
Distributed Cyclic Reference Counting �

Frank Dehne y

School of Computer Science

Carleton University

Ottawa, Canada K1S 5B6

dehne@scs.carleton.ca

Rafael D. Lins z

Departamento de Inform�atica

Univ. Federal de Pernambuco

50732-970 Recife, Pe, Brasil

rdl@di.ufpe.br

Abstract

We present a distributed cyclic reference counting algorithm which

incorporates both, the correct management of cyclic data structures

and the improvement of lazy mark-scan. The algorithm allows pro-

cessors to run local mark-scan simultaneously without any need of

synchronisation between phases of di�erent local mark-scans either on

the same processor or on di�erent processors.

1 Introduction

In distributed memory multiprocessors, each processor is responsible for re-

claiming unused structures residing in its local memory (distributed garbage

collection). As in the case of uni-processors, the algorithms are usually based

on (global) mark-scan or on reference counting [5].

A number of algorithms use (global) mark-scan in distributed architec-

tures [11, 1, 12]. The major disadvantage of these methods is that, as in the

sequential case, the application is suspended during the garbage collection

phase. One attempt [21] to improve this uses dual processors on each local

memory and transfers objects with non-local references. This can however

�This work was done while the �rst author was visiting the Universidade Federal de

Pernambuco, Brasil.
yResearch partially supported by the Natural Sciences and Engineering Research Coun-

cil of Canada.
zResearch partially supported by CNPq research grant no. 40.9110/88.4.

1

F D
F. Dehne and R. Lins, "Distributed cyclic reference counting," in Proc. Canada-France Conference on Parallel and Distributed Computing, Montreal, 1994, Lecture Notes in Computer Science Vol. 805, pp. 95-100.



create very high communication overhead, depending on the size of the ob-

jects being transfered, and it may be unable to reclaim large cyclic structures

that span over several processors.

Reference counting has the advantage that it is performed in small steps

interleaved with application computation and, hence, does not need to sus-

pend the application. The major drawback of standard reference counting

[6] is its inability to reclaim cyclic data structures. For the sequential do-

main, Friedman & Wise [8], Bobrow [4], and Hughes [13] have solved this

problem in the context of implementing Lisp and functional languages such

as Miranda. A general uniprocessor algorithm for cyclic reference counting

with local mark-scan was presented in [19] and substantially improved in

[17].

Two algorithms made standard reference counting suitable for use in

loosely-coupled multiprocessor architectures: weighted reference counting

[3, 24] and generational reference counting [9]. However , as in sequen-

tial standard reference counting, these both algorithms are also not able

to reclaim cyclic data structures. A multiprocessor algorithm that merges

weighted reference counting with Lins' cyclic reference counting with lazy

mark-scan [17] was described in [18]. This method can reclaim cyclic data

structures. Plainfoss�e and Shapiro [20] pointed out that this algorithm is

simple but does not allow several processors to invoke mark-scan simultane-

ously. A �rst attempt to solve this problem is presented in [14]. However,

this new algorithm needs global synchronisation between the phases of the

local mark scan procedures on the same processor as well as on di�erent

processors.

In this paper, a distributed cyclic reference counting algorithm is pre-

sented. This algorithm allows processors to run local mark-scan simultane-

ously without any need of synchronisation between phases of di�erent local

mark-scans either on the same processor or on di�erent processors. It incor-

porates both, the correct management of cyclic data structures [19] and the

improvement of lazy mark-scan [17]. As shown in [17], lazy mark-scan eval-

uation can considerably reduce the garbage collection overhead by avoiding

unnecessary local mark-scans.

We concentrate on the distributed computing issues of the algorithm

without taki ng into account the choice of a suitable communication protocol

as described in [16]. As an alternative, the algorithm presented can easily

be modi�ed to work with weighted reference conting [3, 24].

The remainder of this paper is organized as follows. In Section 2 we

present our algorithm and in Section 3 we prove its correctness.

2



2 The Algorithm

For reference counting with local mark-scan, the basic interface between the

application and the garbage collection consists of three procedures New(R),

Copy(R,<S,T>), and Delete(<R,S>) used by the application to allocate a

new cell, copy a new pointer, and delete a pointer, respectively. Unused

cells, i.e. cells which can not be referenced any more by the application, are

organised in a free list.
Every cell S has a reference couter RC(S) which counts the number of

pointers to S as well as a colour which could be yellow, green, black, red,

pink , or blue. All cells in the free list are coloured yellow.

The garbage collection code uses three data structures. A control heap

CH is used for implementing the lazy evaluation scheme. It is a data struc-

ture created locally on each processor. mr-Q(S) denotes a queue of mark-

red(S) processes attempting to mark red a cell S , and rec-Q(S) denotes a

queue of reclaim(S) processes, where procedures mark-red(S) and reclaim(S)

are described below. The mr-Q(S) and rec-Q(S) for all cells S on one pro-

cessor can be easily implemented as one data structure, each.

A call of Delete(<R,S>) spawns an independent process reclaimp(S) on

the same processor which attempts to recover unused cells. The index p

denotes a process number given to the reclaim process, and it will later be

used to determine if this process has terminated. For the remainder, all

indices attached to procedure calls refer to such process numbers.

New(R) =

select a new cell S from the free-list

RC(S):=1

colour(S):=green

mr-Q(S):=nil

rec-Q(S):=nil

create a pointer from R to S

Copy(R,<S,T>) =

create a pointer from R to T

RC(T):= RC(T)+1

3



Delete(<R,S>) =

remove the pointer <R,S>

RC(T):= RC(T)-1

spawn a new process reclaimp(S)

for some new process number p

Procedure reclaimp(S) checks if the reference counter of S is zero, in

which case S can be immediately linked to the free list. Otherwise, a refer-

ence to S is added to the control heap CH (if not already ther e) for later

evaluation on whether S is unreachable by the application. Sons(S) refers

to all cells T such that there exists a pointer from S to T.

reclaimp(S) =

if colour(S) is green or black then

if RC(S)=0 then

for all cells T in Sons(S) do

Delete(<S,T>)

colour(S):=yellow

link S to the free-list

else

if colour(S) is green then

colour(S):=black

add S to the control heap CH

else

add p to rec-Q(S)

Control Heap CH

Continuously select the next best S from CH and do:

remove S from CH

if colour(S) is black then

spawn a process mark-redp1(S)

for some new process number p1
suspend until no active process with number p1 exists

spawn a process scanp2(S)

for some new process number p2
suspend until no active process with number p2 exists

spawn a process collect-blue(S)

4



When a cell S is taken from the control heap CH, there are three pro-

cesses started at S: mark-redp1(S), scanp2(S), and collect-blue(S). As these

processes spawn other subprocesses, the process numbers are used to deter-

mine their termination.

Procedure mark-redp1(S) paints red S and all cells in the subgraph of

cells reachable from S. It also decrements the reference counters of the cells

visited, so that �anl reference counts are associated only with pointers from

outside the subgraph (external references).

mark-redp(S) =

if colour(S) is green or black then

colour(S):=red

for all cells T in Sons(S) do

mark-red(T)

for all cells T in Sons(S) do

RC(T):=RC(T)-1

else

add p to mr-Q(S)

scanp(S) seaches the subgraph now painted red and repaints green all

cells reachable from external references. All other cells are painted blue.

scanp(S) =

if colour(S) is red then

if RC(S)>0 then

colour(s) := pink

spawn a process scan-greenp(S)

else

colour(S):=blue

for all cells T in Sons(S) do

spawn a process scanp(T)

5



scan-greenp(S) =

for all cells T in Sons(S) do

RC(T):= RC(T)+1

colour-green(T)

for all cells T in Sons(S) do

if colour(T) is red or blue then

spawn a process scan-greenp(T)

colour-green(S) =

if mr-Q(S) not nil then

colour(S) := red

take q from mr-Q(S)

spawn a process mark-redq(S)

else

colour(S) := green

if rec-Q(S) not nil then

take q from rec-Q(S)

spawn a process reclaimq(S)

Procedure collect-blue(S) links to the free list all cells that are blue after

the previous scanp(S) has terminated.

collect-blue(S) =

if colour(S)=pink then

colour-green(S)

if colour(S)=blue then

colour(S):=yellow

Temp := Sons(S)

link S to free-list

for all cells T in Temp do

spawn a process collect-blue(T)

3 Proof of Correctness

We now show the correctness of our distributed reference counting algorithm.

In particular, we show that (a) if some cell S is collected for the free list,

6



then S is not in use and (b) every unused cell is collected for the free list.

Lemma 1 If colour(S)=green then RC(S) has the actual value.

Proof. When S is created by a New(R), then S is coloured green and

RC(S) has the actual value. The only procedures possibly changing RC(S)

are Copy, Delete, mark-red, and scan-green. Obviously, changes made by

Copy and Delete are always correct. A mark-red(S) changes colour(S) to

red and, hence, the assumption of this lemma does not hold for S. Assume

that S is coloured green by colour-green(S) called within scan-green(S). We

observe that scan and scan-green can only reach nodes which have previously

been reached by a mark-red started at some deleted pointer, and that this

entire mark-red process has been terminated. Hence, RC(S) has �rst been

decremented by one in a mark-red(S), and is now being incremented by one

in a scan-green(S). Assuming, by induction, that RC(S) was correct before

mark-red(S) changed it, it has now again the actual value. 2

Lemma 2 If colour(S) is not green then in �nite time either

(a) colour(S) will change to green (if S is in use) or

(b) colour(S) will change to yellow (if S is not in use) and S will be col-
lected for the free list.

Proof. (a) Assume S is in use. If colour(S)=red then a scan process

will colour it blue, green, or pink by usin g the same path as the mark-red

process which coloured S red. If colour(S)=blue then it lies on a cycle and is

reachable from a cell that is in use. Hence, a subsequent scan-green process

will colour S green. If colour(S)=black then it is on the control heap CH,

and after �nite time it will be taken from CH and coloured red. As shown

above, all red cells (in use) are eventually coloured green. If colour(S)=pink

and S is part of a cycle, then the scan-green process called by the scan that

coloured S pink will colour S green. If colour(S)=pink and S is not part of

a cycle, the collect-blue phase following the scan that marked S pink will

colour S green.

(b) Assume S is not in use. If colour(S)=blue then the collect-blue

process following the scan that made S blue will change it to yellow and

collect it for the free list. If colour(S)=red then the subsequent scan process

will change it to blue, and from there it will be changed to yellow as indicated

above. If colour(S)=black then it is on the control heap CH, and after �nite

7



time it will be taken from CH and coloured red. As shown above, all red

cells (not in use) are eventually coloured yellow and collected for the free

list. If colour(S)=pink and S is not in use, then the mark-red originated at

the pointer whose deletion made S useless has not yet reached S. However,

it is reachable from that pointer and will therefore be set to red by that

mark-red process. 2

Lemma 3 If colour(S)=black then RC(S) has the actual value.

Proof. The only procedure to change colour(S) to black is reclaim, and

reclaim changes colour(S) from green to black. Hence, by Lemma 1, RC(S)

has the actual value. For black cells, only Copy and Delete can change

their reference counters, and both procedures obviously keep the reference

counter at the actual value. 2

Theorem 1 If S is collected for the free list, then S is not in use.

Proof. S can be collected either by reclaim or by collect-blue. Reclaim

deletes S only if colour(S) is green or black and RC(S)=0. Hence, it follows

from Lemma 1 and Lemma 3 that S is not in use. S is collected by collect-

blue only if colour(S)=blue and collect-blue(S) is called. This implies that

the previous mark-red and scan phases for the same deleted pointer have

terminated (see Control Heap CH). Thus, the previous scan marked S blue

and could not repaint it green. Therefore, S is part of an unreachable cycle.

2

Theorem 2 Every cell not in use is collected for the free list.

Proof. Assume that cell S is not in use. If colour(S) is not green then,

by Lemma 2, after �nite time its colour will be set to yellow and S will be

collected for the free list. Assume that colour(S)=green, then S is reachable

from a cell T for which a reclaim(T) is still in process. Hence, this reclaim(T)

process will change colour(S). 2

4 Conclusion

We presented a distributed cyclic reference counting algorithm which solves

the previously open problem of performing cyclic reference counting which

recovers unused cyclic structure and at the same time allowing multiple such

processes without synchronisations between these processes.

8



References

[1] K.A.M.Ali. Object-oriented storage management and garbage collec-
tion in distributed processing systems. PhD thesis, Royal Institute of

Technology, Stockholm, December 1984.

[2] M.Ben-Ari. Algorithms for on-the-
y garbage collection. ACM Trans-
actions on Programming Languages and Systems, 6(3):333{344, July
1984.

[3] D.I.Bevan. Distributed garbage collection using reference counting. In

PARLE Parallel Architectures and Languages Europe, pages 176{187.
Springer Verlag, LNCS 259, June 1987.

[4] D.G. Bobrow. Managing reentrant structures using reference counts.

ACM Transactions on Programming Languages and Systems, 2(3):

269{273, March 1980.

[5] J.Cohen. Garbage collection of linked data structures. ACM Computing
Surveys, 13(3):341{367, September 1981.

[6] G.E. Collins A method for overlapping and erasure of lists Communi-
cations of the ACM, 3(12): 655-657, 1960.

[7] E.W.Dijkstra, L.Lamport, A.J.Martin, C.S.Scholten & E.M.F.Ste�ens.

On-the-
y garbage collection: an exercise in cooperation. Communica-
tions of ACM, 21(11):966{975, November 1978.

[8] D.P.Friedman and D.S.Wise. Reference counting can manage the cir-

cular environment of mutual recursion. Information Processing Letters,
8(1):921{930, January 1979.

[9] B.Goldberg. Generational reference counting: A reduced-

communication distributed storage reclamation scheme. In Proceedings
of SIGPLAN'89 Conference on Programming Languages Design and
Implementation, pages 313{321. ACM Press, June 1989.

[10] D.Gries. An exercise in proving parallel programs correct. Communi-
cations of ACM, 20(12):921{930, December 1977.

[11] P.Hudak and R.M.Keller. Garbage collection and task deletion in dis-

tributed applicative processing systems. In Proceedings of 1986 ACM

9



Conference on Lisp and Functional Programming, pages 168{178, Pitts-
burg, August 1982.

[12] R.J.M.Hughes. A distributed garbage collection algorithm. In J. P.

Jouannaud (Ed.), Functional Programming Languages and Computer
Architecture, Springer-Verlag, LNCS 201, pages 256{272, 1985.

[13] R.J.M.Hughes. Managing reduction graphs with reference counts.

Departmental Research Report CSC/87/R2, University of Glasgow,

March 1987.

[14] R. Jones and R.D.Lins Cyclic weighted reference counting without

delay In In PARLE'93 Parallel Architectures and Languages Europe,
Springer Verlag, LNCS 694, Arndt Bode and Mike Reeve and Gottfried

Wolf Editors, pp 512{515, June 1993.

[15] H.T.Kung and S.W.Song. An e�cient parallel garbage collection system

and its correctness proof. In Proc. IEEE Symposium on Foundations
of Computer Science, pa ges 120{131, 1977.

[16] C-W.Lermen and D.Maurer. A protocol for distributed reference count-

ing. In Proceedings of 1986 ACM Conference on Lisp and Functional
Programming, pages 343{350, Cambridge, Massachusetts, August 1986.

[17] R.D.Lins. Cyclic reference counting with lazy mark-scan. Information
Processin Letters 44:215{220, 1992.

[18] R.D.Lins and R. Jones Cyclic weighted reference counting In

K.Boyanov (Ed.), Parallel and Distributed Processing'93 (WP&DP'93),

Bulgarian Academy of Sciences, So�a, 1993, pages 369{382, to be pub-

lished by North Holland.

[19] A.D.Martinez, R.Wachenchauzer and R.D.Lins. Cyclic reference count-

ing with local mark-scan. Information Processing Letters, 34:31{35,
1990.

[20] D.Plainfoss�e and M. Shapiro. Experience with a fault-tolerant garbage

collector in a distributed Lisp system. in Y. Bekkers and J.Cohen

(Eds.) Proceedings of Memory Management - International Workshop,
St. Malo, France, 1992, volume LNCS 637, pages 116{133. Springer-

Verlag, 1992.

10



[21] M.Shapiro, O.Gruber and D.Plainfoss�e. A garbage detection protocol

for a realistic distributed object-support system. Technical Report 1320,

Rapports de Recherche, INRIA-Rocqencourt, November 1990.

[22] G.L.Steele. Multiprocessing compactifying garbage collection. Commu-
nications of ACM, 18(09):495{508, September 1975.

[23] D.A. Turner. Miranda: a non-strict functional language with polymor-

phic types. In J. P. Jouannaud (Ed.), Functional Programming Lan-
guages and Computer Architecture, Springer-Verlag, LNCS 201, pages

1{16, 1985.

[24] P.Watson and I.Watson. An e�cient garbage collection scheme for

parallel computer architectures. In In PARLE'87 Parallel Architectures
and Languages Europe, Springer Verlag, LNCS 259, pages 432{443,

June 1987.

11




