
Scalable And Architecture Independent Parallel Geometric Algorithms
With High Probability Optimal Time*

Frank Dehne1, Claire Kenyon2, and Andreas Fabri3

1 School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6, dehne@scs.carleton.ca
2 LIP, URA CNRS 1398, Ecole Norm. Supérieure de Lyon, 69364 Lyon Cedex 07, France, kenyon@lip.ens-lyon.fr

3 INRIA, BP 93, 06 902 Sophia Antipolis, France, fabri@cassiopee.inria.fr

1

Abstract*

We present parallel computational geometry algorithms that are scalable, architecture independent, easy to implement,
and have, with high probability, an optimal time complexity for uniformly distributed random input data. Our methods
apply to multicomputers with arbitrary interconnection network or bus system.

The following problems are studied in this paper: (1) lower envelope of line segments, (2) visibility of parallelepipeds,
(3) convex hull, (4) maximal elements, (5) Voronoi diagram, (6) all-nearest neighbors, (7) largest empty circle, and (8)
largest empty hyperrectangle. Problems 2-8 are studied for d-dimensional space, d=O(1). We implemented and
tested the lower envelope algorithm and convex hull algorithm (for d=3 and d=4) on a CM5. The results indicate that our
methods are of considerable practical relevance.

1. Introduction
In this paper we continue our work I in [5] to design parallel computational geometry algorithms that are
scalable, architecture independent (i.e. portable), easy to implement, and have an optimal or nearly
optimal time complexity.

The Model Of Computation
To ensure that the complexity analysis matches the timings observed in actual implementations, it is

important that the model of computation is based only on assumptions that are true for contemporary
multicomputers (and can be expected to hold for future ones as well). Our algorithms are designed for a
generic multicomputer Mα(p,n) with only the following small set of assumptions:

(A1) Mα(p,n) has p processors P1, ..., Pp connected by some arbitrary interconnection network or bus
system.

(A2) Every processor Pi has Θ(n/p) local memory.

(A3) n/p ≥ pα for some arbitrarily small but fixed constant α > 0.
(A4) The total data size, n, is a large number (but the number of processors, p, is not necessarily large).

These assumptions are evidently true for contemporary multicomputers. Assumption A3 is based on
the well known fact that memory is inexpensive and each processor has, in practice, more than just a few
local registers of memory. Note that α > 0 can be arbitrarily small, but for all practical purposes one can

safely assume that α  > 1/10 (i.e. each processor has a local memory of at least p1/10). It seems
reasonable to expect that the above assumptions will also hold in the future.

                                                
* Research partially supported by the Natural Sciences and Engineering Research Council of Canada and the ESPRIT Basic
Research Actions Nr. 3075 (ALCOM) and Nr. 7141 (ALCOM II). This work was done while the first author was visiting
the Lab. de l'Inform. du Parallélisme at the Ecole Norm. Supérieure de Lyon.

F D
F. Dehne, C. Kenyon, and A. Fabri, "Scalable and architecture independent parallel geometric algorithms with high probability optimal time," in Proc. IEEE Symposium on Parallel and Distributed Processing, Dallas, Tx, 1994, pp. 586-593.



2

The Problems
We present extremely simple parallel algorithms for solving the following problems on any  multi-

computer Mα(p,n):

Problem 1. Given a random set S of n non-intersecting line segments in [0,1]2, compute its lower
envelope, LE(S).
Problem 2. Given a random set S of n parallelepipeds in [0,1]d, all perpendicular to the x-axis, 3 ≤ d =
O(1), compute their visible portion, VIS(S), with respect to the view along the x-axis. For d=3, Problem
2 is the well known visibility problem for parallel rectangles in [0,1]3.
Problem 3. Given a random set S of n points in IR d, d=O(1), compute its convex hull, CH(S).
Problem 4. Given a random set S of n points in IR d, d=O(1), compute the subset, MAX(S), of maximal
elements of S.
Problem 5. Given a random set S of n points in [0,1]d, compute the Voronoi diagram of S.
Problem 6. Given a random set S of n points in [0,1]d, d=O(1), compute for each s∈ S its nearest
neighbor in S.
Problem 7. Given a random set S of n points in [0,1]d, d=O(1), compute the largest empty circle inside
the convex hull of S.
Problem 8. Given a random set S of n points in [0,1]d, d=O(1), compute the largest empty
hyperrectangle inside the smallest hyperrectangle containing S.

The Results
For standard uniform data distribution, our algorithms for Problems 1-4 require, with high

probability, a communication time and local computation time of at most

(k + 1) (TpSum(p) + Tcompr(p,n))   and   (k + 2) (
T1(n)

p   + O (
n
p )),

respectively, where k = 
1

2α
+ 1

2





 is a fixed constant and T1(n) denotes the (high probability) sequential

time complexity of the respective problem. Note that, for all practical purposes one can safely assume
that k ≤ 6. For machines like the CM5, Intel iPSC or Paragon, k=1. Even for a CM2, k ≤ 3.

For Problems 5-8 our algorithms require for standard uniform data distribution, with high
probability, a communication time and local computation time of at most

(23d+d) Tsort(p,n)   and   23d (
T1(n)

p   + O (
n
p )), respectively, d=O(1).

TpSum(p), Tcompr(p,n), and Tsort(p,n) denote the parallel time complexity on an Mα(p,n) to compute the
partial sums of p integers (one stored at each processor), compress a subset of data of size n' ≤ n into p '
≤ p processors (where all data items in a processor are moved to the same destination processor), and
sort n data items, respectively.

It is easy to see that a partial sum and compression operation can be implemented by a constant
number of sorts, and that all of the above problems reduce to sorting. Hence, from a theoretical point of
view, our algorithms have, with high probability, an asymptotically optimal time complexity.

An important feature of our methods is that they require, with high probability, only a fixed small
number of communication rounds, independent of the problem size. Each communication round is either
a partial sum or compress operation (Problems 1-4) or a sort operation (Problems 5-8). All other
computation is local.

Comparison With Previous Work
For many architectures, our results are a considerable improvement over existing methods. This

applies in particular to previous fine-grained (n/p=O(1)) algorithms, even if they are (fine-grained)
optimal. For example, it is impossible for fine-grained mesh algorithms, even optimal ones, to yield
optimal speedups for ratios n/p ≠ O(1) by applying the usual simulation method (also called "virtual



3

processors" in many multicomputer operating systems). For n/p ≠ O(1), our methods are considerably
faster. In fact, for meshes, our algorithms are, with high probability, optimal for the entire range

n/p  ≥ pα , α>0. For hypercubic networks, no previous algorithms exist that can match our speedups
for n/p ≠ O(1).

As indicated above, our methods require, with high probability, only a fixed small number of
communication rounds, independent of the problem size. This is the main reason why they perform
well. In contrast, previous fine grained algorithms for the above problems (see e.g. [1] for an
overview), require a number of communication rounds that increases with the problem size (typically
log(n), log log (n), log*(n), etc. rounds).

The results and techniques presented in this paper are different from [5. Our previous work
presented deterministic algorithms. Those results were also based on the idea of using only O(1)
communication rounds, but we used deterministic methods to reach that goal, which are very different
from the high probability methods presented now. In [5], we could solve Problem 1, and Problem 4 for
d≤3. For Problems 2,3,5-8 there existed so far no efficient scalable solution (except for simulating fine-
grained algorithms). Furthermore, our previous deterministic methods applied only to the case n/p ≥ p,
i.e. α ≥ 1. Our new methods presented in this paper solve Problems 2-8, with high probability, for any

α  > 0. In addition, the new algorithms solve Problems 2-8 for arbitrary fixed dimension, and with an
improved time complexity (compared to those cases solved in [5]). For Problem 1 we obtain, with high
probability, an improved time complexity. The obvious drawback is, of course, that our new time
complexity analysis holds only for uniform data distribution. It is an interesting open problem to extend
our methods to the non-uniform case. We will indicate heuristics for which we conjecture that they solve
at least some cases of non-uniform distributions.

Practical Significance, Experimental Results
Our algorithms are simple and easy to implement. The constants in the time complexity analysis are

small. Except for a small (fixed) number of communication rounds, all other computation is sequential
and consists essentially of solving on each processor a small (fixed) number of subproblems of size n/p.
Hence, it allows to use existing sequential code for the respective problem. For the communication
rounds, we can use well studied existing code for data compression, partial sum, and sorting.  

For coarse grained machines, our methods imply communication through few large messages rather
than having many small messages. This is important for machines like the Intel iPSC where each mes-
sage creates a considerable overhead. Note, however, that our analysis accounts for the length of
messages.

We have implemented and tested our algorithms for the lower envelope and convex hull (d=3 and
d=4) on a CM5 and obtained very fast running times which match nicely the theoretical analysis. Section
4 presents and discusses these expiremental results. They indicate that our methods are of considerable
practical relevance.

2. Hull Problems
We study the following Generic Hull Problem, H(S), which includes Problems 1-4 listed above: "For a
random set S of n objects from some universe U, compute H(S) ⊆  U" where H(S) has the properties

(P1) H(A1∪ ...∪ Aj) = H(H(A1)∪ ...∪ H(Aj)) for any A1, ..., Ai ⊆  S, and
(P2) there exists a function h(n) such that

(a) for any random subset A ⊆  S, E(|H(A)|) ≤ h(|A|)† , and

(b) h(n) ≤ nδ for some 0 < δ < min{ε, 1/8} .
                                                
† For some random variable X  let E(X) and Pr{X=y} denote the expected value of X  and the probability that X  takes a
certain value y, respectively.



4

For Problems 1-4 listed above, S corresponds to a random set of line segments, parallelepipeds in [0,1]d

or points in IR d, and H(S) corresponds to LE(S), VIS(S), CH(S) and MAX(S), respectively. We will
show later that these four problems have Properties P1 and P2.

We observe that Assumption A3 in Section 1 is equivalent to

1 ≤ p ≤ n1-ε, where ε = 
α

1+α
     .

In the following Sections 2.1 and 2.2 we will first show how to compute H(S) if p ≤ n  and then how to

generalize our method for 1 ≤ p ≤ n1-ε.

2.1.  The Generic Hull Problem, H (S), For p ≤ n  
We study the following extremely simple algorithm for computing H(S).

Algorithm 1 Architecture: A multicomputer Mα(p,n) with p ≤ n . Input: Each processor Pi stores a
random subset Si of n/p objects of S. (The subsets Si are disjoint.) Output: H(S).

(1) Each processor Pi computes sequentially H(Si). Let S' = H(S1) ∪  ... ∪  H(Sp), n' = |S'|.
(2)    IF     n' ≤ n/p     THEN      S'  is compressed into processor P1 which computes sequentially H(S)=H(S')

    STOP    .
(3) The set S'  is compressed into p' ≤ 2 n' p / n processors as follows: The sequence H(S1), . . . ,

H(Sp) is split into p' maximal subsequences of consecutive H(Sj), such that the total size of each
subsequence (i.e. the total number of objects) is at most n/p. Let Si' be the set of objects in the i-th
subsequence, 1≤i≤p'. Set Si' is stored at processor Pi.

(4) Each processor Pi (1≤i≤p') computes sequentially H(Si'). Let S" = H(S1') ∪  ... ∪  H (Sp ''), n" =
|S"|.

(5)    IF     n" ≤ n/p
    THEN      S" is compressed into processor P1 which computes H(S)=H(S") sequentially
    ELSE     continue with some deterministic algorithm.

The correctness of Algorithm 1 follows immediately from Property P1. Note that, for the "else" case
in Step 5, any deterministic parallel algorithm may be applied. As we will show in the remainder, it is so
highly unlikely that it will ever be used, that it doesn't seem worthwhile to invest much programming
efforts here. A trivial solution could be, e.g., to use a sequential algorithm, running on P1 and with
memory accesses to other processors' memories implemented by message passing. For some special
cases, simple and efficient deterministic scalable parallel solutions have been presented in [5].

In the remainder of this section we will prove

Lemma 1 With high probability, either n' ≤ n/p or n" ≤ n/p.

This implies immediately

Theorem 1 Given a multicomputer Mα(p,n) with p ≤ n  then, with high probability, Algorithm 1
computes H(S), |S| = n, with a communication time of at most 2 (TpSum(p) + Tcompr(p,n)) and a local
computation time of at most 3 TH(n)/p + O(n/p) where TH(n) denotes the sequential time complexity for
solving H(S).

We now start proving Lemma 1. Consider some 0 < δ < 1/4. It follows from Property P2 that h(n) ≤

nδ. In order to prove Lemma 1, we will consider three cases.



5

2. 1. 1.  Case 1: p  ≤ n
1

3

−δ

From Chebyshev's Inequality (see e.g. [6] p.233) and the above assumption it follows that

Pr{there exist some 1≤i≤p such that |H(Si)|> n
2

3
(
1

2
−δ )

h(n)} ≤ p Pr{|H(Si)|> n
2

3
(
1

2
−δ )

h(n)} ≤ 
p

n
4

3
(
1

2
−δ )

 ≤

n
1−δ

3

n
4

3
(
1

2
−δ )

 ≤ 
1

n
1

3
−δ

 → 0 for n → ∞, because δ ≤ 
1
4 . Hence, it follows with probability at least 1  –  

1

n
1

3
−δ

→ 1 (for n → ∞) that after Step 1 of Algorithm 1 we obtain a set S' of size

n' ≤ p n
2

3
(
1

2
−δ )

h(n) ≤ n
1−δ

3 n
2

3
(
1

2
−δ )

nδ = n
2

3 .

From p ≤ n
1−δ

3  it follows that 
n
p  ≥ n

2

3 . Hence, n' ≤ 
n
p  with high probability, and Lemma 1 follows for

Case 1.

2. 1. 2.  Case 2: n
1

3

−δ

≤ p  ≤ 
1

2

1

2n
−δ

Since n
1

3
(1−δ )

≤ p, it follows that p → ∞ for n → ∞. Thus, it follows from the Law of Large Numbers

(see e.g. [6] p.243) that Pr{n' ≤ 2 p h(n)} → 1 for n → ∞. We observe that 2 p h(n) ≤ 
n
p  if p ≤

n

2h(n)
. The latter holds if p ≤ 

n

2nδ
, which is true if p ≤ 

1
2

n
1−δ

2 . Hence, n' ≤ 
n
p  with high

probability, and Lemma 1 follows for Case 2.

2. 1. 3.  Case 3: 
1

2

1

2n
−δ

 ≤ p  ≤ n  

Since 
1
2

n
1−δ

2  ≤ p, it follows that p → ∞ for n → ∞. Thus, it follows from the Law of Large Numbers

that, with high probability, 1/2 p h(n) ≤ n' ≤ 2 p h(n) ≤ 2  n  nδ. Since p' ≤ 
2n'

n / p
 and p  ≤  n . it

follows that, with high probability, p' ≤ 
4 ph(n)
n / p

 ≤ 4 h(n) ≤ 4 nδ.

We now study Steps 3 and 4 of Algorithm 1. For each Si', 1≤j≤p', there exist sets Sti, Sti+1, . . . ,

Sui such that Si' = H(Sti)∪ H(Sti+1)∪  ... ∪ H(Sui). Hence, by Property P1, H(Si') =

H(H(Sti)∪ H(Sti+1)∪  ... ∪ H(Sui)) = H(Sti∪ Sti+1∪  ... ∪ Sui). Define orig(Si') = Sti∪ Sti+1∪  . . .

∪ Sui, then H(Si') = H(orig(Si')).

Lemma 2 For each 1≤i≤p', orig(Si') is a random subset of S and, hence, E(|H(Si')|) = E(|H(orig(Si'))|)
≤ h(n).



6

Proof Sketch. orig(Si') = Sti∪ Sti+1∪  ... ∪ Sui. Clearly, Sti, is a random set of n/p objects. For each

l∈ [ti,ui], Sti∪ Sti+1∪  ... ∪ Sl∪  ...∪ Sui is in bijection with Sl∪ Sti∪ Sti+1∪  ... ∪ Sl-1∪ Sl+1∪  ...∪ Sui,
in that order. Hence, it follows that Sl has the same distribution as Sti. Thus, orig(Si') is the union of

random subsets of S, and Lemma 2 follows.          

Hence, it follows from Chebyshev's Inequality that

Pr{there exist some 1≤i≤p' such that |H(Si')|> n
1

3
−2δ

h(n)} ≤ p' Pr{|H(Si)|> n
1

3
−2δ

h(n)} ≤ 
p'

n
2

3
−4δ

 ≤

4nδ

n
2

3
−4δ

 → 0 because δ < 
1
8 . Thus, after Step 4 of Algorithm 1 we obtain, with high probability, a set S"

of size n" ≤ p' n
1

3
−2δ

h(n) ≤ 4 nδn
1

3
−2δ

nδ ≤ n
1

2 . From p ≤ n , it follows that 
n
p  ≥ n . Hence, n" ≤ 

n
p  with

high probability, and Lemma 1 follows for Case 3. This concludes the proof of Lemma 1.

2.2.  The Generic Hull Problem, H (S), For 1 ≤ p  ≤ n1 - ε

We will now generalize Algorithm 1 to solve H(S) on a multicomputer Mα(p,n). Let

k ≥ 1
2(ε − δ)

− 1
6

= 1 + α
2α − 2δ(1 + α )

− 1
6

 be a fixed positive integer constant.

Algorithm 2 Architecture: A multicomputer Mα(p,n). Input: Each processor Pi stores a random subset

Si of n/p objects of S. (The subsets Si are disjoint.) Output: H(S). Let n(0) = n, p(0) = p, and S(0) = S.
(1) For j = 0 ... k do

(a) Each processor Pi, 1 ≤ i ≤ p(j), computes sequentially H(S(j)
i  ). Let S(j+1) = H(S(j)

1  ) ∪  ... ∪
H(S (j)

p(j) ), n
(j+1) = |S(j+1)|.

(b)    IF     n(j+1) ≤ n/p     THEN     S(j+1) is compressed into processor P1 which computes sequentially

H(S)=H(S(j+1)).    STOP    .
(c) The set S(j+1) is compressed into p(j+1) ≤ 2 n(j+1) p / n processors as follows:

The sequence H(S(j)
1  ), ..., H(S (j)

p(j) ) is split into p(j+1) maximal subsequences of consecutive

H(S(j)
i  ), such that the total size of each subsequence (i.e. the total number of objects) is at

most n/p. Let S(j+1)
i   be the set of objects in the i-th subsequence, 1≤i≤p(j+1). Set S(j+1)

i   is
stored at processor Pi.

(2)    IF     n(k+1) ≤ n/p
    THEN      in the previous Step 1c, S(k+1) was compressed into processor P1 which can now compute

H(S)=H(S(k+1)) sequentially
    ELSE     continue with some determinstic algorithm.

The correctness of Algorithm 1 follows, again, immediately from Property P1. In the remainder of
this section we will prove

Lemma 3 With high probability, n(j) ≤ n/p for some j ≤ k+1.

This implies immediately



7

Theorem 2 Given a multicomputer Mα(p,n) then, with high probability, Algorithm 2 computes H(S),
|S| = n, with a communication time of at most (k+1) (TpSum(p) + Tcompr(p,n)) and a local computation
time of at most (k+2) (TH(n)/p + O(n/p)), where TH(n) denotes the sequential time complexity for

solving H(S) and k ≥ 1 / (2(ε-δ)) - 1/6 = (1+α) / (2α - 2δ(1+α)) - 1/6 is a fixed positive integer
constant.

We now prove Lemma 3. If p ≤ n  then we apply the analysis of Algorithm 1 given in Section 2.1.

For the remainder assume that n  ≤ p ≤ n1-ε. The basic idea is to iterate Lemma 2 and the analysis for
Case 3 in Section 2.1. We obtain that, with high probability,

p(j+1) ≤ 
4 p( j )h(n)

n

p

 ≤ p(j) 4nδ

nε  for all j≥0.

Hence, with high probability, p(j) ≤ p 4nδ

nε







j

 for all j ≥ 0. We observe that p  4nδ

nε







j

 ≤ n
ε −δ

3  if

i  ≥  
1

2(ε − δ)
− 1

6
. Unless the for loop in Algorithm 2 is stopped for j < k, it follows that Pr{there exist

some 1≤i≤p such that H(S(k)
i  )> n

2

3
(ε −δ )

h(n)} ≤ 
p(k )

n
4

3
(ε −δ )

 ≤ 
n

ε −δ
3

n
4

3
(ε −δ )

 ≤ 
1

nε −δ  → 0 for n → ∞, because δ <

ε. Thus, with high probability n(k+1) ≤ p(k) nδ n
2

3
(ε −δ )

≤ n
ε −δ

3  nδ n
2

3
(ε −δ )

≤ nε≤n
p  . This concludes the

proof of Lemma 3.

2.3.  Applications
We now study how to apply Algorithm 2 for solving Problems 1-4 listed in Section 1. Clearly, all four
problems have Property P1 indicated above. We now study conditions under which Problems 1-4 have
Property P2.

Lemma 4 For a uniform random set S of n non-intersecting line segments in [0,1]2, E(|LE(S)|) ≤ 2
ln(n).

An outline of the proof (incl. more details about the underlying distribution) will be given in the complete
version of this paper. See [8] for details.

Lemma 5 For a uniform random set S of n parallelepipeds in [0,1]d, 

E(|VIS(S)|) ≤ 
2d −1

(d −1)!
lnd −1(n).

An outline of the proof (incl. more details about the underlying distribution) will be given in the complete
version of this paper. See [8] for details. With regards to Problem 3, it has been shown in [3, 10-12 that

E(|CH(S)|) ≤ O(ln(n)f(d)), f(d)=O(1)
for a random set S of n points in IR d, d=O(1). If the points are chosen independently from a d-di-
mensional normal distribution, then f(d) = (d-1)/2 [10]. If they have their components chosen inde-
pendently from any set of continuos distributions (possibly different for each component), then f(d) = d-
1 [3]. It has been shown in [3] that

E(|MAX(S)|) ≤ log(n)(d-1)



8

for a random set S of n points in IR d, d=O(1), where the coordinates of each point are independent and
chose from an identical, continuous distribution. Hence, for the data distributions indicated above,
Problems 1-4 have Property P2 for any δ > 0. We apply Algorithm 2 and Theorem 2 with k
= 1 / (2a) +1 / 2   and obtain

Theorem 3 For any multicomputer Mα(p,n), Algorithm 2 solves Problems 1-4 (for the data
distributions indicated above), with high probability, with a communication time of at most
(k+1) (TpSum(p) + Tcompr(p,n)) and a local computation time of at most (k+2) (T1(n)/p + O(n/p)),
where k = 1 / (2a) +1 / 2   is a fixed constant and T1(n) denotes the (high probability) sequential time
complexity of the respective problem.

3. Proximity Problems
Due to space limitations, we will now present only an outline of our solutions for Problems 5-8. We will
also restrict our presentation to the case d=2. The complete proofs and the generalization to d=O(1) will
be presented in the final version of this paper.

Our approach is to use a grid method similar to [4]. The non-trivial difference is that the results in [4]
are expected sequential time complexities, whereas our parallel time complexity results are with high
probability. Consider the following rectangular partitioning of S into p subsets R1, ..., Rp: Partition

[0,1]2 by p -1 vertical lines into p  vertical slabs K1, ..., K√p such that each slab contains exactly n/ p 

points of S. Partition each slab Kj, 1≤j≤ p , by p -1 horizontal lines into n  rectangles r(j-1)√p + 1, ...,
r(j-1)√p + √p such that each rectangle contains exactly n/p points of S . Let Ri be the set of points
contained in rectangle ri, 1≤i≤p. Denote by wi and hi the width and height of rectangle ri, respectively.

Two rectangles ri and ri' are called adjacent if they are within distance 1/(2 p ). For each i∈ {1, ..., p }

define neighbors(i) = {i' | 1≤i'≤ p , i'≠i, ri and ri' are adjacent} and Ni as the union of all Ri' such that i'

∈  neighbors(i).

We study the following algorithm for solving Problems 5-8. For S '  ⊆  S , let λ(s,S) refer to the
Voronoi polygon of s with respect to S' , nearest neighbor of s in S' , or the largest empty circle or
rectangle with respect to S' that has s on its border, respectively

Algorithm 3 (outline) Architecture: A multicomputer Mα(p,n). Input: Each processor Pi stores a

random subset of n/p unique points of S. Output: Each processor Pi stores λ(s,S) for n/p points s∈ S.
(1) With two global sort procedures, a rectangular partitioning R1, ..., Rp of S is created such that

each processor Pi stores subset Ri and the coordinates of ri.

(2)    IF     for every processor Pi: 1/(2 p ) ≤ hi ≤ 2/ p  and 1/(2 p ) ≤ wi ≤ 2/ p      THEN

(2a) Every processor Pi receives a copy of all Ri', i' ∈ neighbors(i), and computes λ(s,Ri∪ Ni)

for each s∈ Ri.
(2b) If Algorithm 3 is used to compute the Voronoi diagram, check if the rays of the open Voronoi

polygons have strictly increasing angles. If this is not the case, report that the result is
incorrect and continue with Step 2c.

    ELSE    
(2c) use some deterministic algorithm.

Lemma 6 Algorithm 3 correctly computes λ(s,S) for all s∈ S.



9

Proof Sketch. The "if" clause in Step 2 ensures that there exists no empty circle with radius 1/(2 p )
and that, for each s ∈ Ri, all points within distance 1/(2 p ) are contained in Ri∪ Ni. It is easy to see that

in such a case, λ(s,Ri∪ Ni) = λ(s,S) for Problems 6-8. For Problem 5, we also need to check the

correctness of the Voronoi edges outside [0,1]2. This is done by the test in Step 2b. We show that if the
rays of open Voronoi polygons have strictly increasing angles then the Voronoi edges outside [0,1]2
were computed correctly. Note that the test can be performed with every processor on the border of
[0,1]2 having only the data of its two direct neighbors. The complete proof will be presented in the final
version of this paper.          

The following two lemmas show that the "if" clause in Step 2 and the test in Step 2b are successful
with high probability.

Lemma 7 With high probability, for all 1 ≤ i ≤ p, 1/(2 p ) ≤ hi ≤ 2/ p  and 1/(2 p ) ≤ wi ≤ 2/ p .

The proof will be presented in the final version of this paper. For a uniform point distribution we can
show via Chernoff Bounds (see e.g. [6] p. 193) that, for growing n, the probability that there exists any
hi or wi outside the above bounds converges very fast to 0.

Lemma 8 If Algorithm 3 is used to compute the Voronoi diagram then, with high probability, after Step
2a all Voronoi edges outside [0,1]2 have been correctly computed.

The basic idea for the proof is to show via Chernoff Bounds that with high probability all Voronoi
edges outside [0,1]2 are bisectors of points in adjacent rectangles of our rectangular partitioning. The
complete proof will be presented in the final version of this paper.

The above three lemmas imply

Theorem 4 For any multicomputer Mα(p,n), Algorithm 2 solves Problems 5-8, with high probability,

with a communication time of at most (23d+d) Tsort(p,n) and a local computation time of at most

23d (T1(n)/p + O(n/p)), where T1(n) denotes the (high probability) sequential time complexity of the
respective problem.

Note that for Problem 5 and the case d>2, the Voronoi diagram to be reported can be of more than
linear size. With high probability, each processor Pi can compute the Voronoi polygons for its point set

Ri based on the point set Ri∪ Ni which is of size O(n/p). There is no problem as long as, during this

sequential computation of λ(s,Ri∪ Ni) for each s∈ Ri, the reported results need not be stored in the local
memory of Pi or if there is extra memory available for storing the output. Otherwise, it is impossible (for
any algorithm) to solve the problem on the given architecture. The expected output size per processor is
O(n/p) [4], and we conjecture that this bound also holds with high probability. For Problems 6-8, the
output size per processor is always O(n/p), for any dimension d=O(1).

4. Experimental Results
We implemented Algorithm 2 for Problem 1 and Problem 3 (d=3 and d=4) on a CM5. Our CM5

partition had 32 processors with 40 MB memory per processor. All timing results are obtained in multi-
user mode. The sequential code for the lower envelope problem was a plane sweep algorithm which we
implemented ourselves, and for the convex hull we used the "Quickhull Algorithm" [2]. The observed
running times are shown in Figures 1 and 2, and in Table 1.

Curves (a) and (b) in Figure 1 show the local computation times and communication times,
respectively, for computing the lower envelope of a random set of non-intersecting line segments (we
will discuss the data generation in detail in the full version of the paper). Table 1 shows the number of
communication rounds observed, and the exact numerical values of the observed times. For each data



10

point, we made 20 experiments.  The running time indicated is the average of those 20 experiments,
together with the double-sided confidence interval with significance level 99.9%. For all data points, the
number of communication rounds observed was always identical for all 20 experiments. Our CM5
configuration allowed to process n = 8 Meg (= 8388608) line segments, i.e. n/p = 256 K (= 262144)
line segments can be stored in the local memory of one processor. The program required 0.114±0.66%
seconds communication time and 13.7±0.06% seconds local computation time. We then simulated a
smaller local memory size, n/p, on our given machine. (Note that, for n/p < 256 K we allowed in our
simulation only n/p, instead of the possible 256 K, line segments to be compressed into one processor in
each iteration of Step 1c in Algorithm 2.) For n/p ≥ 512 line segments per processor, our algorithm
terminated always after one communication round. We observe that the communication time is extremely
small, for all cases. Essentially, all time is spent on local computation, were each processor first
computes the lower envelope for n/p line segments, and then processor P1 solves another such problem.

In order to study better the behavior of Algorithm 2, we changed it to iterate Step 1 until the
remaining data size is at most n/p, or until a time-out occurs. For n/p between 64 and 256 we observed
two communication rounds, for n/p = 32 we needed 4 communication rounds, and for smaller n/p our
algorithm was not successful. The latter cases are due to the fact that, for our experiments, p=32 is a
small number and, hence, for small ratios n/p we violate Assumption A4 which requires that n is a large
number. Clearly, it makes even no sense to solve the lower envelope problem for n < 1 K line segments
on a CM5.

Curves (c) and (d) in Figure 1, and the respective rows in Table 1, show the local computation times
and communication times, respectively,  for computing the lower envelope of a random set of  (possibly)
intersecting line segments. The probabilistic analysis of this case is still an open problem. The obtained
empirical results suggest, however, that Algorithm 2 has a very similar behavior for this case.

Figure 2 and the respective rows in Table 1 show the results for 3D and 4D convex hull. The
experimental setup was the same as for the lower envelope problem. For all data points, the number of
communication rounds observed was always identical for all 20 experiments. For n/p between 256 and
2K, or 1 K and 8 K, we observed for 3D or 4D convex hull, respectively, that Algorithm 2 requires
between 2 and 3 communication rounds. For smaller n/p, we have again a violation of Assumption A4
which requires that n is a large number. Since h(n) is a larger function for Problem 3 with d = 3 and d =
4 than for Problem 1, we require larger values of n to obtain high probability for a constant number of
communication rounds. For n/p ≥ 4 K (d = 3) or n/p ≥ 16 K (d = 4), respectively, our algorithm
terminated always after one communication round. Again, we observe that the communication time is
extremely small. Hence, we observe a speedup very close to p/2.

5. Open Problems
An important problem, which we plan to study in the future, is to extend our methods to non-

uniform data distributions. For example, for Algorithm 2 it seems helpful to randomly permute the
remaining data at the end of each iteration and simply compress them as much as possible. We conjecture
that this will improve the performance and solve at least some cases which are currently not covered. For
Algorithm 3, one can adapt the rectangular partitioning scheme to the given distribution and, if
necessary, iterate Step 2a. It is an interesting open problem to give a probabilistic analysis of such
algorithmic extensions. [7, 9, 13]

6. References
[1] S. G. Akl and K. A. Lyons, Parallel Computational Geometry, Prentice Hall, 1993.
[2] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, "The quickhull algorithm for convex hull," Tech. Report No.

GCG53, The Geometry Center, University of Minnesota, Minneapolis, MN 55454, USA, 1993.
[3] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson, "On the average number of maxima in a set of

vectors and applications," J. ACM, Vol. 25, 1978, pp. 536-543.



11

[4] J. L. Bentley, Weide, and A. Yao, "Optimal expected time algorithms for closest point problems," ACM
Transactions on Mathematical Software, Vol. 6, No. 4, 1980, pp. 563-580.

[5] F. Dehne, A. Fabri, and A. Rau-Chaplin, "Scalable parallel computational geometry for coarse grained
multicomputers," in Proc. ACM Symposium on Computational Geometry, 1993, pp. 298-307.

[6] W. Feller, An introduction to probability theory and its applications, John Wiley, 1950.
[7] T. Hagerup and J. Katajainen, "Improved parallel bucketing algorithms for proximity problems," in Proc. 26th

Hawaii International Conference on System Sciences, 1993, pp. 318-327.
[8] C. Mathieu-Kenyon, "The complexity of an axial view of a parallelepipedic scene: an average-cas analysis"

unpublished manuscript, also presented at the Journées de Géométrie Algorithmique, INRIA, Sophia-Antipolis, 1990.
[9] P. D. MacKenzie and Q. F. Stout, "Ultra-fast expected time parallel algorithms," in Proc. 2nd ACM-SIAM

Symposium on Discrete Algorithms, 1991, pp. 414-423.
[10] H. Raynaud, "Sur l'envelope convexe des nauges des poits aléatoires dans Rn," J. Appl. Prob., Vol. 7, 1972, pp. 35-

48.
[11] A. Rényi and R. Sulanke, "Über die konvexe Hülle von n zufällig gerwähten Punkten," Z. Wahrsch. Verw. Gebiete,

Vol. 2, 1963, pp. 75-84.
[12] A. Rényi and R. Sulanke, "Zufällige konvexe Polygone in einem Ringgebiet," Z. Wahrsch. Verw. Gebiete, Vol. 9,

1968, pp. 146-157.
[13] Q. Stout, "Constant-time geometry on PRAMs," in Proc. International Conference on Parallel Processing, 1988, pp.

104-107.   

0

2

4

6

8

10

12

14

4.096 16.384 32.768 65.536 131.072

[s
ec

]

[n/32]

(a)

(c)

(b)
(d)

(a) non-intersecting segments, local computation time
(b) non-intersecting segments, communication time

(c) intersecting segments, local computation time
(d) intersecting segments, communication time

Figure 1: Timing Results For The Lower Envelope Problem.



12

0

10

20

30

40

50

60

4.096 16.384 32.768 65.536 131.072

[s
ec

]

[n/p]

(a)

(c)

(b)(d)

(a) 3D convex hull, local computation time
(b) 3D convex hull, communication time     
(c) 4D convex hull, local computation time

(d) 4D convex hull, communication time     

Figure 2: Timing Results For The 3-Dim. and 4- Dim. Convex Hull Problem.



13

n 1 K 2 K 4 K 8 K 16 K 32 K 64 K 128 K 256 K 512 K 1 Meg 2 Meg 4 Meg 8 Meg

n/p 32 64 128 256 512 1 K 2 K 4 K 8 K 16 K 32 K 64 K 128 K 256 K

Figure 1a&b: Problem 1 (lower envelope)
rounds 4 2 2 2 1 1 1 1 1 1 1 1 1 1
Tlocal

[sec]

0.003
±11%

0.005
±4.8%

0.010
±5.7%

0.020
±2.4%

0.039
±3.0%

0.065
±2.1%

0.119
±1.2%

0.233
±1.1%

0.447
±0.6%

0.876
±0.4%

1.734
±0.3%

3.442
±0.2%

6.866
±0.1%

13.7±
0.06%

Tcomm

[sec]

0.004
±7.2%

0.004
±5.9%

0.004
±3.1%

0.006
±9.4%

0.007
±2.4%

0.008
±7.7%

0.009
±7.7%

0.010
±6.7%

0.012
±5.2%

0.015
±3.7%

0.022
±3.0%

0.035
±2.1%

0.060
±1.2%

0.114
±0.7%

Figure 1c&d: Problem 1 (lower envelope) for intersecting line segments
rounds * 5 5 4 2 2 2 2 1 1 1 1 1 1

Tlocal

[sec]

0.010
±3.9%

0.022
±4.5%

0.050
±4.8%

0.090
±5.3%

0.163
±3.1%

0.318
±2.0%

0.659
±1.6%

1.146
±1.7%

2.054
±1.1%

3.759
±0.5%

7.072
±1.2%

13.44
±0.5%

25.72
±0.3%

Tcomm

[sec]

0.006
±2.5%

0.009
±8.6%

0.014
±11%

0.015
±12%

0.020
±4.3%

0.032
±4.0%

0.059
±33%

0.065
±3.0%

0.089
±2.4%

0.126
±1.8%

0.182
±4.7%

0.265
±2.1%

0.372
±2.0%

Figure 2a&b: Problem 3 (convex hull), dimension d = 3
rounds * * * 3 2 2 2 1 1 1 1 1 1 1

Tlocal

[sec]

0.320
±13%

0.352
±9%

0.469
±5.5%

0.740
±4.4%

0.879
±7.3%

1.325
±8.4%

1.975
±11%

3.388
±13%

6.035
±13%

11.70
±10%

24.52
±11%

Tcomm

[sec]

0.016
±5.9%

0.013
±11%

0.014
±1.2%

0.016
±0.7%

0.016
±1.1%

0.018
±0.9%

0.020
±2.3%

0.022
±1.2%

0.024
±3.7%

0.026
±1.0%

0.031
±14%

Figure 2c&d: Problem 3 (convex hull), dimension d = 4
rounds * * * * * 3 2 2 2 1 1 1 1 1

Tlocal

[sec]

8.162
±4.4%

8.659
±4.3%

12.75
0±3.1
%

17.87
6±4.6
%

19.19
4±5.6
%

26.52
3±3.6
%

38.61
4±6.7
%

55.55
2±5.8
%

91.65
±6.9%

Tcomm

[sec]

0.025
±1.6%

0.036
±91%

0.037
±15%

0.049
±1.4%

0.066
±3.9%

0.082
±3.5%

0.095
±0.9%

0.116
±3.1%

0.137
±2.1%

Table 1: Table Of Timing Results and Confidence Intervals.




