that each processor holds a. copy of L and H.

hi

9-—

8-

7-

6-

5-

4-

3-

2-

1-

s d —

-— ——— ———— .— _T1__i—. –

1 1

1: 1
S2

S3
——— — — — ——

li:l ; li
111111111

123456789

Figure 3: Box bij consists of stripes S1, Sz and

with .rcove T(sl) =zcover(. s?) = 3, .xcover(.ss) =

ycover(sl) = 1, ycover(s?) = 2, and ycover(ss) = 0.

—

.53.

4,

2.

3.

4.

5.

6.

Locally compute which of the pz boxes defined by L

ancl ‘H are completely covered by one of the ~ rect,-

a.ngles stored in the local memory using Lemma. 10

below. Perform a. total exchange operation, where

the message for processor Pj consists of a. bitvector

of length p with bit i set to 1, iff bij is coverecl. The

logical OR of all messages receivecl by processor ~)j

yields the set of all covered boxes in the horizontal

sla,b (hj _ ~, }?.j). il,fore details about the sequential

algorithm are given below.

Locally sort ‘H and the horizontal lines through the

comers of the rectangles in a. vertical slab by their

y-coordinates. This defines a. subdivision of each ver-

tical slab into O(;) stripes.

Locally compute zcooer(s) for all stripes s in a. ver-

tical slab. Perform a. plane sweep in upwarcls clirec-

tion in time 0(~ log n), using the algorithm from

[16] with the following simplification. Instead of’

computing the covered area between two successive

sweep line positions, associate the covered length in

z-clirection with the stripe between these lines.

Globally sort the stripes by the y-coordinate of the

lower left corner, such that all 0($) stripes between

lines hi- 1 and hi are 011 processor Pi.

Locally compute ycover(s) for all stripes s in a hor-

izontal slab using Lemma 11 below. This gives us

the contribution m(s) of the stripe .s to the measure

304

of the rectangles. More details about the sequential

algorithm are given below.

7. Sum m(s) for all stripes s.

We next show how to perform Step 2 of the above algo-

rithm.

Lemma 10 Given ~ rectangles and the sets L and ‘H

it takes time O(; logp-l-pz) to seque7?tially compute the

boxes which are covered by a rectangle.

Proof: We perform a left to right plane sweep. The

Y-structure is a. static segment tree with intervals

(ho, hi], (hP-l, h,,] as leaves. A variable .rmaz, ini-

tialized with O, is associated with each node. The .Y-

events are slabs (1~, 1~+1) ancl the rectangles r, sortecl by

Z(li) and c(lefi-edge(r)), Ties are broken in favor of the

rectangles.

The X-events are haucllecl as follows. For a rectangle

r, we perform the following computation for all uc)cles

w, whose associated interval is covered by the left edge

of r, and whose parent’s interval is not: zv7?.az(w) :=

max(zmaz(w), Z(right-edge(r))). For a. slab (1~, li+l)1 we

first compute X171CW for the set of leaf nodes propa.ga.t-

ing xmax down to the leaves. For each leaf uocle v

representing an interval (hj _ 1, hj], we report, box bi~

if x(l~+l) < zmaz(v).

The running time is 0(~ log p+ p2) as the processing

of each of the ~ rectangle event takes time O(log p) aucl

the processing of each of the p slab event takes time

o(p). m

We finally show how to perform step 6 of the algorithm.

Lemma 11 Given ~ stripes in a hovizoniol slab H and

~ rectangles with at least owe horizontal edge iII H, we

can sequentially compute :ycover(s) in fi771e O(: log n).

Proof: Only rectangles which intersect a box bij with a

horizontal edge ancl have no corner in it can contribute

to ycover(s) of a stripe s in bij. Hence, we align each

rectangle r with the leftmost and rightmost lines in L

intersecting r.

We sweep from left to right using the plane sweep

algorithm from [16] (see also [14]) and additionally per-

form range queries in the course of the algorithm. The

Y-structure is a static segment tree built on the y-

coordinates of the horizontal edges of the rectangles.

The X-events are the vertical edges of the aligned

rectangles and of the stripes. Wheu the sweep line

reaches a vertical line ~i we insert all left ancl delete

all right rectangle edges alignecl on 1~. We then perforln

range queries in the Y-strllcture for the left edges of all

stripes s in bij, which yields YCOUCT(S).

Each insertion, deletiou and query takes time

O(log n), which proves our lemma. I

The correctness of the overall algorithm follows inl-

mediately from Lemma. !3, a.ucl the running time can be

analyzed as follows. The sequential plane sweeps take

time O(~logp+pz+~logn) = O(~logn), for ~ ~ IJ2.

The communication time is 2TJ(p) + [&lT~(zJ) +

3T, (n, p) a.ucl thus clominaled hy the global sorting steps

to compute the horizontal and vertical slabs. I\:e thtls

can state the following theorem.

Theorem 12 Given a set R of n asotlietac rectccngles

the Mea.sare Proble17z. cau be solved on a p-processor

Coarse Grained .$llllticoll~llt(ter CGM(n, p), ~ > P2, iu

tin7e 0(% + T,(n,p)).

8 2D-Convex Hull of a P’oint Set

Given a. set S of n points in the Euclidean plane the

CO?l~)e,r h all of S is the smallest convex set containing all

points The two points of S with minimum and nlaxi-

mum x-coordinate partition Clf(S’) into two parts: the

upper and the 10wer cl) sin. By symmetry it is sufficient

to show how to compute the upper chain. We use the

following fact due to [13].

Lemma 13 Givew two upper c//ozm of si;e 0(77) cat/t

whose .r-coordi7~otes do 7701 overlap a7~cl whicl) arc .siomd

in an o rr((y in .sorled ordc r, o si17g/e processor con co 177-

pute i?l O(log 77.) ti7ne t//c a7~ique tangeni 10 bolh Chclius

and the two points of tougc7/cy.

Proof: W’e just recall the idea of the algorithm. Let

Cl and C? be the two arrays which store the upper

chains, Startling with a line passing through the poiuts

] = 1,2, it adjusts the pair of points the lineci[q’J , i
pass& through. To do so the algorithm performs a bi-

nary search on the arrays, halving the number of poiuks

to look at in at least one of the arrays in constant time.

The clecision in which half to continue the search is

based on whether the line touches, enters or leaves an

305

upper chain (c. f. Figure 4). Note that this is a. local cri-

terium, in the sense that we only have to look at the

predecessor and successor of the point

.... CJ)

n“’- ...,.
.C2*

‘%

Figure 4: Line lij

chain.

the line passes. I

n::n’”?
touches, enters and leaves the upper

The idea of our convex hull algorithm is as follows.

We subdivide the plane in p verfical slabs, each con-

taining point sets Vi, 1 < i ~ p, of size 0(~). 1$’e map

the subproblem CH(1{) on processor pi and sol~e them

sequentially. The remaining task is then to compute the

P2

as

1.

2.

3.

4.

5.

pairwise tangents. The ‘details of the algorithm are

follows.

Globally sort the points by their z-coordinates.

which yields sets It on processor pi.

Locally compute the upper chain of l;, and store the

edges in au array C’i in sorted order.

Perform a broadcast, where processor pi sends a. nles-

sage consisting of the triple Ci := C~i[~], its prede-

cessor and its successor in Ci to the other processors.

Compute all Pz pairwise tangents as follows. Each

processor pi maintains p lines li~ which initially pass

all through c~ and Cj. The following two steps are

performed 2 log n times. Each processor pi performs

the binary search step for the p lines li~ on its upper

chain C~. Let c~j denote the point the line li~ passes

through next. Perform a. total exchange, where pro-

cessor pi sends the p different triples, consisting of

Cij, its predecessor aucl successor in C~i, as message

to processors pj, 1< j ~ p.

Locally compute for each set ~ the contribution to

the upper chain of S. This is the (possibly empty)

sequence of points on the upper chain between the

rightmost point of tangency of a right tangent, end-

point and the leftmost point, of tangency of a. left

tangent endpoint. If these points of tangency fall to-

gether we simply have to check whether they form

an angle larger than ~.

The correctness of the algorithm is easy to see. The

time complexity can be analyzed as follows. The Iota.1

convex hull computation takes time 0(~) using the Gra-

ham scan algorithm. The communication complexity is

T. (n, p) + 2 log nTZ (p). The sorting step dominates the

communication time, if ~ z pT~ (p, p). We thus obtain

the following result.

Theorem 14 TII e 2’D- Co Nvez Hull Problem for a sel

of n. points can be so!ued on a p-processor C!oarse

Grained Multicon?puter C:GM(n, p), : ~ 13T, (p, p). in

time 0(% + T,(n,p)).

9 Experimental Results ‘

To demonstrate the practical relevance of our scalable

CGhI algorithms, we implemented the Lower Envelope

algorithm for non intersecting line segments on an Intel

iPSC/860 multicomputer. Our code is less than 400

lines long and is largely unoptimized, except for the

public domain sorting code. We used Intel’s standard

FORTRAN compiler (we did not have available a high

performance i860 compiler). Our input data. cousisteci

of randomly generated line-segment sets.

\\re rau two kinds of experiments. In the first we fixed

the problem size and variecl the number of processors

(see Figure 5). The super linear speedup we obtained is

due to the fact, that, first ruuning a. sequential a]gorithnl

on the data drastically red aces the number of segments

which must be further treated.

number of communication total time work

processors time [msec] [msec]

1 0 11533 11533
.2

67 5212 10424

4 184 2422 9688

8 359 1396 11168

Figure 5: Running time for a problem of fixed size

(65536 line segments) with a varying number of nodes

of an Intel iPSC/860 multicomputer.

In the second experiment we ran the algorithm with

8 processors and va~iecl the problem size belween 2s ancl

2ig. Figure 6 shows that, up-to a problem size of 213 the

collll:ltlllica.tioll time domi uates the local computation.

[rnsec]~
total

2
12-

2
10 .

C.nNnunicatim

28 .

i

28 2
10

2
12

2
14

2
16

21jnpuIs i.ze]

Figure 6: Running time of the lower envelope algorithm

(for non-intersecting line segments) on an 8 node lntlel

iPSC/860 multicomputer, with varying number of line

segments.

10 Conclusion

In this paper we have presented efficient or optimal scal-

able algorithms for a numl)er of geometric problems, de-

signed for a machine model which reflects real parallel

machines. All algorithms have in common that they

need a bare minimum of inter processor communication

which is in general much more expensive than local comp-

utation. They do not depend on a specific architecture,

are easy to implement and they are not only efficient in

a theoretical sense, but fast in practice as experiments

show .

It remains open if it is possible to make our algo-

rithms fully scalable, that is to develop algoritlnm for

any n ~ p and not only for n > pz or n ~ p3. Another

open problem is to develop scalable algorithms for some

other fundamental problems as for example the convex

hull of a point set in the Euclidean space or the Voronoi

diagram of a point set in the Euclidean plane.

Finally, we remark that we can use similar techniques

to decompose data structures as for example the seg-

ment tree. Using this data structure we solve prob Iems

as trapezoidal decomposition, red/blue segment inter-

section counting and reporting, and finding, for a sst of

simple polygons, all directions for which a uni or multi-

directional translation ordering exists [8]. These results

will be presented in a. forthcoming companion paper [9].

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. J. Atallah and J.-J. Tsay. On the purcl/hJ-

decompo.subility of geometric problems. Proc. 5t}t .4 nnu.-

ACM Sympos. Compt/t. Geom., pages 104-113, 1989.

K.E. Batcher. Sorting networks and their appliccjtion.s.

Proc. A FIPS Spring Joint Computer Conference, pages

307-314, 1968.

J. L. Bentley. Algorithms jor L7ee’s rectangle problems.

Carnegie-Mellon Univ., Penn., Dept. of Comp. Sci. Un-

published notes, 1977.

D. P. Bertselcas and J. N. Tsitsiklis. Parallel and Di.s-

tributecl Computation: Numerical Methods. Prentice

Hall, Englewood Cliffs, NJ, 1989.

R. Cypher and C. G. Plaxtou. Deterministic sorting

in nec~rly logarithmic time on the hypercube c[nd related

cornpders. ACM Sympo.sizem on Theory of Compatirrg,

193-203. ACM, 1990.

Grand Challenges: High Performance Computing and

Communications. The FY 1992 U.S. Research ancl De-

velopment, Program. A Report by the Committee on

Physical, Mathematical, ancl Engineering Sciences. Fecl-

eral Council for Science, Engineering, and Technology.

To Supplement the U.S. President’s Fiscal Year 1992

Budget.

R. I. Greenberg and C. E. Leiserson. Randomize/ Root-

ing on Felt-trees. Adtjnrzce.s in Computing Research,

5:345–374, 1989.

F, Dehue and J .-R. Sack. Translation sepurobilitu of .set.s

o,f polygons. The Visval Comy>uter .3: 227–235, 1987.

F. Dehne ancl A. Fabri and A. Rau-Chaplin. DokI .strac-

ture decomposition ,jor Coc{r.se Grainecl Mdticomputers.

Manuscript.

[10] S. Hart and M. Sharir. Nonlinearity of Dct~enport-

Schinzel sequences ctnd of generalized path compression

schemes. Combina.torico, 6:151–177, 1986.

[11] J. Hershberger Finding the upper enueiope of n line

segments in O(n log n) time Inf. Proc. Letters 33, 169–

174, 1989.

[12] F.T. Leighton. Introduction to Parallel .Algorithm.s and

.4rchitectures: Armys, Trees, Hypercubes. Morgan I(auf-

mann Publishers, San Mateo, CA, 1992.

[13] M. H. Overmars anti .1. van Leeuwen. Maimtenancc

0,/ configurations in the p!nne. J. Comput. Sy.st. Sci..

23:166–204, 1981.

[14] F. P. P~eparata and M. I. Shames. Computational Ge-

ometry: on Introduction. Springer-Verlag, New York,

NY, 1985.

[15] .1. H. Reif and L. G. \’aliant. A logari~hmic time sort

for linear size networks. J. ACM, VO1.34, 1:60-76, 1987.

[16] J. van Leeuwen and D. WOOCI. The measure problem for

recta ngulcl.r rcinges in d-.spcice. J. .41gorithms, 2:282–300,

1981.

307

